Abstract
Computational studies nowadays constitute a crucial source of information for drug development, because they provide information on many molecular properties and also enable predictions of the properties of not-yet-synthesized compounds. Alkaloids are a vast group of natural products exhibiting a variety of biological activities, many of which are interesting for drug development. On the other hand, computational studies of biologically active alkaloids have so far mostly focused on few particularly relevant or “popular” molecules, such as quinine, caffeine, or cocaine, with only few works on the other molecules. The present work offers an overview of existing computational studies on alkaloid molecules, from the earliest ones to the most recent, and considering all the theoretical approaches with which studies have been performed (both quantum mechanics and molecular dynamics). The considered studies are grouped according to their objectives and outcomes, such as conformational analysis of alkaloid molecules, effects of selected solvents on their properties, docking studies aimed at better understanding of the interactions between alkaloid molecules and biological targets, studies focusing on structure activity relationships, and computational studies performed to confirm experimental results. It is concluded that it would be important that computational studies on many other alkaloid molecules are performed and their results made available, covering their different classes as well as the variety of their biological activities, to attain better understanding of the properties not only of individual molecules, but also of groups of related molecules and of the overall alkaloids family.
-
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. The process of drug design. [cited 2016 May 10] Available from: http://www.netsci.org.Search in Google Scholar
2. Puzyn, T, Cronin, MTD. Recent advances in QSRA studies: methods and applications. In: Leszczynski, J, editors. Challenges and advances in computational chemistry and physic, vol 8. Springer; 2010:261−78 pp.10.1007/978-1-4020-9783-6Search in Google Scholar
3. Merz, KM, Ringe, D, Reynolds, CH. Drug design: structure and ligand based approaches. New York, USA: Cambridge University Press; 2010.10.1017/CBO9780511730412Search in Google Scholar
4. Mazen, AE. Phytochemistry (3) alkaloids, 3th ed. Al-Azhar University, Faculty of Pharmacy, Department of Pharmacognosy; 2010.Search in Google Scholar
5. Edmund, GR, Nowacki, K. The role of alkaloids in plants. In: Waller, editor Alkaloid biology and metabolism in plants. New York: Plenum Press; 1978.Search in Google Scholar
6. Amirkia, MH. Alkaloids as drug leads – a predictive structural and biodiversity-based analysis. Phytochem Lett 2014;10:48–53. https://doi.org/10.1016/j.phytol.2014.06.015.Search in Google Scholar
7. Cheuka, PM, Mayoka, G, Mutai, P, Chibale, K. The role of natural products in drug discovery and development against neglected tropical diseases. Molecules 2017;22:2–41.10.3390/molecules22010058Search in Google Scholar PubMed PubMed Central
8. Krause, J, Tobin, G. Discovery development, and regulation of natural products. 2016. https://doi.org/10.5772/56424.Search in Google Scholar
9. Mammino, L, Bilonda, MK. Computational study of antimalarial pyrazole alkaloids from Newbouldia laevis. J Mol Model 2014;20:2464. https://doi.org/10.1007/s00894-014-2464-5.Search in Google Scholar PubMed
10. Mammino, L, Bilonda, MK. Computational study of naphthylisoquinoline alkaloids with antimalarial activity from Dioncophyllaceae and Ancistrodaceae in vacuo. Theor Chem Acc 2016;135:101. https://doi.org/10.1007/s00214-016-1843-7.Search in Google Scholar
11. Mammino, L, Bilonda, MK. Computational study of michellamines – naphthylisoquinoline alkaloids with anti-HIV activity. In: Tadjer, A, Pavlov, R, Maruani, J, Brändas, EJ, Delgado-Barrio, G, editors Quantum systems in physics, chemistry, and biology – advances in concepts and applications. book series progress in theoretical chemistry and physics, Springer; 2017:303–16 pp.10.1007/978-3-319-50255-7_18Search in Google Scholar
12. Bilonda, MK, Mammino, L. Computational study of jozimine A2 – a naphthylisoquinoline alkaloid with antimalarial activity. In: Wang, YA, Thachuk, M, Krems, R, Maruani, J, editors Concepts, methods and applications of quantum systems in chemistry and physics. Springer; 2018:305–28 pp.10.1007/978-3-319-74582-4_17Search in Google Scholar
13. Bilonda, MK, Mammino, L. Computational study of mbandakamine A: a dimeric naphthylisoquinoline alkaloid with antimalarial activity. Theo Chem Acc 2018;137:139. https://doi.org/10.1007/s00214-018-2323-z.Search in Google Scholar
14. Bilonda, MK, Mammino, L. Computational study of shuangancistrotectorine: a naphthylisoquinoline alkaloid with antimalarial activity. In: Mammino, L, Maruani, J, Ceresoli, D, Brändas EJ, editors. Concepts, methods and applications of quantum systems in chemistry and physics. Book series progress in theoretical chemistry and physics, vol. 32. Springer; 2020:183−203 pp.10.1007/978-3-030-34941-7_10Search in Google Scholar
15. Bilonda, MK, Mammino, L. Intramolecular hydrogen bonds in conformers of quinine and quinidine: an HF, MP2 and DFT study. Molecules 2017;245. https://doi.org/10.3390/molecules22020245.Search in Google Scholar PubMed PubMed Central
16. Katie, JM, Katie, IL, Gerena, L, Milhous, WK. Stereochemical evaluation of the relative activities of the cinchona alkaloids against Plasmodium Falciparum. Antimicrob Agents Chemother 1992;36:1538–44.10.1128/AAC.36.7.1538Search in Google Scholar PubMed PubMed Central
17. Wilairatana, P, Krudsood, S, Treeprasertsuk, S, Chalermrut, K, Looareesuwan, S. The future outlook of antimalarial drugs and recent work on the treatment of malaria. Arch Med Res 2002;33:416–21. https://doi.org/10.1016/s0188-4409(02)00371-5.Search in Google Scholar PubMed
18. Achan, J, Talisuna, AO, Erhart, A, Yeka, A, Tibenderana, JK, Baliraine, FN, et al.. Quinine, an old anti-malarial drug in a modern world: role in the treatment of malaria. Malar J. 2011;10:1−12. https://doi.org/10.1186/1475-2875-10-144.Search in Google Scholar PubMed PubMed Central
19. Aviado, DM, Salem, HJ. Drug action, reaction, and interaction. I. Quinidine for cardiac arrhythmias. Clin Pharmacol. 1975;15:477−85. https://doi.org/10.1002/j.1552-4604.1975.tb01469.x.Search in Google Scholar PubMed
20. Dewick, PM. Medicinal natural products: a biosynthetic approach. Chichester, UK: Wiley; 1997.Search in Google Scholar
21. Hoffmann, HMR, Frackenpohl, J. Recent advances in cinchona alkaloid chemistry. Eur J Org Chem. 2004;4293–312. https://doi.org/10.1002/ejoc.200400294.Search in Google Scholar
22. McCague, R, Smith, A. Applications of crystallization technology in chiral synthesis. Innov Pharm Technol 1999;99:100.Search in Google Scholar
23. Francotte, ER. Enantioselective chromatography as a powerful alternative for the preparation of drug enantiomers. J Chromatogr A 2001;906:379–97. https://doi.org/10.1016/s0021-9673(00)00951-1.Search in Google Scholar PubMed
24. Bolm, C, Gladysz, JA. Introduction: enantioselective catalysis. Chem Rev 2003;103:2761–2. https://doi.org/10.1021/cr030693c.Search in Google Scholar
25. Evans, WC. Trease and evans pharmacognosy. In: T Evans, editor Pharmacognosy. Edinburgh: Saunders Elsevier; 2009:614 p.Search in Google Scholar
26. Bannon, AW, Decker, MW, Holladay, MW, Curzon, P, Donnelly-Roberts, D, Puttfarcken, PS, et al.. Broad- spectrum, non-opioid analgesic activity by selective modulation of neuronal nicotinic acetylcholine receptors. Science 1998;279:77–81. https://doi.org/10.1126/science.279.5347.77.Search in Google Scholar PubMed
27. Eglen, RM, Hunter, JC, Dray, A. Ions in the fire: recent ion-channel research and approaches to pain therapy. Trends Pharm Sci 1999;20:337–42. https://doi.org/10.1016/s0165-6147(99)01372-3.Search in Google Scholar PubMed
28. Haydar, SN, Ghiron, C, Bettinetti, L, Bothmann, H, Comery, TA, Dunlop, J, et al.. SAR and biological evaluation of SEN12333/WAY-317538: novel alpha 7 nicotinic acetylcholine receptor agonist. Bio Med Chem 2009;17:5247–58. https://doi.org/10.1016/j.bmc.2009.05.040.Search in Google Scholar PubMed
29. Yuan, H, Petukhov, PA. Computational evidence for the ligand selectivity to the 42 and 34 nicotinic acetylcholine receptors. Bioorg Med Chem 2006;14:7936–42. https://doi.org/10.1016/j.bmc.2006.07.049.Search in Google Scholar PubMed
30. Kucinski, A, Wersinger, S, Stachowiak, EK, Radell, M, Hesse, R, Corso, T, et al.. Unilateral 6-OHDA th-fgfr1 (tk-) mouse model supports the role of FGFs in Parkinson’s disease and the effects of nicotine and l-DOPA on spontaneous motor impairments. Health 2012;4:1178–90. (and references therein). https://doi.org/10.4236/health.2012.431176.Search in Google Scholar
31. Tiwari, MN, Agarwal, S, Bhatnagar, P, Singhal, NK, Tiwari, SK, Kumar, P, et al.. Nicotine-encapsulated poly (lactic-co- glycolic) acid nanoparticles improve neuroprotective efficacy against MPTP-induced Parkinsonism. Free Radic Biol Med 2013;65:704–18. (and references therein). https://doi.org/10.1016/j.freeradbiomed.2013.07.042.Search in Google Scholar PubMed
32. Stornaiuolo, M, De Kloe, GE, Rucktooa, P, Fish, A, van Elk, R, Edink, ES, et al.. Assembly of a stack of ligands in the binding site of an acetylcholine-binding protein. Nat Commun 2013;4:1875–86. https://doi.org/10.1038/ncomms2900.Search in Google Scholar PubMed PubMed Central
33. Xiu, X, Puskar, NL, Shanata, JA, Lester, HA, Dougherty, DA. Nicotine binding to brain receptors requires a strong cation-pi interaction. Nature 2009;45:8534–537.10.1038/nature07768Search in Google Scholar
34. Holladay, MW, Dart, MJ, Lynch, JKJ. Neuronal nicotinic acetylcholine receptors as targets for drug discovery. Med Chem 1997;40:4169–94. https://doi.org/10.1021/jm970377o.Search in Google Scholar PubMed
35. Elgen, RM, Hunter, JC, Dray, A. Ions in the fire: recent ion-channel research and approaches to pain therapy. Trends Pharm Sci 1999;20:337–42.10.1016/S0165-6147(99)01372-3Search in Google Scholar
36. Soloway, SB. Naturally occurring insecticides. Env Health Perspect 1976;14:109–17. https://doi.org/10.1289/ehp.7614109.Search in Google Scholar PubMed PubMed Central
37. Yunusov, TK, Matveeva, AP, Leont’ev, VB, Kamaev, FG, Aslanov, AKh, Saykov, AS. Comparative study of the IR spectra of alkaloids containing piperidine and quinolizidine rings in the 2500–2830 cm−1 range. Khim Prir Soedin 1972;2:200–7.10.1007/BF00565300Search in Google Scholar
38. Granitova, OI, Dordzhin, GS. Infrared spectrum of anabasine. Nauchn Tr Tashkentsk Gos Univ 1964;257:55–63.Search in Google Scholar
39. Wada, E, Yamasaki, K, Lida, M, Saito, K, Nakayama, Y. Tobacco alkaloids. Infrared absorption spectra of the tobacco alkaloids and some related compounds. Kenkyu Hokoku – Nippon Senbai Kosha Chuo Kenkyusho 1957;97:27–39.Search in Google Scholar
40. Wojciechowska-Nowak, W, Rychlewska, U, Warzajtis, B. Spectroscopy and crystal structure of anabasine salts. J Mol Struct 2007;840:44–52. https://doi.org/10.1016/j.molstruc.2006.11.037.Search in Google Scholar
41. Lesarri, A, Cocinero, EJ, Evangelisti, L, Suenram, RD, Caminati, WR, Grabow, JU. The conformational landscape of nicotinoids: solving the conformational disparity of anabasine. Chem Eur J 2010;16:214–9. https://doi.org/10.1002/chem.201000849.Search in Google Scholar PubMed
42. Baranska, M, Dobrowolski, JCz, Kaczor, A, Chruszcz-Lipska, K, Gorz, K, Rygula, A. Tobacco alkaloids analyzed by Raman spectroscopy and DFT calculations. J Ram Spectr 2012;43:1065–73. https://doi.org/10.1002/jrs.3127.Search in Google Scholar
43. Taba, KM, Paulus, J, Kayembe, JS. Novel plant remedies show great promise in treating the deadly disease. Global JRMI 2012;1:62–8.Search in Google Scholar
44. Bringmann, G, Pokorny, F. The naphthylisoquinoline alkaloids. In: Cordell, GA, editor. The alkaloids: chemistry and pharmacology, vol 46. New York: Academic Press; 1995:127–271 pp.10.1016/S0099-9598(08)60288-6Search in Google Scholar
45. Bringmann, G, Kimbadi, BL, Steinert, C, Ndjoko, KI, Brun, R, Turini, F, et al.. Mbandakamines A and B, unsymmetrically coupled dimeric naphthylisoquinoline alkaloids, from a Congolese Ancistrocladus species. Org Lett 2013;15:2590–3. https://doi.org/10.1021/ol4005883.Search in Google Scholar PubMed
46. Bringmann, G, Zhang, G, Büttner, T, Bauckmann, G, Kupfer, T, Braunschweig, H, et al.. Jozimine A2: the first dioncophyllaceae-type naphthylisoquinoline dimer, with three chiral axes and high antimalarial activity. Chem Eur J 2013;19:916–23. https://doi.org/10.1002/chem.201202755.Search in Google Scholar PubMed
47. Bringmann, G, Feineis, D. Stress‐related polyketide metabolism of Dioncophyllaceae and Ancistrocladaceae. J Exp Bot 2001;52:2015–22. https://doi.org/10.1093/jexbot/52.363.2015.Search in Google Scholar PubMed
48. Xu, M, Bruhn, T, Hertlein, B, Brun, R, Stich, A, Wu, J, et al.. Dimeric naphtylisoquinoline alkaloids with three chiral biaryl axes from the Chinese plant Ancistrocladus tectorius. Chem Eur J 2010;16:4206–16. https://doi.org/10.1002/chem.200903247.Search in Google Scholar PubMed
49. Bringmann, G, Günther, C, Ochse, M, Schupp, O, Tasler, S. Progress in the chemistry of organic natural products. In: Herz, W, Falk, H, Kirby, GW, Moore, RE, editors. Fortschritte der Chemie organischer Naturstoffe. Wien: Springer; 2001, vol 82:1–249 p.10.1007/978-3-7091-6227-9_1Search in Google Scholar PubMed
50. Bringmann, G, Kajahn, I, Reichert, M, Pedersen, S, Faber, JH, Gulder, T, et al.. Ancistrocladinium A and B, the first N,C-coupled naphthyldihydroisoquinoline alkaloids from a Congolese Ancistrocladus species. J Org Chem 2006;71:9348–56. https://doi.org/10.1021/jo061626w.Search in Google Scholar PubMed
51. Sabrin, RMI, Gamal, AM. Naphthylisoquinoline alkaloids potential drug leads. Fitoter 2015;106:194–225.10.1016/j.fitote.2015.09.014Search in Google Scholar PubMed
52. Manfredi, KP, Blunt, JW, Cardellina, JHII, McMahon, JB, Pannell, LL, Cragg, GM, et al.. J Novel alkaloids from the tropical plant Ancistrocladus abbreviates inhibit cell killing by HIV-1 and HIV-2. Med Chem 1991;34:3402–5. https://doi.org/10.1021/jm00116a011.Search in Google Scholar PubMed
53. Kobayashi, J, Morita, H. The daphniphyllum alkaloids. In: Cordell, GA, editor. The alkaloids, vol. 60. New York: Academic Press; 2003:165–205 pp. (and references therein).10.1016/S0099-9598(03)60003-9Search in Google Scholar PubMed
54. Wu, H, Zhang, X, Ding, L, Chen, S, Yang, J, Xu, X. Daphniphyllum Alkaloids: recent findings on chemistry and pharmacology. Planta Med 2013;79:1589–98. https://doi.org/10.1055/s-0033-1351024.Search in Google Scholar PubMed
55. Garcia-Beltrán, O, Soto-Delgado, J, Iturriaga-Vásquez, P, Areche, C, Cassels, BK. Structural reassignment of epierthratidine, an alkaloid from Erythrina fusca, based on NMR studies and computational methods. J Chil Chem Soc 2012;57:1323–7. https://doi.org/10.4067/s0717-97072012000300027.Search in Google Scholar
56. Merlugo, L, Sant’Anna, MC, Santos, LS, Cordeiro, EWF, Batista, LAC, Miotto, STS, et al.. Alkaloids in Erythrina by UPLC-ESI-MS and in vivo hypotensive potential of extractive preparations. Evid Based Complement Alternat Med 2015. https://doi.org/10.1155/2015/959081.Search in Google Scholar PubMed PubMed Central
57. Tanaka, H, Etoh, H, Shimizu, H, Oh-Uchi, T, Terada, Y, Tateishi, Y. Erythrina alkaloids and isoflavonoids from Erythrina poeppigiana. Planta Med 2001;67:871–3. https://doi.org/10.1055/s-2001-18852.Search in Google Scholar PubMed
58. Wanjala, CCW, Juma, BF, Bojase, G, Gache, BA, Majinda, RRT. Erythrinaline alkaloids and antimicrobial flavonoids from Erythrina latissima. Planta Med 2002;68:640–2. https://doi.org/10.1055/s-2002-32891.Search in Google Scholar PubMed
59. Juma, BF, Majinda, RRT. Erythrinaline alkaloids from the flowers and pods of Erythrina lysistemon and their DPPH radical scavenging proprieties. Phytochem 2004;65:1397–404. https://doi.org/10.1016/j.phytochem.2004.04.029.Search in Google Scholar PubMed
60. Tanaka, H, Hattori, H, Tanaka, T, Sakai, E, Tanaka, N, Kulkarni, A, et al.. New Erythrina alkaloid from Erythrina herbacea. J Nat Med 2008;62:228–31. https://doi.org/10.1007/s11418-007-0222-z.Search in Google Scholar PubMed
61. Cui, L, Thoung, PT, Fomum, T, Oh, WKA. New erythrinan alkaloid from the seed of Erythrina addsoniae. Arch Pharm Res 2009;32:325–8. https://doi.org/10.1007/s12272-009-1302-2.Search in Google Scholar PubMed
62. Silva, DB, Guaratini, T, Vessecchi, R, Lopes, NP, Cramer, B, Humpf, HU, et al.. H-2 unimolecular elimination in electrospray ionization mass spectrometry from erythraline, a spirocyclic alkaloid. Eur J Mass Spectrom 2013;19:345–50. https://doi.org/10.1255/ejms.1243.Search in Google Scholar PubMed
63. Rosa, DS, Faggion, SA, Gavin, AS, Souza, MA, Fachim, HA, Santos, WF, et al.. Erysothrine, an alkaloid extracted from flowers of Erythrina mulungu Mart. ex Benth: evaluating its anticonvulsant and anxiolytic potential. Epilepsy Behav 2012;23:205–12.10.1016/j.yebeh.2012.01.003Search in Google Scholar PubMed
64. Faggion, SA, Cunha, AOS, Fachim, HA, Gavin, AS, Santos, WF, Pereira, AMS, et al.. Anticonvulsant profile of the alkaloids (+)-erythravine and (+)-11- α-hydroxyerythravine isolated from the flowers of Erythrina mulungu Mart ex Benth (Leguminosae–Papilionaceae). Epilepsy Behav 2011;20:441–6. https://doi.org/10.1016/j.yebeh.2010.12.037.Search in Google Scholar PubMed
65. Iturriaga-Vásquez, P, Carbone, A, García-Beltrán, O, Livingstone, PD, Biggin, PC, Cassels, BK, et al.. Molecular determinants for competitive inhibition of α4β2 nicotinic acetylcholine receptors. Mol Pharmacol 2010;78:366–75. https://doi.org/10.1124/mol.110.065490.Search in Google Scholar PubMed PubMed Central
66. Setti-Perdigão, P, Serrano, MAR, Flausino, OAJr, Bolzani, VS, Guimarães, MZP, Castro, NG. Erythrina mulungu alkaloids are potent inhibitors of neuronal nicotinic receptor currents in mammalian cells. PLoS One 2013;8:1–5. https://doi.org/10.1371/journal.pone.0082726.Search in Google Scholar PubMed PubMed Central
67. Callejon, DR, Riul, TB, Feitosa, LGP, Guaratini, T, Silva, DB, Adhikari, A, et al.. Leishmanicidal evaluation of tetrahydroprotoberberine and spirocyclic erythrina-alkaloids. Mol.2014;19:5692−703. https://doi.org/10.3390/molecules19055692.Search in Google Scholar PubMed PubMed Central
68. Lamchouri, H, Toufik, SM, Bouzzine, M, Hamidi, M, Bouachrine, M. Experimental and computational study of biological activities of alkaloids isolated from Peganum harmala seeds. J Mater Environ Sci. 2010;1:343−52.Search in Google Scholar
69. Zaheer-ul-Haq, Wellenzohn, B, Liedl, KR, Rode, BM. Molecular docking studies of natural cholinesterase-inhibiting steroidal alkaloids from Sarcococca saligna. J Med Chem 2003;46:5087–90. https://doi.org/10.1021/jm0309194.Search in Google Scholar PubMed
70. Mammino, L, Kabanda, MM. Considering the medium when studying biologically active molecules: motivations, options and challenges. In: Zaheer uI-Haq, Madura, JD. Editors. Frontiers in computational chemistry. Sharjah: Bentham Sciences Publishers; 2014:197−256 pp.10.2174/9781608058648115010008Search in Google Scholar
71. Mitchell, HH, Hamilton, TS, Steggerda, IR, Bean, HW. The chemical composition of the adult human body and its bearing on the biochemistry of growth. J Biol Chem. 1945;158:625−37.10.1016/S0021-9258(19)51339-4Search in Google Scholar
72. Olsen, RA, Borchardt, D, Mink, L, Agarwal, A, Mueller, LJ, Zaera, F. Molecular properties of cinchona alkaloids: a theoretical approach. J Am Chem Soc. 2006;128:15594−5. https://doi.org/10.1021/ja066989s.Search in Google Scholar PubMed
73. Weselucha-Birczynska, A. FT-Raman study of quinine aqueous solutions with varying pH: 2D correlation study. J Mol Struct. 2007;826:96−103.10.1016/j.molstruc.2006.04.039Search in Google Scholar
74. Sen, A, Bouchet, A, Lepère, V, Barbu-Debus, KL, Scuderi, D, Piuzzi, F, et al.. Conformational analysis of quinine and its pseudo enantiomer quinidine: a combined jet-cooled spectroscopy and vibrational circular dichroism study. J Phys Chem A. 2012;116:8334−44. https://doi.org/10.1021/jp3047888.Search in Google Scholar PubMed
75. Burgi, T, Baiker, A. Conformational behaviour of cinchonidine in different solvents: a combined NMR and ab initio investigation. J Am Chem Soc. 1998;120:920−12926. https://doi.org/10.1021/ja982466b.Search in Google Scholar
76. Prelog, U, Wilhelm, MU. Untersuchungen überasymmetrische Synthesen VI. Der Reaktionsmechanismus und der sterische Verlauf der asymmetrischen – Synthese. Hetv Chira Acta. 1954;37:1634−60. https://doi.org/10.1002/hlca.19540370608.Search in Google Scholar
77. Dijkstra, GDH, Kellogg, RM, Wynberg, H. Conformational analysis of some chiral catalysts of the cinchona and ephedra family. The alkaloid catalyzed addition of aromatic thiols to cyclic alpha, beta-unsaturated ketones. Rec Trav Chim Pays-Bas 1989;108:195−204. https://doi.org/10.1002/recl.19891080507.Search in Google Scholar
78. Dijkstra, GDH, Kellogg, RM, Wynberg, H, Svendsen, IM, Sharpless, KB. Conformational study of cinchona alkaloids. A combined NMR, molecular mechanics and X-ray approach. J Am Chem Soc. 1989;111:8069−76. https://doi.org/10.1021/ja00203a001.Search in Google Scholar
79. Dijkstra, GDH, Kellogg, RM, Wynberg, H. Conformational study of cinchona alkaloids – a combined NMR and molecular-orbital approach. J Org Chem. 1990;55:6121−31. https://doi.org/10.1021/jo00312a017.Search in Google Scholar
80. Silva, THA, Oliveira, AB, De Almeida, WB. Conformational analysis of the antimalarial agent quinine. Struct Chem 1997;8:95–107. https://doi.org/10.1007/bf02262845.Search in Google Scholar
81. Karle, JM, Bhattacharjee, AK. Stereoelectronic features of the cinchona alkaloids determine their differential antimalarial activity. Bioorg Med Chem. 1999;7:1769−74. https://doi.org/10.1016/s0968-0896(99)00120-0.Search in Google Scholar PubMed
82. PCMODEL Serena Software. The force field used in PCMODEL is called MMX and is derived from the MM2 (QCPE-395, 1977) force field of N. L, Allinger with the pi-VESCF routines taken from MMPI (QPCE-318), also by N. L. Allinger, 1st ed.; 1993.Search in Google Scholar
83. MM3, Allinger, NL, Fan, YJ. Molecular mechanics calculations (MM3) on sulfones. Comput Chem 1993;14:655–66. (and references therein). https://doi.org/10.1002/jcc.540140605.Search in Google Scholar
84. Oleksyn, BJ, Suszko-Purzycka, A, Dive, G, Lamotte-Brasseur, J. Molecular properties of cinchona alkaloids: a theoretical approach. J Pharm Sci. 1992;81:122−127. https://doi.org/10.1002/jps.2600810204.Search in Google Scholar PubMed
85. Pniewska, B, Suszko-Purzycka, A. Structure of quinine monohydrate toluene solvate. Acta Cryst C. 1989;45:638−42. https://doi.org/10.1107/s0108270188013204.Search in Google Scholar
86. AMI: Dewar, MJS, Zoebisch, EG, Healy, EF, Stewart, JJP. Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. J Am Chem Soc. 1985;107:3902−9. https://doi.org/10.1021/ja00299a024.Search in Google Scholar
87. PM3: Stewart, JJP. Optimization of parameters for semi empirical methods. J Comput Chem. 1989;10:209−20.10.1002/jcc.540100208Search in Google Scholar
88. Berg, U, Aune, M, Matsson, O. Dihydroquinidine conformation revisited. Variable temperature NMR and CD spectroscopy, and molecular mechanics computations. Tetra Lett. 1995;36:2137−40. https://doi.org/10.1016/0040-4039(95)00195-i.Search in Google Scholar
89. Caner, H, Biedermann, APU, Agranat, I. Conformational spaces of cinchona alkaloids. Chiral 2003;15:637–45. https://doi.org/10.1002/chir.10265.Search in Google Scholar PubMed
90. Heimstra, H, Wynberg, H. Addition of aromatic thiols to conjugated cycloalkenones, catalysed by chiral beta-hydroxylamines. A mechanistic study of homogeneous catalytic asymmetric synthesis. J Am Chem Soc 1981;103:417–30.10.1021/ja00392a029Search in Google Scholar
91. Schürch, M, Schwalm, O, Mallat, T, Weber, J, Baiker, AJ. Enantioselective hydrogenation of ketopantolactone. Catal 1997;169:275–86. https://doi.org/10.1006/jcat.1997.1674.Search in Google Scholar
92. Urakawa, A, Meier, DM, Ruegger, H, Baiker, A. Conformational behavior of cinchonidine revisited: a combined theoretical and experimental study. J Phys Chem A 2008;112:7250–5. https://doi.org/10.1021/jp803185j.Search in Google Scholar PubMed
93. Onsager, LJ. Electric moments of molecules in liquids. Am Chem Soc. 1936;58:1486−93. https://doi.org/10.1021/ja01299a050.Search in Google Scholar
94. Ryan, AO, Borchardt, D, Mink, L, Agarwal, A, Mueller, LJ, Zaera, F. Effect of protonation on the conformation of cinchonidine. J Am Chem Soc. 2006;128:15594−15595. https://doi.org/10.1021/ja066989s.Search in Google Scholar PubMed
95. Radna, RJ, Beveridge, DL, Bender, AL. Structural chemistry of cholinergic neural transmission systems II. Quantum theoretical study of the molecular electronic structure of muscarine, nicotine, acetyl-alpha-methylcholine, acetyl-beta-methylcholine, acetyl-a, beta-dimethylcholine, and further studies on acetylcholine. J Am Chem Soc 1973;95:3831–42. https://doi.org/10.1021/ja00793a002.Search in Google Scholar PubMed
96. Kier, LBA. Molecular orbital calculation of the preferred conformation of nicotine. J Mol Pharmacol 1968;4:70–6.Search in Google Scholar
97. Pullman, B, Courrière, P, Coubeils, JL. Quantum mechanical study of the conformational and electronic properties of acetylcholine and its agonists muscarine and nicotine. J Mol Pharmacol 1971;7:397–405.Search in Google Scholar
98. Berthelot, M, Decouzon, M, Gal, JF, Laurence, C, Le Questel, JV, Maria, PC, et al.. Gas-phase basicity and site of protonation of polyfunctional molecules of biological interest: FT-ICR experiments and AM1 calculations on nicotines, nicotinic acid derivatives, and related compounds. J Org Chem 1991;56:4490–4. https://doi.org/10.1021/jo00014a031.Search in Google Scholar
99. Elmore, DE, Dougherty, DA. A Computational study of nicotine conformations in the gas phase and in water. J Org Chem 2000;65:742–7. https://doi.org/10.1021/jo991383q.Search in Google Scholar PubMed
100. Graton, J, Berthelot, M, Gal, JF, Girard, S, Laurence, C, Lebreton, J, et al.. Site of protonation of nicotine and nornicotine in the gas phase: pyridine or pyrrolidine nitrogen? J Am Chem Soc 2002;124:10552–62. https://doi.org/10.1021/ja017770a.Search in Google Scholar PubMed
101. Takeshima, T, Fukumoto, R, Egawa, T, Konata, S. Molecular structure of nicotine as studied by gas electron diffraction combined with theoretical calculations. J Phys Chem A 2002;106:8734–40. https://doi.org/10.1021/jp020328+.10.1021/jp020328+Search in Google Scholar
102. Mora, M, Castro, ME, Nino, A, Melendez, FJ, Munoz-Caro, C. Analysis of B3LYP and MP2 conformational population distributions in trans-nicotine acetylcholine, and ABT-594. Int J Quant Chem 2005;103:25–33. https://doi.org/10.1002/qua.20475.Search in Google Scholar
103. Yoshida, T, Farone, WA, Xantheas, SS. Isomers and conformational barriers of gas- phase nicotine, nornicotine, and their protonated forms. J Phys Chem B. 2014;118:8273−85. https://doi.org/10.1021/jp501646p.Search in Google Scholar PubMed
104. Eddy, C, Roland, C, Eisner, A. Infrared spectra of nicotine and some of its derivatives. Anal Chem 1954;26:1428–31. https://doi.org/10.1021/ac60093a011.Search in Google Scholar
105. Dezelic, M, Branko, N. Determination of structure of some salts of nicotine, pyridine and N-methylpyrrolidine on the basis of their infra-red spectra. Spectrochim Acta 1967;23:1149–53.10.1016/0584-8539(67)80037-0Search in Google Scholar
106. Seydou, M, Gregoire, G, Liquier, J, Lemaire, J, Schermann, JP, Desfrancois, C. Experimental observation of the transition between gas-phase and aqueous solution structures for acetylcholine nicotine, and muscarine ions. J Am Chem Soc 2008;130:4187–95. https://doi.org/10.1021/ja710040p.Search in Google Scholar PubMed
107. JU, Grabow, Mata, S, Alonso, JL, Pena, I, Blanco, S, Lopez, JC, et al.. Rapid probe of the nicotine spectra by high-resolution rotational spectroscopy. Phys Chem Chem Phys 2011;13:21063–9. https://doi.org/10.1039/c1cp22197c.Search in Google Scholar PubMed
108. Hammond, PS, Wu, Y, Harris, R, Minehardt, TJ, Car, R, Schmitt, JD. Protonation- induced stereoisomerism in nicotine: conformational studies using classical (AMBER) and ab initio (Car–Parrinello) molecular dynamics. J Comput Aid Mol Des 2005;19:1–15. https://doi.org/10.1007/s10822-005-0096-7.Search in Google Scholar PubMed
109. Koné, M, Illien, B, Laurence, C, Gal, J-F, María, P-C. Are nicotinoids protonated on the pyridine or the amino nitrogen in the gas phase? J Phys Org Chem 2006;19:104–114. https://doi.org/10.1002/poc.1006.Search in Google Scholar
110. Schmitt, JD, Sharples, CGV, Caldwel, WS. Molecular recognition in nicotinic acetylcholine receptors: the importance of π-cation interactions. J Med Chem 1999;42:3066–74. https://doi.org/10.1021/jm990093z.Search in Google Scholar PubMed
111. Tsetlin, V, Hucho, F. Nicotinic acetylcholine receptors at atomic resolution. Curr Opin Pharmacol 2009;9:306–10. https://doi.org/10.1016/j.coph.2009.03.005.Search in Google Scholar PubMed
112. Beene, DL, Brandt, GS, Zhong, WG, Zacharias, NM, Lester, HA, Dougherty, DA. Cation- interactions in ligand recognition by serotonergic (5-HT3A) and nicotinic acetylcholine receptors: the anomalous binding properties of nicotine. Biochem 2002;41:10262–10269. https://doi.org/10.1021/bi020266d.Search in Google Scholar PubMed
113. Barlow, RB, Howard, JAK, Johnson, O. Structures of nicotine monomethyl iodide and nicotine monohydrogen iodide. Acta Crystallogr C. 1986;42:853−6. https://doi.org/10.1107/s0108270186094301.Search in Google Scholar
114. Koo, CH, Kim, HS. The crystal structure of nicotine dihydroiodide. Daehan Hwahak Hwoejee. 1965;9:134−41.Search in Google Scholar
115. Koo, CH, Kim, HS. Chem Abstr 1966;64:6431e.Search in Google Scholar
116. Chynoweth, KR, Ternai, B, Simeral, LS, Maciel, GE. Nuclear magnetic resonance studies of the conformation and electron distributions in nicotine and in acetylcholine. Mol Pharmacol. 1973;9:144−51.Search in Google Scholar
117. Whidby, JF, Seeman, JIJ. The configuration of nicotine. A nuclear magnetic resonance study. Org Chem. 1976;41:1585−90. https://doi.org/10.1021/jo00871a022.Search in Google Scholar PubMed
118. Pitner, TP, Edwards, WBIII, Bassfield, RL, Whidby, JFJ. The solution conformation of nicotine. A 1H and 2H nuclear magnetic resonance investigation. Am Chem Soc. 1978;100:246−51. https://doi.org/10.1021/ja00469a041.Search in Google Scholar
119. Seeman, JI. Recent studies in nicotine chemistry: conformational analysis, chemical reactivity studies, and theoretical modeling. Heterocyc. 1984;22:165−93.10.1002/chin.198428367Search in Google Scholar
120. Whidby, JF, Edwards, WBIII, Pitner, TPJ. Isomeric nicotines. Their solution conformation and proton, deuterium, carbon-13, and nitrogen-15 nuclear magnetic resonance. Org Chem. 1979;44:794−8. https://doi.org/10.1021/jo01319a028.Search in Google Scholar
121. Cox, RH, Kao, J, Secor, HV, Seeman, JIJ. Assessment of isolated electronic effects on conformation. NMR analysis of nicotine and related compounds and ab initio studies of model compounds. Mol Struct. 1986;140:93−106. https://doi.org/10.1016/0022-2860(86)80151-x.Search in Google Scholar
122. Hacksell, U, Mellin, C. Stereoselectivity of nicotinic receptors. Prog Brain Res.1989;79:95−100. https://doi.org/10.1016/s0079-6123(08)62468-1.Search in Google Scholar PubMed
123. SPARTAN Version 5.0 Wavefunction, Inc, 18401 Von Karman Ave. Irvine, CA 922612. Suite 370.Search in Google Scholar
124. Jorgensen, WL, Maxwell, DS, Tirado-Rives, JJ. Development and testing of the OPLS all- atom force field on conformational energetics and properties of organic liquids. Am Chem Soc. 1996;118:11225−36. https://doi.org/10.1021/ja9621760.Search in Google Scholar
125. Li, J, Hawkins, GD, Cramer, CJ, Truhlar, DGJ. Universal reaction field model based on ab initio Hartree–Fock theory. Chem Phys Lett. 1998;288:293−8. https://doi.org/10.1016/s0009-2614(98)00194-8.Search in Google Scholar
126. Zhu, T, Li, JB, Hawkins, GD, Cramer, CJ, Truhlar, DGJ. Density functional solvation model based on CM2 atomic charges. Chem Phys. 1998;109:9117−33. https://doi.org/10.1063/1.476521.Search in Google Scholar
127. Sheridan, RP, Nilakantan, R, Dixon, JS, Venkataraghavan, RJ. The ensemble approach to distance geometry: application to the nicotinic pharmacophore. MedChem. 1986;29:899−906. https://doi.org/10.1021/jm00156a005.Search in Google Scholar PubMed
128. Wada, E, Yamasaki, K, Lida, M, Saito, K, Nakayama, Y. Tobacco alkaloids. Infrared absorption spectra of the tobacco alkaloids and some related compounds. Kenkyu Hokoku – Nippon Senbai Kosha Chuo Kenkyusho 1957;97:27–39.Search in Google Scholar
129. Ortega, PGR, Montejo, M, Márquez, F, González, JJ. Conformational properties of chiral tobacco alkaloids by DFT calculations and vibrational circular dichroism: (−)-S- anabasine. J Mol Grap Mod 2015;60:169–79.10.1016/j.jmgm.2015.05.011Search in Google Scholar PubMed
130. Reed, AE, Weinhold, F. Natural bond orbital analysis of near-Hartree-Fock water dimer. J Chem Phys 1983;78:4066–74. https://doi.org/10.1063/1.445134.Search in Google Scholar
131. Reed, AE, Weinstock, RB, Weinhold, F. Natural population analysis. J Chem Phys 1985;83:735–47. https://doi.org/10.1063/1.449486.Search in Google Scholar
132. Reed, AE, Weinhold, F. Natural localized molecular orbitals. J Chem Phys 1985;83:1736–41. https://doi.org/10.1063/1.449360.Search in Google Scholar
133. Reed, AE, Curtiss, LA, Weinhold, F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 1988;88:899–926. https://doi.org/10.1021/cr00088a005.Search in Google Scholar
134. Carpenter, JE, Weinhold, F. Analysis of the geometry of the hydroxymethyl radical by the “different hybrids for different spins’’ natural bond orbital procedure. J Mol Struc (Theochem) 1988;169:41–62. https://doi.org/10.1016/0166-1280(88)80248-3.Search in Google Scholar
135. Barone, V, Cossi, MA. New definition of cavities for the computation of solvation free energies by the polarizable continuum model. J Chem Phys 1997;107:3210–21. https://doi.org/10.1063/1.474671.Search in Google Scholar
136. Cancès, E, Mennucci, B, Tomasi, JA. New integral equation formalism for the polarizable continuum model: theoretical background and applications to isotropic and anisotropic dielectrics. J Chem Phys. 1997;107:3032−41. https://doi.org/10.1063/1.474659.Search in Google Scholar
137. Barone, V, Cossi, M, Tomasi, J. Geometry optimization of molecular structures in solution by the polarizable continuum model. J Comput Chem. 1998;19:404−17. https://doi.org/10.1002/(sici)1096-987x(199803)19:4<404::aid-jcc3>3.0.co;2-w.10.1002/(SICI)1096-987X(199803)19:4<404::AID-JCC3>3.0.CO;2-WSearch in Google Scholar
138. Tomasi, J, Mennucci, B, Cancès, E. The IEF version of the PCM solvation method: an overview of a new method addressed to study molecular solutes at the QM ab initio level. J Mol Struct 1999;464:211. https://doi.org/10.1016/s0166-1280(98)00553-3.Search in Google Scholar
139. Cossi, M, Scalmani, G, Rega, N, Barone, V. New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution. J Chem Phys. 2002;117:43−54. https://doi.org/10.1063/1.1480445.Search in Google Scholar
140. Tomasi, J, Mennucci, B, Cammi, R. Quantum mechanical continuum solvation models. Chem Rev 2005;105:2999–3093. https://doi.org/10.1021/cr9904009.Search in Google Scholar
141. Mennucci, B. Continuum solvation models: what else can we learn from them?. J Phys Chem Lett 2010;1:1669–74. https://doi.org/10.1021/jz100506s.Search in Google Scholar
142. Mifundu, N. Etude in vitro de l’activité antipaludique des alcaloïdes de Newboldia laevis. Kinshasa: Thesis. University of Kinshasa; 2011.Search in Google Scholar
143. Lämmerhofer, M, Lindner, W. Quinine and quinidine derivatives as chiral selectors. Brush type chiral stationary phases for high performance liquid chromatography based on cinchonan carbamates and their application as chiral anion exchangers. J Chromatogr A 1996;741:33–48. https://doi.org/10.1016/0021-9673(96)00137-9.Search in Google Scholar
144. Lämmerhofer, M, Maier, N, Lindner, W. Chiral anion exchange type stationary phases based on chinchona alkaloids: effective tool for the separation of the enantiomers of chiral acids. Am Lab 1998;30:71–8.Search in Google Scholar
145. Lämmerhofer, M, Lindner, W. High-efficiency chiral separations of N derivatized amino acids by packed-capillary electrochromatography with a quinine based chiral anion exchange type stationary phase. J Chromtogr A 1998;829:115–25. https://doi.org/10.1016/s0021-9673(98)00824-3.Search in Google Scholar
146. Schefzick, A, Lindner, W, Lipkowitz, KB, Jalaie, M. Enantiodiscrimination by a quinine-based chiral stationary phase: a computational study. Chiral 2000;12:7–15. https://doi.org/10.1002/(sici)1520-636x(2000)12:1<7::aid-chir3>3.0.co;2-q.10.1002/(SICI)1520-636X(2000)12:1<7::AID-CHIR3>3.0.CO;2-QSearch in Google Scholar
147. Mohamadi, F, Richards, NGJ, Guida, WC, Liskamp, R, Lipton, M, Caufield, C, et al.. Macro model—an integrated software system for modeling organic and bioinorganic molecules using molecular mechanics. J Comput Chem 1990;11:440–67. https://doi.org/10.1002/jcc.540110405.Search in Google Scholar
148. Di, YT, He, HP, Wang, YS, Li, LB, Lu, Y, Gong, JB, et al.. Isolation, X-ray crystallography, and computational studies of calydaphninone, a new alkaloid from Daphniphyllum calycillum. Org Lett. 2007;9:1355−8. https://doi.org/10.1021/ol070218r.Search in Google Scholar
149. Morita, H, Yoshida, N, Kobayashi, J. Rapid interconversion between conformers at room temperature was also observed in other Daphniphyllum alkaloids. J Org Chem. 2000;65:3553−63. https://doi.org/10.1021/jo000004m.Search in Google Scholar
150. Morita, H, Ishioka, N, Takatsu, H, Kobayashi, J. Daphmanidins C and D, novel pentacyclic alkaloids from Daphniphyllum teijsmanii. J Org Lett. 2005;7:459−62. https://doi.org/10.1021/ol047641+.10.1021/ol047641+Search in Google Scholar
151. Beltrán, OG, Soto-Delgado, J, Iturriaga-Vásquez, P, Areche, C, Cassels, BK. Structural reassignment of epierythratidine, an alkaloid from Erythrina fusca, based on NMR studies and computational methods, J Chil Chem Soc. 2012;57:1323−7.10.4067/S0717-97072012000300027Search in Google Scholar
152. Chawla, A, Chunchatprasert, S, Jackson, A. Erythrina alkaloids. Org Magn Reson 1984;21:39.10.1016/B978-0-08-042089-9.50010-3Search in Google Scholar
153. Amer, M, Shamma, M, Freyer, A. The tetracyclic Erythrina alkaloids. J Nat Prod 1991;54:329. https://doi.org/10.1021/np50074a001.Search in Google Scholar
154. Chini, MG, Jones, CR, Zampella, A, Da Auria, MV, Renga, B, Fiorucci, S, et al.. Quantitative NMR-Derived interproton distances combined with quantum mechanical calculations of 13C chemical shifts in the stereochemical determination of conicasterol. J Org Chem 2012;77:1489. https://doi.org/10.1021/jo2023763.Search in Google Scholar PubMed
155. Lamchouri, F. Thèse de Doctorat Es-Sciences Physiologie-Pharmacologie. Maroc: Sidi Mohamed Ben Abdellah University of Fez; 2000.Search in Google Scholar
156. Bushelyev, SN, Stepanov, NF. Elektronnaya Struktura y Biologhicheskaya Aktivnost Molecul. Khimiya. Moscow: Snanye; 1989.Search in Google Scholar
157. Bringmann, G, Fayez, S, Shamburger, W, Feineis, D, Winiarczyk, S, Janecki, R, et al.. Naphthylisoquinoline alkaloids and their synthetic analogs as potent novel inhibitors against Babesia canis in vitro. Vet Parasitol 2020;283:109177. https://doi.org/10.1016/j.vetpar.2020.109177.Search in Google Scholar PubMed
158. Fayez, S, Bruhn, T, Feineis, D, Aké Assi, L, Awale, S, Bringmann, G. Seco- naphthylisoquinoline alkaloids from the roots of Ancistrocladus abbreviatus, with apoptosis-inducing potential against HeLa cancer cells.J Nat Prod. 2020;83:1139−51. https://doi.org/10.1021/acs.jnatprod.9b01168.Search in Google Scholar PubMed
159. Fayez, S, Feineis, D, Aké Assi, L, Seo, E-J, Efferth, T, Bringmann, G. Ancistrobreveines A-D and related dehydrogenated naphthylisoquinoline alkaloids with antiproliferative activities against leukemia cells, from the west african liana Ancistrocladus abbreviatus. RSC Adv 2019;9:15738–48. https://doi.org/10.1039/c9ra03105g.Search in Google Scholar PubMed PubMed Central
160. Mufusama, J-P, Feineis, D, Mudogo, V, Kaiser, M, Brun, R, Bringmann, G. Antiprotozoal dimeric naphthylisoquinolines, mbandakamines B3 and B4 and related 5,8’-coupled monomeric alkaloids, ikelacongolines A-D, from a Congolese Ancistrocladus liana, RSC Adv. 2019;9:12034−46. https://doi.org/10.1039/c9ra01784d.Search in Google Scholar PubMed PubMed Central
161. Fayez, S, Feineis, D, Aké Assi, L, Kaiser, M, Brun, R, Awale, S, et al.. Ancistrobrevines E-J and related naphthylisoquinoline alkaloids from the West African liana Ancistrocladus abbreviatus with inhibitory activities against Plasmodium falciparum and PANC-1human pancreatic cancer cells. Fitoter 2018;131:245–59. https://doi.org/10.1016/j.fitote.2018.11.006.Search in Google Scholar PubMed
162. Fayez, S, Feineis, D, Mudogo, V, Seo, E-J, Efferth, T, Bringmann, G. Ancistrolikokine I and further 5,8′-coupled naphthylisoquinoline alkaloids from the Congolese liana Ancistrocladus and their cytotoxic activities against drug-sensitive and multidrug resistant human leukemia cells. Fitoter 2018;129:114–25. https://doi.org/10.1016/j.fitote.2018.06.009.Search in Google Scholar PubMed
163. Kavatsurwa, SM, Lombe, BK, Feineis, D, Dibwe, DF, Maharaj, V, Awale, S, et al.. Ancistroyafungines A-D, 5,8′- and 5,1′-coupled naphthylisoquinoline alkaloids from a Congolese Ancistrocladus species, with antiausterity activities against human PANC-1 pancreatic cancer cells. Fitoter 2018;130:6–16. https://doi.org/10.1016/j.fitote.2018.07.017.Search in Google Scholar PubMed
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Reviews
- Multiscale modeling and simulation of magneto-active elastomers based on experimental data
- Theoretical examination of efficiency of anthocyanidins as sensitizers in dye-sensitized solar cells
- Artificial intelligence in the modeling of chemical reactions kinetics
- Computational studies of biologically active alkaloids of plant origin: an overview
- Certainty through uncertainty: stochastic optimization of grid-integrated large-scale energy storage in Germany
- Shaping the future energy markets with hybrid multimicrogrids by sequential least squares programming
Articles in the same Issue
- Frontmatter
- Reviews
- Multiscale modeling and simulation of magneto-active elastomers based on experimental data
- Theoretical examination of efficiency of anthocyanidins as sensitizers in dye-sensitized solar cells
- Artificial intelligence in the modeling of chemical reactions kinetics
- Computational studies of biologically active alkaloids of plant origin: an overview
- Certainty through uncertainty: stochastic optimization of grid-integrated large-scale energy storage in Germany
- Shaping the future energy markets with hybrid multimicrogrids by sequential least squares programming