Startseite Artificial intelligence in the modeling of chemical reactions kinetics
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Artificial intelligence in the modeling of chemical reactions kinetics

  • Maciej Staszak EMAIL logo
Veröffentlicht/Copyright: 11. Dezember 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The work presents a selection of recent papers in the field of modeling chemical kinetics by the use of artificial intelligence methods. Due to the fact that kinetics of the chemical reaction is the key element of industrial reactor design and analysis, the work is focused on the presentation of the quality of modeling, the assembly of neural network systems and methods of training required to achieve acceptable results. The work covers a wide range of classes of chemical processes and modeling approaches presented by several authors. Because of the fact that the methods of neural networks training require huge amounts of data, many approaches proposed are intrinsically based on classical kinetics modeling like Monte Carlo methods, quantum ab initio models or classical Arrhenius-like approaches using mass balance rate equations. The work does not fully exhaust the area of artificial intelligence because of its very broad scope and very fast evolution, which has been greatly accelerated recently. However, it is a contribution to describing the current state of science in this field.


Corresponding author: Maciej Staszak, Institute of Chemical Technology and Engineering, Poznań University of Technology, ul. Berdychowo 4, 60-965, Poznań, Poland, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Lecun, Y, Bengio, Y, Hinton, G. Deep learning. Nature 2015;521:436–44. Nature Publishing Group. https://doi.org/10.1038/nature14539.Suche in Google Scholar PubMed

2. Srivastava, N, Hinton, G, Krizhevsky, A, Salakhutdinov, R. Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 2014;15:1929–58.Suche in Google Scholar

3. Palmer, J, Chakravarty, A. Supervised machine learning. In: An introduction to high content screening. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2015:231–45 pp.10.1002/9781118859391.ch15Suche in Google Scholar

4. Oja, E. Finding clusters and components by unsupervised learning. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 2004;3138:1–15. https://doi.org/10.1007/978-3-540-27868-9_1.Suche in Google Scholar

5. Feng, Y, Xie, M, Wang, L. Semi-supervised learning method of constructive neural networks. Proceedings of 2015 IEEE advanced information technology, electronic and automation control conference, IAEAC 2015. Chongqing, China: IEEE; 2016:1020–3 p. https://doi.org/10.1109/IAEAC.2015.7428711.Suche in Google Scholar

6. Wang, Q, Zhan, Z. Reinforcement learning model, algorithms and its application. Proceedings 2011 international conference on mechatronic science. Electric engineering and computer, MEC 2011. Jilin, China: IEEE; 2011:1143–6 p. https://doi.org/10.1109/MEC.2011.6025669.Suche in Google Scholar

7. Irvine, WM. Langmuir–Hinshelwood mechanism. In Encyclopedia of astrobiology. Berlin Heidelberg: Springer; 2011: 905 p.10.1007/978-3-642-11274-4_863Suche in Google Scholar

8. Irvine, WM. Eley–Rideal mechanism. In Encyclopedia of astrobiology. Berlin Heidelberg: Springer; 2011:485 p.10.1007/978-3-642-11274-4_502Suche in Google Scholar

9. Mora-Briseño, P, Jiménez-García, G, Castillo-Araiza, CO, González-Rodríguez, H, Huirache-Acuña, R, Maya-Yescas, R. Mars van Krevelen mechanism for the selective partial oxidation of ethane. Int J Chem React Eng 2019;17. https://doi.org/10.1515/ijcre-2018-0085.Suche in Google Scholar

10. Ross, JRH. The kinetics and mechanisms of catalytic reactions. Contemporary catalysis. Amsterdam, Netherlands: Elsevier; 2019:161–86 p.10.1016/B978-0-444-63474-0.00007-2Suche in Google Scholar

11. Microsoft. Learn ML.NET|Free tutorials, courses, videos, and more|.NET. Available from: https://dotnet.microsoft.com/learn/ml-dotnet [Accessed 30 Aug 2020].Suche in Google Scholar

12. TensorFlow. Available from: https://www.tensorflow.org/ [Accessed 30 Aug 2020].Suche in Google Scholar

13. Keras. Keras: the Python deep learning API. Available from: https://keras.io/ [Accessed 30 Aug 2020].Suche in Google Scholar

14. ONNX. ONNX|Home. Available from: https://onnx.ai/ [Accessed 30 Aug 2020].Suche in Google Scholar

15. Barwey, S, Raman, V. A neural network inspired formulation of chemical kinetics [Online]; 2020. Available from: http://arxiv.org/abs/2008.08483 [Accessed 02 Sep 2020].Suche in Google Scholar

16. Goodwin, DG, Speth, RL, Moffat, HK, Weber, BW. Cantera: an object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. Zenodo; 2018. https://doi.org/10.5281/ZENODO.1174508.Suche in Google Scholar

17. Yang, F, Dai, C, Tang, J, Xuan, J, Cao, J. A hybrid deep learning and mechanistic kinetics model for the prediction of fluid catalytic cracking performance. Chem Eng Res Des 2020;155:202–10. https://doi.org/10.1016/j.cherd.2020.01.013.Suche in Google Scholar

18. Kollenz, P, Herten, DP, Buckup, T. Unravelling the kinetic model of photochemical reactions via deep learning. J Phys Chem B 2020;124:6358–68. https://doi.org/10.1021/acs.jpcb.0c04299.Suche in Google Scholar PubMed

19. Ansys. Chemkin-Pro: chemistry effects predicting simulation software|Ansys. Available from: https://www.ansys.com/products/fluids/ansys-chemkin-pro [Accessed 29 Aug 2020].Suche in Google Scholar

20. Baş, D, Dudak, FC, Boyaci, IH. Modeling and optimization III: reaction rate estimation using artificial neural network (ANN) without a kinetic model. J Food Eng 2007;79:622–8. https://doi.org/10.1016/j.jfoodeng.2006.02.021.Suche in Google Scholar

21. Grambow, CA, Pattanaik, L, Green, WH. Deep learning of activation energies. J Phys Chem Lett 2020;11:2992–7. https://doi.org/10.1021/acs.jpclett.0c00500.Suche in Google Scholar PubMed PubMed Central

22. Swanson, K. Message passing neural networks for molecular property prediction. Massachusetts, USA: Massachusetts Institute of Technology; 2019.Suche in Google Scholar

23. Van Der Maaten, L, Hinton, G. Visualizing data using t-SNE. J Mach Learn Res 2008;9:2579−605.Suche in Google Scholar

24. Bracconi, M, Maestri, M. Training set design for machine learning techniques applied to the approximation of computationally intensive first-principles kinetic models. Chem Eng J 2020;400:125469. https://doi.org/10.1016/j.cej.2020.125469.Suche in Google Scholar

25. Reuter, K, Scheffler, M. Composition, structure, and stability of (formula presented) as a function of oxygen pressure. Phys Rev B Condens Matter 2002;65:1–11. https://doi.org/10.1103/PhysRevB.65.035406.Suche in Google Scholar

26. Sharma, AJ, Johnson, RF, Kessler, DA, Moses, A. Deep learning for scalable chemical kinetics. AIAA scitech 2020 forum. Orlando, USA: American Institute of Aeronautics and Astronautics (AIAA); 2020. https://doi.org/10.2514/6.2020-0181.Suche in Google Scholar

27. Melkumova, LE, Shatskikh, SY. Comparing ridge and LASSO estimators for data analysis. Procedia Eng 2017;201:746–55. https://doi.org/10.1016/j.proeng.2017.09.615.Suche in Google Scholar

28. Marcuś, M, Conaire, M, Curran, HJ, Simmie, JM, Pitz, WJ, Westbrook, CK. A comprehensive modeling study of hydrogen oxidation; 2015.Suche in Google Scholar

29. Mills, K, Spanner, M, Tamblyn, I. Deep learning and the Schrödinger equation. Phys Rev A 2017;96:042113. https://doi.org/10.1103/PhysRevA.96.042113.Suche in Google Scholar

30. Truong, TN, Truhlar, DG. Ab initio transition state theory calculations of the reaction rate for OH + CH4 → H2O+CH3. J Chem Phys 1990;93:1761–9. https://doi.org/10.1063/1.459103.Suche in Google Scholar

Published Online: 2020-12-11

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/psr-2020-0079/html?lang=de
Button zum nach oben scrollen