Home Photochromic dyes
Article
Licensed
Unlicensed Requires Authentication

Photochromic dyes

  • Andrew Towns EMAIL logo
Published/Copyright: July 17, 2021
Become an author with De Gruyter Brill

Abstract

This article describes the defining characteristics of photochromic dyes and highlights the subset of properties that are of greatest commercial importance. It outlines the history of the industrial exploitation of photochromic colorants before moving on to discuss current and potential applications. In doing so, a brief tour of key types of photochromic dye is provided.

References

1. Towns A. Colorants: general survey. Phys Sci Rev. 2019;4. DOI:10.1515/psr-2019-0008.Search in Google Scholar

2. International union of pure and applied chemistry organic and biomolecular chemistry division. Glossary of terms used in photochemistry, 3rd edition (IUPAC Recommendations 2006). Pure Appl Chem. 2007, 79, 293.10.1351/pac200779030293Search in Google Scholar

3. International union of pure and applied chemistry organic chemistry division commission on photochemistry. Organic photochromism (IUPAC Technical Report). Pure Appl Chem. 2001, 71, 639.10.1351/pac200173040639Search in Google Scholar

4. Dürr H. In: Photochromism molecules and Systems. Dürr H, Bouas-Laurent H, editors. Amsterdam: Elsevier, 2003 Chapter 1 (“General Introduction”) 1–14.10.1016/B978-044451322-9/50005-1Search in Google Scholar

5. Samat A, Guglielmetti R. Chromogenic materials, photochromic. In: Kirk-Othmer enyclopedia of chemical technology. 5th ed. vol. 6, Wiley, 2004:587–606.10.1002/0471238961.1608152003180114.a01.pub2Search in Google Scholar

6. Kobayashi Y, Mutoh K, Abe J. Stepwise two-photon absorption processes utilizing photochromic reactions. J Photochem Photobiol C: Photochem Rev. 2018;34:2–28.10.1016/j.jphotochemrev.2017.12.006Search in Google Scholar

7. Heller HG, Oliver SN, Whittal J, Johncock W, Darcy PJ, Trundle C. (The Plessey Company plc). UK Patent GB2146327B 1986.Search in Google Scholar

8. Heller HG. In: Miller LS, Mullin JB, editors. Electronic materials: from silicon to organics. New York: Springer, 1991 Chapter 31 (“Photochromics for the future”) 471–83.10.1007/978-1-4615-3818-9_31Search in Google Scholar

9. Towns A. Spirooxazine dyes. Phys Sci Rev. 2020;5. DOI:10.1515/psr-2020-0013.Search in Google Scholar

10. Eppig T, Speck A, Gillner M, Nagengast D, Langenbucher A. Photochromic dynamics of ophthalmic lenses. Appl Opt. 2012;51:133.10.1364/AO.51.000133Search in Google Scholar PubMed

11. Irie M. Molecular switches. Feringa BL, editor. Weinheim: Wiley-VCH, 2003 Chapter 2 (“Photoswitchable molecular systems based on diarylethenes”) 37–62.10.1002/3527600329.ch2Search in Google Scholar

12. Towns A. Naphthopyran dyes. Phys Sci Rev. 2020;5. DOI:10.1515/psr-2019-0085.Search in Google Scholar

13. Aiken S, Edgar RJ, Gabbutt CD, Heron BM, Hobson PA. Negatively photochromic organic compounds. Dyes Pigm. 2018;149:92.10.1016/j.dyepig.2017.09.057Search in Google Scholar

14. Barachevsky VA. Negative photochromism in organic systems. Rev J Chem. 2017;7:334.10.1134/S2079978017030013Search in Google Scholar

15. Towns AD. In: Bergamini G, Silvi S, editors. Applied photochemistry. Switzerland: Springer, 2016 Chapter 5 (“Industrial Photochromism”) 227–79.10.1007/978-3-319-31671-0_5Search in Google Scholar

16. Rawat MS, Mal S, Singh P. Photochromism in anils – A review. Open Chem J. 2015;2:7–19.10.2174/1874842201502010007Search in Google Scholar

17. Fritzsche J. Note sur les carbures d’hydrogène solides, tirés du goudron de houille. Compt Rend Hebd Séances Acad Sci. 1867;64:1035–7.Search in Google Scholar

18. Roth HD. The beginnings of organic photochemistry. Angew Chem Int Ed Engl. 1989;28:1193–207.10.1002/anie.198911931Search in Google Scholar

19. Becker H-D. Unimolecular photochemistry of anthracenes. Chem Rev. 1993;93:145–72.10.1021/cr00017a008Search in Google Scholar

20. Fritzsche J. Bericht an die physikalisch-mathematische Classe der Kaiserlichen Akademie der Wissenschaften vom Akademiker Fritzsche über seine Arbeit, betreffend die festen Kohlenwasserstoffe des Steinkohlentheers. Bull Acad Imp Sci St Pétersbourg. 1867;11:385–97.Search in Google Scholar

21. Elbs K. Ueber Paranthracen. J Prakt Chem. 1891;44:467–9.10.1002/prac.18910440140Search in Google Scholar

22. Fritzsche J. Über die festen Kohlenwasserstoffe des Steinkohlentheers. Bull Acad Imp Sci St -Pétersbourg. 1866;9:406–19.Search in Google Scholar

23. Winterstein A, Schön K, Vetter HV. Mitteilung: Anthracen, Chrysen, Pyren. Z Physiol Chem. 1934;230:158–69.10.1515/bchm2.1934.230.1-6.158Search in Google Scholar

24. Ter Meer E. Ueber Dinitroverbindung der Fettreihe. Justus Liebig’s Ann. Chemie. 1876;181:1.10.1002/jlac.18761810102Search in Google Scholar

25. Hirschberg Y, Fischer E. Thermochromism and Photochromism. J Chem Phys. 1955;23:1723.10.1063/1.1742422Search in Google Scholar

26. Hirschberg Y. Photochromie dans la série de la bianthrone. Compt Rend. 1950;231:903.Search in Google Scholar

27. Marckwald W. Ueber Phototropie. Z Phys Chem. 1899;30:140.10.1515/zpch-1899-3007Search in Google Scholar

28. Stobbe H. Die farbigen Anhydride der Butadiën-β, χ-dicarbonsäuren; ihr Verhalten gegen Licht und Wärme. (II. Abhandlung über Butadiënverbindungen.). Ber Deutschen Chemischen Ges. 1904;37:2236–40.10.1002/cber.190403702159Search in Google Scholar

29. Luck W, Sand H. Über Phototropie. Angew Chem. 1964;76:463–73.10.1002/ange.19640761104Search in Google Scholar

30. Dessauer R, Paris JP. In: Noyes Jr WA, Hammon GS, Pitts Jr JN, editors. Advances in photochemistry, vol. 1, John Wiley, 1963 “Photochromism” 275–321.10.1002/9780470133316.ch8Search in Google Scholar

31. Nakatani K, Piard J, Yu P, Métivier R. In: Photochromic materials: preparation, properties and applications. Tian H, Zhang J, editors . Weinheim: Wiley-VCH, 2016 Chapter 1 (“Introduction: Organic Photochromic Molecules”):1–45.10.1002/9783527683734.ch1Search in Google Scholar

32. Beatty JM. Trade winds. Saturday review. 5 Aug 1961. 5–6 (www.unz.com/print/SaturdayRev-1961aug05-00005/). Accessed: 19 Apr 2021.Search in Google Scholar

33. Towns A. Spiropyran dyes. Phys Sci Rev. in press. DOI:10.1515/psr-2020-0197.10.1515/psr-2020-0197Search in Google Scholar

34. Hirschberg Y. The photochemical memory. New Scientist. 1960;7:1423–5. https://books.google.co.uk/books?id=RRVRuUO5vFIC&pg=PA1379&source=gbs_toc&cad=2#v=onepage&q&f=false. Accessed: 19 Apr 2021.Search in Google Scholar

35. Bertelson RC. Reminiscences about organic photochromics. Mol Cryst Liq Cryst. 1994;246:1–8.10.1080/10587259408037778Search in Google Scholar

36. Bertelson RC. Chapter 10 (“Applications of photochromism”). In: Brown GH, editor. Photochromism – techniques of chemistry. vol. III. London: Wiley, 1971.:733–840.Search in Google Scholar

37. Hoffman HJ. In: Photochromism molecules and systems. Dürr H, Bouas-Laurent H, editors. Amsterdam: Elsevier, 2003 Chapter 22 (“The Use of Silver Salts for Photochromic Glasses”) 822–54.10.1016/B978-044451322-9/50026-9Search in Google Scholar

38. Feringa BL. The art of building small: from molecular switches to motors (Nobel Lecture). Angew Chem Int Ed. 2017;56:11060–78.10.1002/anie.201702979Search in Google Scholar PubMed

39. Dürr H. In: Crano JC, Guglielmetti RJ, editors. Organic photochromic and thermochromic compounds vol. 1: main photochromic families. New York: Plenum, 1999 Chapter 6 (“Photochromism of Dihydroindolizines and Related Systems”) 223–66.10.1007/0-306-46911-1_7Search in Google Scholar

40. Dürr H. In: Dürr H, Bouas-Laurent H, editors. Photochromism molecules and systems. Amsterdam: Elsevier, 2003 Chapter 6 (“4n+2 Systems Based on 1,5-Electrocyclization”) 210–69.10.1016/B978-044451322-9/50010-5Search in Google Scholar

41. Hajoudis E. In: Dürr H, Bouas-Laurent H, editors. Photochromism molecules and systems. Amsterdam: Elsevier, 2003 Chapter 17 (“Tautomerism by Hydrogen Transfer in Anils, Aci-Nitro and Related Compounds”) 685–712.10.1016/B978-044451322-9/50021-XSearch in Google Scholar

42. Hadjoudis E, Mavridis IM. Photochromism and thermochromism of Schiff bases in the solid state: structural aspects. Chem Soc Rev. 2004;33:579–88.10.1039/b303644hSearch in Google Scholar PubMed

43. Sliwa M, Mouton N, Ruckebusch C, Poisson L, Idrissi A, Aloïse S, et al. Investigation of ultrafast photoinduced processes for salicylidene aniline in solution and gas phase: towards a general photo-dynamical scheme. Photochem Photobiol Sci. 2010;9:661–9.10.1039/b9pp00207cSearch in Google Scholar PubMed

44. Eigenmann G. Chapter 4 (“Photochromic Processes By Homolytic Cleavage”). In: Brown GH, editor. Photochromism – techniques of chemistry. vol. III. London: Wiley, 1971:433–69.Search in Google Scholar

45. Aldag R, In: Dürr H, Bouas-Laurent H, editors. Photochromism molecules and systems. Amsterdam: Elsevier, 2003 Chapter 18 (“Photochromism Based on Dissociation Processes”) 713–37.10.1016/B978-044451322-9/50022-1Search in Google Scholar

46. Bertelson RC. Chapter 3 (“Photochromic Processes Involving Heterolytic Cleavage”). In: Brown GH, editor. Photochromism – techniques of chemistry. vol. III. London: Wiley, 1971:45–431.Search in Google Scholar

47. Green WA. Industrial photoinitiators: a technical guide. Boca Raton: CRC Press, 2010.10.1201/9781439827468Search in Google Scholar

48. Rullo A, Reiner A, Reiter A, Trauner D, Isacoff EY, Woolley GA. Long wavelength optical control of glutamate receptor ion channels using a tetra-ortho-substituted azobenzene derivative. Chem Commun. 2014;50:14613–15.10.1039/C4CC06612JSearch in Google Scholar

49. Weston CE, Richardson RD, Haycock PR, White AJ, Fuchter MJ. Arylazopyrazoles: azoheteroarene photoswitches offering quantitative isomerization and long thermal half-lives. J Am Chem Soc. 2014;136:11878–81.10.1021/ja505444dSearch in Google Scholar PubMed

50. Yager KG, Barrett CJ. In: Zhao Y, Ikeda T, editors. Smart light responsive materials: azobenzene-containing polymers and liquid crystals. Hoboken: Wiley, 2009 Chapter 1 (“Azobenzene polymers for photonic applications”) 1–46.10.1002/9780470439098.ch1Search in Google Scholar

51. Cliffe WH. The Life and Times of Peter Griess. J Soc Dyers Colourists. 1959;75:278–85.10.1111/j.1478-4408.1959.tb02325.xSearch in Google Scholar

52. Towns A. Diarylethene dyes. Phys Sci Rev. 2020;5. DOI:10.1515/psr-2019-0146.Search in Google Scholar

53. Towns A. Fulgide Dyes. Phys Sci Rev. in press. DOI:10.1515/psr-2020-0173.10.1515/psr-2020-0173Search in Google Scholar

54. Baeyer A. Ueber die Verbindungen der Indigogruppe. Ber Deutsch Chem Ges. 1883;16:2188–204.10.1002/cber.188301602130Search in Google Scholar

55. Arai T, Ikegamai M. Novel photochromic dye based on hydrogen bonding. Chem Lett. 1999;28:965–6.10.1246/cl.1999.965Search in Google Scholar

56. Pianowski ZL. Recent implementation of molecular photoswitches into smart materials and biological systems. Chem Eur J. 2019;25:5128–44.10.1002/chem.201805814Search in Google Scholar PubMed

57. Mallo N, Foley ED, Iranmanesh H, Kennedy AD, Luis ET, Ho J, et al. Structure–function relationships of donor–acceptor Stenhouse adduct photochromic switches. Chem Sci. 2018;9:8242–52.10.1039/C8SC03218ASearch in Google Scholar

58. Lerch MM, Symański W, Feringa BL. The (photo)chemistry of Stenhouse photoswitches: guiding principles and system design. Chem Soc Rev. 2018;47:1910–37.10.1039/C7CS00772HSearch in Google Scholar

59. Helmy S, Leibfarth FA, Oh S, Poelma JE, Hawker CJ, De Alaniz JR. Photoswitching using visible light: A new class of organic photochromic molecules. J Am Chem Soc. 2014;136:8169–72.10.1021/ja503016bSearch in Google Scholar PubMed

60. Mustroph H. Hemioxonol dyes. Phys Sci Rev. in press. DOI:10.1515/psr-2020-0175.10.1515/psr-2020-0175Search in Google Scholar

61. For example: Tokyo Chemical Industry. Photochromic dyes. www.tcichemicals.com/eshop/en/gb/category_index/12989/ Accessed: 19 Apr 2021.Search in Google Scholar

62. Corns SN, Partington SM, Towns AD. Industrial organic photochromic dyes. Color Technol. 2009;125:249.10.1111/j.1478-4408.2009.00204.xSearch in Google Scholar

63. Harris JD, Moran MJ, Aprahamian I. New molecular switch architectures. PNAS. 2018;115:9414.10.1073/pnas.1714499115Search in Google Scholar PubMed PubMed Central

64. Krongauz VA. Chapter 21 (“Environmental Effects on Organic Photochromic Systems”). In: Dürr H, Bouas-Laurent H, editors. Photochromism molecules and systems, revised edition. Amsterdam: Elsevier, 2003:793–821.10.1016/B978-044451322-9/50025-7Search in Google Scholar

65. Vázquez-Mera N, Roscini C, Hernando J, Ruiz-Molina D. Liquid-filled capsules as fast responsive photochromic materials. Adv Optical Mater. 2013;1:631–6.10.1002/adom.201300121Search in Google Scholar

66. Parhizkar M, Zhao Y, Lin T. Photochromic fibers and fabrics. In: Tao X, editor. Handbook of smart textiles. Singapore: Springer. 2014. DOI: https://doi.org/10.1007/978-981-4451-68-0_7-1.Search in Google Scholar

67. Periyasamy AP, Vikova M, Vik M. A review of photochromism in textiles and its measurement. Textile Prog. 2017;49:53–136.10.1080/00405167.2017.1305833Search in Google Scholar

68. Reduwan Billah SM, Christie RM, Shamey R. Direct coloration of textiles with photochromic dyes. Part 1: Application of spiroindolinonaphthoxazines as disperse dyes to polyester, nylon and acrylic fabrics. Color Technol. 2008;124:223–8.10.1111/j.1478-4408.2008.00145.xSearch in Google Scholar

69. Ramlow H, Andrade KL, Immich APS. Smart textiles: an overview of recent progress on chromic textiles. J Textile Inst. 2021;112:152–71.10.1080/00405000.2020.1785071Search in Google Scholar

70. Meslin D. Materials and treatments. Paris: Essilor Academy Europe, 2010.Search in Google Scholar

71. Crano JC, Kwak WS, Welch CN. In: McArdle CB, editors, Applied photochromic polymer systems. Glasgow: Blackie, 1992.Search in Google Scholar

72. Österholm AM, Shen DE, Kerszulis JA, Bulloch RH, Kuepfert M, Dyer AL, et al. Four shades of brown: tuning of electrochromic polymer blends toward high-contrast eyewear. ACS Appl Mater Interfaces. 2015;7:1413–21.10.1021/am507063dSearch in Google Scholar PubMed

73. Feringa BL, Browne WR, editors. Molecular switches. 2nd ed. Weinheim: Wiley-VCH, 2011.10.1002/9783527634408Search in Google Scholar

74. Dong H, Zhu H, Meng Q, Gong X, Hu W. Organic photoresponse materials and devices. Chem Soc Rev. 2012;41:1754.10.1039/C1CS15205JSearch in Google Scholar

75. Zhang Q, Qu D-H, Tian H. Photo-regulated supramolecular polymers: shining beyond disassembly and reassembly. Adv Optical Mater. 2019;7:1900033.10.1002/adom.201900033Search in Google Scholar

76. Pantuso E, de Filpo G, Nicoletta FP. Light-responsive polymer membranes. Adv Optical Mater. 2019;7:1900252.10.1002/adom.201900252Search in Google Scholar

77. Goulet-Hanssens A, Eisenreich F, Hecht S. Enlightening materials with photoswitches. Adv Mater. 2020;1905966.10.1002/adma.201905966Search in Google Scholar PubMed

78. Hohl DK, Weder C. (De)bonding on demand with optically switchable adhesives. Adv Optical Mater. 2019;7:1900230.10.1002/adom.201900230Search in Google Scholar

79. Irie M, Yokoyama Y, Seki T, editors. New frontiers in photochromism. Tokyo: Springer, 2013.10.1007/978-4-431-54291-9Search in Google Scholar

80. Gauglitz G. In: Dürr H, Bouas-Laurent H, editors. Photochromism molecules and systems. Amsterdam: Elsevier, 2003 Chapter 25 (“Actinometry”) 883–903.10.1016/B978-044451322-9/50029-4Search in Google Scholar

81. Van Renesse RL. In: Van Renesse RL, editor. Optical document security. 2nd ed, London: Artech House, 1998 Chapter 9 201–24.Search in Google Scholar

82. Ke Y, Chen J, Lin G, Wang S, Zhou Y, Yin J, et al. Smart Windows: Electro-, Thermo-, Mechano-, Photochromics, and Beyond. Adv Energy Mater. 2019;19:1902066.10.1002/aenm.201902066Search in Google Scholar

83. Mortimer RJ, Rosseinsky DR, Monk PM, editors. Electrochromic materials and devices. Weinheim: Wiley-VCH, 2015.Search in Google Scholar

84. Casini M. Active dynamic windows for buildings: A review. Renewable Energy. 2018;119:923–34.10.1016/j.renene.2017.12.049Search in Google Scholar

85. Tällberg R, Jelle BP, Loonen R, Gao T, Hamdy M. Comparison of the energy saving potential of adaptive and controllable smart windows: a state-of-the-art review and simulation studies of thermochromic, photochromic and electrochromic technologies. Solar Energy Mater Solar Cells. 2019;200:109828.10.1016/j.solmat.2019.02.041Search in Google Scholar

86. Tsujioka T, Matsui N. Electrical characterization of photochromic diarylethene films consisting of extraordinarily large crystallites. J Mater Chem C. 2014;2:3589.10.1039/c3tc32110jSearch in Google Scholar

87. Fu L-N, Leng B, Li Y-S, Gao X-K. Photoresponsive organic field-effect transistors involving photochromic molecules. Chin Chem Lett. 2016;27:1319–29.10.1016/j.cclet.2016.06.045Search in Google Scholar

88. Bisoyi HK, Li Q. Light-driven liquid crystalline materials: from photo-induced phase transitions and property modulations to applications. Chem Rev. 2016;116:15089–166.10.1021/acs.chemrev.6b00415Search in Google Scholar PubMed

89. Kim Y, Tamaoki N. Photoresponsive chiral dopants: light-driven helicity manipulation in cholesteric liquid crystals for optical and mechanical functions. ChemPhotoChem. 2019;3:284–303.10.1002/cptc.201900034Search in Google Scholar

90. Andréasson J, Pischel U. Storage and processing of information using molecules: the All-Photonic approach with simple and Multi-Photochromic switches. Israel J Chem. 2013;53:236.10.1002/ijch.201300014Search in Google Scholar

91. Fang Y, Sun M. Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits. Light Sci Appl. 2015;4:e294.10.1038/lsa.2015.67Search in Google Scholar

92. Zhao P, Wang D, Gao H, Zhang J, Xing Y, Yang Z, et al. Third-order nonlinear optical properties of the “clicked” closed-ring spiropyrans. Dyes Pigm. 2019;162:451.10.1016/j.dyepig.2018.10.050Search in Google Scholar

93. Yamada M, Kondo M, Mamiya J-I, Yu Y, Kinoshita M, Barrett CJ, et al. Photomobile polymer materials: towards light-driven plastic motors. Angew Chem Intl Ed. 2008;47:4986–8.10.1002/anie.200800760Search in Google Scholar PubMed

94. Dattler D, Fuks G, Heiser J, Moulin E, Perrot A, Yao X, et al. Design of collective motions from synthetic molecular switches, rotors, and motors. Chem Rev. 2020;120:310–433.10.1021/acs.chemrev.9b00288Search in Google Scholar PubMed

95. Manrique-Juárez MD, Rat S, Salmon L, Molnár G, Quintero CM, Nicu L, et al. Switchable molecule-based materials for micro- and nanoscale actuating applications: achievements and prospects. Coord Chem Rev. 2016;308:395.10.1016/j.ccr.2015.04.005Search in Google Scholar

96. Han -D-D, Zhang Y-L, Ma J-N, Liu Y-Q, Han B, Sun H-B. Light-Mediated manufacture and manipulation of actuators. Adv Mater. 2016;28:8328–43.10.1002/adma.201602211Search in Google Scholar PubMed

97. Szymánski W, Beierle JM, Kistemaker HAV, Velema WA, Feringa BL. Reversible photocontrol of biological systems by the incorporation of molecular photoswitches. Chem Rev. 2013;113:6114–78.10.1021/cr300179fSearch in Google Scholar PubMed

98. Zhang J, Wang J, Tian H. Taking orders from light: progress in photochromic bio-materials. Mater Horiz. 2014;1:169–84.10.1039/C3MH00031ASearch in Google Scholar

99. Fleming C, Remón P, Li S, Simeth NA, König B, Grøtli M, et al. On the use of diarylmaleimide derivatives in biological contexts: an investigation of the photochromic properties in aqueous solution. Dyes Pigm. 2017;137:410.10.1016/j.dyepig.2016.10.023Search in Google Scholar

100. Cheng H, Yoon J, Tian H. Recent advances in the use of photochromic dyes for photocontrol in biomedicine. Coord Chem Rev. 2018;372:66–84.10.1016/j.ccr.2018.06.003Search in Google Scholar

101. Velema WA, Szymanski W, Feringa BL. Photopharmacology: beyond proof of principle. J Am Chem Soc. 2014;136:2178–91.10.1021/ja413063eSearch in Google Scholar PubMed

102. Lerch MM, Hansen MJ, Van Dam GM, Szymanski W, Feringa BL. Emerging targets in photopharmacology. Angew Chem Int Ed. 2016;55:10978–99.10.1002/anie.201601931Search in Google Scholar PubMed

103. Arrue L, Ratjen L. Internal targeting and external control: phototriggered targeting in nanomedicine. ChemMedChem. 2017;12:1908–16.10.1002/cmdc.201700621Search in Google Scholar PubMed

104. Hüll K, Morstein J, Trauner D. In Vivo photopharmacology. Chem Rev. 2018;118:10710–47.10.1021/acs.chemrev.8b00037Search in Google Scholar PubMed

105. Paramonov SV, Lokshin V, Fedorova OA. Spiropyran, chromenes or spirooxaxine ligands: insights into mutual relations between complexing and photochromic properties. J Photochem Photobiol C: Photochem Rev. 2011;12:209.10.1016/j.jphotochemrev.2011.09.001Search in Google Scholar

106. Lv G, Chen L, Lan H, Yin T. In: Tian H, Zhang J, editors. Photochromic materials: preparation, properties and applications, 1st ed, Wiley-VCH: Weinheim, 2016 Chapter 4 (“Photoswitchable Supramolecular Systems”) 109–66.10.1002/9783527683734.ch4Search in Google Scholar

107. Hao Y, Meng J, Wang S. Photo-responsive polymer materials for biological applications. Chin Chem Lett. 2017;28:2085.10.1016/j.cclet.2017.10.019Search in Google Scholar

108. Basílio N, García-Río L. Photoswitchable vesicles. Curr Opinion Colloid Interfac Sci. 2017;32:29–38.10.1016/j.cocis.2017.09.004Search in Google Scholar

109. Moncelsi G, Ballester P. Photoswitchable host-guest systems incorporating hemithioindigo and spiropyran units. ChemPhotoChem. 2019;3:304–17.10.1002/cptc.201800249Search in Google Scholar

110. Jia S, Fong W-K, Graham B, Boyd BJ. Photoswitchable molecules in long-wavelength light-responsive drug delivery: from molecular design to applications. Chem Mater. 2018;30:2873–87.10.1021/acs.chemmater.8b00357Search in Google Scholar

111. Weinstain R, Slanina T, Kand D, Klán P. Visible-to-NIR-Light activated release: from small molecules to nanomaterials. Chem Rev. 2020;120:13135–272.10.1021/acs.chemrev.0c00663Search in Google Scholar PubMed PubMed Central

112. Chozinski TJ, Gagnon LA, Vaughan JC. Twinkle twinkle little star: photoswitchable fluorophores for super-resolution imaging. FEBS Lett. 2014;588:3603–12.10.1016/j.febslet.2014.06.043Search in Google Scholar PubMed

113. Hell SW. Nanoscopy with focused light (Nobel Lecture). Angew Chem Int Ed. 2015;54:8054–66.10.1002/anie.201504181Search in Google Scholar PubMed

114. Pei JV, Heng S, De Ieso ML, Sylvia G, Kourghi M, Nourmohammadi S, et al. Development of a photoswitchable lithium-selective probe to analyse nonselective cation channel activity in migrating cancer cells. Mol Pharmacol. 2019;95:573.10.1124/mol.118.115428Search in Google Scholar PubMed

115. Gentili PL, Rightler AL, Heron BM, Gabbutt CD. Extending human perception of electromagnetic radiation to the UV region through biologically inspired photochromic fuzzy logic (BIPFUL) systems. Chem Commun. 2016;52:1474–7.10.1039/C5CC09290FSearch in Google Scholar

116. Ayt A, Barachevsky V, Kobeleva O, Valova T, Gorelik A, Krayushkin M, et al. Masking photochromic films for nanolithography technology. Phys Status Solidi C. 2011;8:2866–9.10.1002/pssc.201084073Search in Google Scholar

117. Nakagawa T, Ubukata T, Yokoyama Y. Chirality and stereoselectivity in photochromic reactions. J Photochem Photobiol C: Photochem Rev. 2018;34:152–91.10.1016/j.jphotochemrev.2017.12.004Search in Google Scholar

118. Browne WR, Feringa BL. In: Browne WR, Feringa BL, editors. Molecular switches, 2nd ed., Weinheim: Wiley-VCH, 2011 Chapter 5 (“Chiroptical Molecular Switches”) 121–79.10.1002/9783527634408.ch5Search in Google Scholar

119. Feringa BL, Van Delden RA, Koumura N, Geertsema EM. Chiroptical molecular switches. Chem Rev. 2000;100:1789–816.10.1002/3527600329.ch5Search in Google Scholar

120. Feringa BL. In control of motion: from molecular switches to molecular motors. Acc Chem Res. 2001;34:504–13.10.1021/ar0001721Search in Google Scholar PubMed

121. Tsujioka T, Irie M. Electrical functions of photochromic molecules. J Photochem Photobiol C: Photochem Rev. 2010;11:1–14.10.1016/j.jphotochemrev.2010.02.001Search in Google Scholar

122. Van der Molen SJ, Liljeroth P. In: Browne WR, Feringa BL, editors. Molecular switches, 2nd ed, Weinheim: Wiley-VCH, 2011 Chapter 20 (“Conductance Properties of Switchable Molecules”) 719–77.10.1002/9783527634408.ch20Search in Google Scholar

123. Tsujioka T, Hamada Y, Shibata K. Nondestructive readout of photochromic optical memory using photocurrent detection. Appl Phys Lett. 2001;78:2282.10.1063/1.1366365Search in Google Scholar

124. Kim Y, Kim E. Conductive polymer patterning on a photoswitching polymer layer. Macromol Res. 2006;14:584–7.10.1007/BF03218728Search in Google Scholar

125. Kim D, Park SY. Multicolor fluorescence photoswitching: color-correlated versus color-specific switching. Adv Optical Mater. 2018;6:1800678.10.1002/adom.201800678Search in Google Scholar

126. Yildiz I, Deniz E, Raymo FM. Fluorescence modulation with photochromic switches in nanostructured constructs. Chem Soc Rev. 2009;38:1859–67.10.1039/b804151mSearch in Google Scholar PubMed

127. Schildhauer M, Rott F, Thumser S, Mayer P, de Vivie-Riedle R, Dube H, et al. A prospective ultrafast hemithioindigo molecular motor. ChemPhotoChem. 2019;3:365–71.10.1002/cptc.201900074Search in Google Scholar

128. Bertarelli C, Bianco A, Castagna R, Pariani G. Photochromism in optics. Opportunities to develop light-triggered optical elements. J Photochem Photobiol C: Photochem Rev. 2011;12:106–25.10.1016/j.jphotochemrev.2011.05.003Search in Google Scholar

129. Majumder A, Mondol M, Andrew TL, Menon R. Nanophotonic Optical Switching Using Digital Metamaterials and Photochromism. 2019. arXiv:1904.00837 (arxiv.org/abs/1904.00837). Accessed: 19 Apr 2021.Search in Google Scholar

130. Han GGD, Li H, Grossman J. Optically-controlled long-term storage and release of thermal energy in phase changed materials. Nature Commun. 2017;8:1446.10.1038/s41467-017-01608-ySearch in Google Scholar PubMed PubMed Central

131. Norikane Y, Uchida E, Tanaka S, Fujiwara K, Nagai H, Akiyama H. Photoinduced phase transitions in rod-shaped azobenzene with different alkyl chain length. J Photopolym Sci Technol. 2016;29:149–57.10.2494/photopolymer.29.149Search in Google Scholar

132. Wagner N, Theato P. Light-induced wettability changes on polymer surfaces. Polymer. 2014;55:3436–53.10.1016/j.polymer.2014.05.033Search in Google Scholar

133. Guo F, Guo Z. Inspired smart materials with external stimuli responsive wettability: a review. RSC Adv. 2016;6:36623–41.10.1039/C6RA04079ASearch in Google Scholar

134. Zhang T, Wu LYL, Wang Z. Smart UV/Visible light responsive polymer surface switching reversibly between superhydrophobic and superhydrophilic. Surf Coatings Technol. 2017;320:304–10.10.1016/j.surfcoat.2016.12.072Search in Google Scholar

135. Li N-Y, Chen J-M, Tang X-Y, Zhang G-P, Liu D. Reversible single-crystal-to-single-crystal conversion of a photoreactive coordination network for rewritable optical memory storage. Chem Commun. 2020;56:1984–7.10.1039/C9CC09081ASearch in Google Scholar

136. Bossi ML, Aramendía PF. Photomodulation of macroscopic properties. J Photochem Photobiol C: Photochem Rev. 2011;12:154–66.10.1016/j.jphotochemrev.2011.09.002Search in Google Scholar

137. Mendonça CR, Balogh DT, De Boni L, Dos Santos Jr DS, Zucolotto V, Oliveira Jr ON. In: Browne WR, Feringa BL, editors. Molecular switches, 2nd ed, Weinheim: Wiley-VCH, 2011 Chapter 12 (“Optically Induced Processes in Azo Polymers”) 399–422.10.1002/9783527634408.ch12Search in Google Scholar

138. Kuenstler AS, Hayward RC. Light-induced shape morphing of thin films. Curr Opinion Colloid Interfac Sci. 2019;40:70–86.10.1016/j.cocis.2019.01.009Search in Google Scholar

139. Boelke J, Hecht S. Designing molecular switches for soft materials applications. Adv Optical Mater. 2019;7:1900404.10.1002/adom.201900404Search in Google Scholar

140. Bléger D. Orchestrating molecular motion with light – from single (macro)molecules to materials. Macromol Chem Phys. 2016;217:189–98.10.1002/macp.201500330Search in Google Scholar

141. Kageyama Y. Light-power self-sustainable macroscopic motion for the active locomotion of materials. ChemPhotoChem. 2019;3:327–36.10.1002/cptc.201900013Search in Google Scholar

142. Nocentini S, Parmeggiani C, Martella D, Wiersma DS. Optically driven soft micro robotics. Adv Optical Mater. 2018;6:1800207.10.1002/adom.201800207Search in Google Scholar

143. Stoychev G, Kirillova A, Ionov L. Light-responsive shape-changing polymers. Adv Optical Mater. 2019;7:1900067.10.1002/adom.201900067Search in Google Scholar

144. Kellner S, Berlin S. Two-photon excitation of azobenzene photoswitches for synthetic optogenetics. Appl Sci. 2020;10:805.10.3390/app10030805Search in Google Scholar

145. Wilson D, Branda NR. In: Tian H, Zhang J, editors. Photochromic materials: preparation, properties and applications, 1st edn. Weinheim: Wiley-VCH, 2016 Chapter 9 (“Photochromic Materials in Biochemistry”) 361–92.10.1002/9783527683734.ch9Search in Google Scholar

146. Fuchter MJ. On the promise of photopharmacology using photoswitches: a medicinal chemist’s perspective. J Med Chem. 2020;63:11436–47.10.1021/acs.jmedchem.0c00629Search in Google Scholar PubMed

147. Yu Z, Hecht S. Remote control over folding by light. Chem Commun. 2016;52:6639–53.10.1039/C6CC01423BSearch in Google Scholar

148. Wegener M, Hansen MJ, Driessen AJM, Szymanski W, Feringa BL. Photocontrol of antibacterial activity: shifting from UV to red light activation. J Am Chem Soc. 2017;139:17979–86.10.1021/jacs.7b09281Search in Google Scholar PubMed PubMed Central

149. Towns A. Olympian colour chemistry. Chem Ind. 2012;32–5.10.1002/cind.7605_11.xSearch in Google Scholar

150. Babii O, Afonin S, Schober T, Garmanchuk LV, Ostapchenko LI, Yurchenko V, et al. Peptide drugs for photopharmacology: how much of a safety advantage can be gained by photocontrol? Future Drug Discov. 2020;2:FDD28.10.4155/fdd-2019-0033Search in Google Scholar

151. Morstein J, Trauner D. New players in phototherapy: photopharmacology and bio-integrated optoelectronics. Curr Opinion Chem Biol. 2019;50:145–51.10.1016/j.cbpa.2019.03.013Search in Google Scholar PubMed

152. Tochitsky I, Kienzler MA, Isacoff E, Kramer RH. Restoring vision to the blind with chemical photoswitches. Chem Rev. 2018;118:10748–73.10.1021/acs.chemrev.7b00723Search in Google Scholar PubMed PubMed Central

153. Van Gemert B. Plenary lecture. Int Symp Photochromism Vancouver. 2007.Search in Google Scholar

Published Online: 2021-07-17

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 4.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/psr-2020-0191/html
Scroll to top button