Abstract
The most important types of non-collinear magnetic orders that are realized in simple perovskite oxides are outlined in relation to multiferroicity. These orders are classified and rationalized in terms of a mimimal spin Hamiltonian, based on which the notion of spin-driven ferroelectricity is illustrated. These concepts find direct application in reference materials such as BiFeO3, GdFeO3 and TbMnO3 whose multiferroic properties are briefly reviewed.
References
[1] Arima T-h. Spin-Driven Ferroelectricity and Magneto-Electric Effects in Frustrated Magnetic Systems. J Phys Soc Japan. 2011;80:052001.10.1143/JPSJ.80.052001Suche in Google Scholar
[2] Bousquet E. Cano A. Non-collinear magnetism in multiferroic perovskites. J Phys: Condens Matter. 2016;28:123001.10.1088/0953-8984/28/12/123001Suche in Google Scholar PubMed
[3] Davydova MD, Zvezdin KA, Mukhin AA, Zvezdin AK. Spin dynamics, antiferrodistortion and magnetoelectric interaction in multiferroics. The case of BiFeO3. Phys Sci Rev. 2020:20190070.10.1515/psr-2019-0070Suche in Google Scholar
[4] Dong S, Liu J-M. Recent progress of multiferroic perovskite manganites. Mod Phys Lett B. 2012;26:30004.10.1142/S0217984912300049Suche in Google Scholar
[5] Evans DM, Garcia V, Meier D, Bibes M. Domains and domain walls in multiferroics. Phys Sci Rev. 2020;5:20190067.10.1515/psr-2019-0067Suche in Google Scholar
[6] Fiebig M, Lottermoser T, Meier D, Trassin M. The evolution of multiferroics. Nat Rev Mater. 2016;1:16046.10.1038/natrevmats.2016.46Suche in Google Scholar
[7] Fontcuberta J. Multiferroic RMnO3 thin films. C R Phys. 2015;16:204–26.10.1016/j.crhy.2015.01.012Suche in Google Scholar
[8] Krohns S, Lunkenheimer P. Ferroelectric polarization in multiferroics. Phys Sci Rev. 2019;4:20190015.10.1515/psr-2019-0015Suche in Google Scholar
[9] Kurumaji T. Spiral spin structures and skyrmionsin multiferroics. Phys Sci Rev. 2019;5:20190016.10.1515/psr-2019-0016Suche in Google Scholar
[10] Lottermoser T, Meier D. A short history of multiferroics. Phys Sci Rev. 2020, 000010151520200032, eISSN 2365-659X, ISSN 2365-6581, DOI: https://doi.org/10.1515/psr-2020-0032.10.1515/psr-2020-0032Suche in Google Scholar
[11] Pyatakov AP, Zvezdin AK. Magnetoelectric and multiferroic media. Phys Uspekhi. 2012;55:557–81.10.3367/UFNe.0182.201206b.0593Suche in Google Scholar
[12] Szaller D, Shuvaev A, Mukhin AA, Kuzmenko AM, Pimenov A. Controlling of light with electromagnons. Phys Sci Rev. 2019;5:20190055.10.1515/psr-2019-0055Suche in Google Scholar
[13] Tokura Y, Seki S, Nagaosa N. Multiferroics of spin origin. Rep Prog Phys. 2014;77:076501.10.1088/0034-4885/77/7/076501Suche in Google Scholar PubMed
[14] Varignon J, Bristowe NC, Bousquet E, Ghosez P. Magneto-electric multiferroics: designing new materials from first-principles calculations. Phys Sci Rev. 2019;5:20190069.Suche in Google Scholar
[15] Sosnowska I, Neumaier TP, Steichele E. Spiral magnetic ordering in bismuth ferrite. J Phys C: Solid State Phys. 1982;15:4835–4846.10.1088/0022-3719/15/23/020Suche in Google Scholar
[16] Johnson RD, Terada N, Radaelli PG. Comment on “spin-canting-induced improper ferroelectricity and spontaneous magnetization reversal in SmFeO3”. Phys Rev Lett. 2012;108:219701.10.1103/PhysRevLett.108.219701Suche in Google Scholar PubMed
[17] Yamaguchi T, Tsushima K. Magnetic symmetry of rare-earth orthochromites and orthoferrites. Phys Rev B. 1973;8:5187–98.10.1103/PhysRevB.8.5187Suche in Google Scholar
[18] Zvezdin A, Mukhin A. Magnetoelectric interactions and phase transitions in a new class of multiferroics with improper electric polarization. JETP Lett. 2008;88:505–10.10.1134/S0021364008200083Suche in Google Scholar
[19] Holmes LM, Van Uitert LG. Magnetoelectric effect and metamagnetic transitions in dy alo3. Phys Rev B. 1972;5:147–153.10.1103/PhysRevB.5.147Suche in Google Scholar
[20] Velleaud G, Mercier M. A new magnetoelectric compound: DyCoO3. Solid State Commun. 1975;17:237–9.10.1016/0038-1098(75)90051-4Suche in Google Scholar
[21] Sergienko IA, S,en C, Dagotto E. Ferroelectricity in the magnetic e-phase of orthorhombic perovskites. Phys Rev Lett. 2006;97:227204.10.1103/PhysRevLett.97.227204Suche in Google Scholar PubMed
[22] Lorenz B, Wang Y-Q, Chu C-W. Ferroelectricity in perovskite HoMno3 and YMno3. Phys Rev B. 2007;76:104405.10.1103/PhysRevB.76.104405Suche in Google Scholar
[23] Kaplan TA. Frustrated classical Heisenberg model in one dimension with nearest-neighbor biquadratic exchange: exact solution for the groundstate phase diagram. Phys Rev B. 2009;80:012407.10.1103/PhysRevB.80.012407Suche in Google Scholar
[24] Mochizuki M, Furukawa N, Nagaosa N. Spin model of magnetostrictions in multiferroic Mn perovskites. Phys Rev Lett. 2010;105:037205.10.1103/PhysRevLett.105.037205Suche in Google Scholar PubMed
[25] Mochizuki M, Furukawa N, Nagaosa N. Theory of spin-phonon coupling in multiferroic manganese perovskites RMnO3. Phys Rev B. 2011;84:144409.10.1103/PhysRevB.84.144409Suche in Google Scholar
[26] Cano A, Levanyuk AP. Pseudoproper ferroelectricity in thin films. Phys Rev B. 2010;81:172105.10.1103/PhysRevB.81.172105Suche in Google Scholar
[27] Tolédano P. Pseudo-proper ferroelectricity and magnetoelectric effects in TbMnO3. Phys Rev B. 2009;79:094416.10.1103/PhysRevB.79.094416Suche in Google Scholar
[28] Weingart C, Spaldin N, Bousquet E. Noncollinear magnetism and singleion anisotropy in multiferroic perovskites. Phys Rev B. 2012;86:094413.10.1103/PhysRevB.86.094413Suche in Google Scholar
[29] Dzyaloshinsky I. A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. J Phys Chem Solids. 1958;4:241–55.10.1016/0022-3697(58)90076-3Suche in Google Scholar
[30] Moriya T. Anisotropic superexchange interaction and weak ferromagnetism. Phys Rev. 1960;120:91–8.10.1103/PhysRev.120.91Suche in Google Scholar
[31] Sergienko IA, Dagotto E. Role of the Dzyaloshinskii–Moriya interaction in multiferroic perovskites. Phys Rev B. 2006;73:094434.10.1103/PhysRevB.73.094434Suche in Google Scholar
[32] Katsura H, Nagaosa N, Balatsky AV. Spin current and magnetoelectric effect in noncollinear magnets. Phys Rev Lett. 2005;95:057205.10.1103/PhysRevLett.95.057205Suche in Google Scholar PubMed
[33] Bar’yakhtar VG, L’Vov VA, Yablonskiˇi DA. Inhomogeneous magnetoelectric effect. Sov J Exp Theor Phys Lett. 1983;37:673.Suche in Google Scholar
[34] Cano A. Kats EI. Electromagnon excitations in modulated multiferroics. Phys Rev B. 2008;78:012104.10.1103/PhysRevB.78.012104Suche in Google Scholar
[35] Mostovoy M. Ferroelectricity in spiral magnets. Phys Rev Lett. 2006;96:067601.10.1103/PhysRevLett.96.067601Suche in Google Scholar PubMed
[36] Harris AB. Landau analysis of the symmetry of the magnetic structure and magnetoelectric interaction in multiferroics. Phys Rev B. 2007;76:054447.10.1103/PhysRevB.76.054447Suche in Google Scholar
[37] Kaplan TA, Mahanti SD. Canted-spin-caused electric dipoles: a local symmetry theory. Phys Rev B. 2011;83:174432.10.1103/PhysRevB.83.174432Suche in Google Scholar
[38] Cano A. Theory of electromagnon resonances in the optical response of spiral magnets. Phys Rev B. 2009;80:180416.10.1103/PhysRevB.80.180416Suche in Google Scholar
[39] Cazayous M, Gallais Y, Sacuto A, de Sousa R, Lebeugle D, Colson D. Possible observation of cycloidal electromagnons in BiFeO3. Phys Rev Lett. 2008;101:037601.10.1103/PhysRevLett.101.037601Suche in Google Scholar PubMed
[40] Katsura H, Balatsky AV, Nagaosa N. Dynamical magnetoelectric coupling in helical magnets. Phys Rev Lett. 2007;98:027203.10.1103/PhysRevLett.98.027203Suche in Google Scholar PubMed
[41] Pimenov A, Mukhin AA, Ivanov VY, Travkin VD, Balbashov AM, Loidl A. Possible evidence for electromagnons in multiferroic manganites. Nat Phys. 2006;2:97–100.10.1038/nphys212Suche in Google Scholar
[42] Valdés Aguilar R, Mostovoy M, Sushkov AB, Zhang CL, Choi YJ, Cheong S-W, et al. Origin of electromagnon excitations in multiferroic rMnO3. Phys Rev Lett. 2009;102:047203.10.1103/PhysRevLett.102.047203Suche in Google Scholar PubMed
[43] Juraschek DM, Fechner M, Balatsky AV, Spaldin NA. Dynamical multiferroicity. Phys Rev Mater. 2017a;1:014401.Suche in Google Scholar
[44] Narayan A, Cano A, Balatsky AV, Spaldin NA. Multiferroic quantum criticality. Nat Mater. 2019;18:223–8.10.1038/s41563-018-0255-6Suche in Google Scholar PubMed
[45] Khomskii D. Classifying multiferroics: mechanisms and effects. Phys Online J. 2009;2:20.10.1103/Physics.2.20Suche in Google Scholar
[46] Fishman RS. Field dependence of the spin state and spectroscopic modes of multiferroic BiFeO3. Phys Rev B. 2013;87:224419.10.1103/PhysRevB.87.224419Suche in Google Scholar
[47] Lebeugle D, Colson D, Forget A, Viret M, Bataille AM, Gukasov A. Electric-field-induced spin flop in BiFeO3 single crystals at room temperature. Phys Rev Lett. 2008;100:227602.10.1103/PhysRevLett.100.227602Suche in Google Scholar PubMed
[48] Nagel U, Fishman RS, Katuwal T, Engelkamp H, Talbayev D, Yi HT, et al. Terahertz spectroscopy of spin waves in multiferroic BiFeO3 in high magnetic fields. Phys Rev Lett. 2013;110:257201.10.1103/PhysRevLett.110.257201Suche in Google Scholar PubMed
[49] Rahmedov D, Wang D, Íñniguez J, Bellaiche L. Magnetic cycloid of BiFeO3 from atomistic simulations. Phys Rev Lett. 2012;109: 037207.10.1103/PhysRevLett.109.037207Suche in Google Scholar PubMed
[50] Ramazanoglu M, Laver M, Ratcliff W, Watson SM, Chen WC, Jackson A, et al. Local weak ferromagnetism in single-crystalline ferroelectric BiFeO3. Phys Rev Lett. 2011;107:207206.10.1103/PhysRevLett.107.207206Suche in Google Scholar PubMed
[51] Zvezdin AK, Pyatakov AP. On the problem of coexistence of the weak ferromagnetism and the spin flexoelectricity in multiferroic bismuth ferrite. EPL (Europhys Lett) 2012;99:57003–.10.1209/0295-5075/99/57003Suche in Google Scholar
[52] Moubah R, Elzo M, El Moussaoui S, Colson D, Jaouen N, Belkhou R, et al. Direct imaging of both ferroelectric and antiferromagnetic domains in multiferroic BiFeO3 single crystal using x-ray photoemission electron microscopy. Appl Phys Lett. 2012;100:042406.10.1063/1.3679101Suche in Google Scholar
[53] Moskvin AS, Bostrem IG. Special features of the exchange interactions in orthoferrite–orthochromites. Fiz Tverd Tela (Leningrad) 1977;19:2616–26.Suche in Google Scholar
[54] Moskvin AS, Sinitsyn EV. Antisymmetric exchange and four-sublattice model of orthoferrites. Fiz Tverd Tela. 1975;17:2495–7.Suche in Google Scholar
[55] Catalan G, Scott JF. Physics and applications of bismuth ferrite. Adv Mater. 2009;21:2463–85.10.1002/adma.200802849Suche in Google Scholar
[56] Ruette B, Zvyagin S, Pyatakov AP, Bush A, Li JF, Belotelov VI, et al. Magnetic-field-induced phase transition in BiFeO3 observed by high-field electron spin resonance: cycloidal to homogeneous spin order. Phys Rev B. 2004;69:064114.10.1103/PhysRevB.69.064114Suche in Google Scholar
[57] Sando DE. Crafting the magnonic and spintronic response of BiFeO3 films by epitaxial strain. Nat Mat. 2013;12:641.10.1038/nmat3629Suche in Google Scholar PubMed
[58] Chen P, Grisolia MN, Zhao HJ, González-Vázquez OE, Bellaiche L, Bibes M, et al. Energetics of oxygen-octahedra rotations in perovskite oxides from first principles. Phys Rev B. 2018;97:024113.10.1103/PhysRevB.97.024113Suche in Google Scholar
[59] Bertaut EF. Symetrie cristalline et faible ferromagnetisme. J Phys Radium. 1961;22:839–41.10.1051/jphysrad:019610022012083901Suche in Google Scholar
[60] Bertaut EF. Magnetism, vol. 3. Academic Press Inc, 1963.Suche in Google Scholar
[61] Bousquet E, Spaldin NA, Induced magnetoelectric response in pnma perovskites. Phys Rev Lett. 2011;107:197603.10.1103/PhysRevLett.107.197603Suche in Google Scholar PubMed
[62] Günter T, Bousquet E, David A, Boullay P, Ghosez P, Prellier W, et al. Incipient ferroelectricity in 2.3% tensile-strained CaMnO3 films. Phys Rev B. 2012;85:214120.10.1103/PhysRevB.85.214120Suche in Google Scholar
[63] Zhao HJ, Grisolia MN, Yang Y, Íñiguez J, Bibes M, Chen XM, et al. Magnetoelectric effects via pentalinear interactions. Phys Rev B. 2015;92:235133.10.1103/PhysRevB.92.235133Suche in Google Scholar
[64] Varignon J, Bristowe N, Bousquet E, Ghosez P. Magneto-electric multiferroics: Designing new materials from first-principles calculations. Phys Sci Rev. 2020;5 (2), 2365–659X, DOI: https://doi.org/10.1515/psr-2019-0069.10.1515/psr-2019-0069Suche in Google Scholar
[65] Benedek NA, Fennie CJ. Hybrid improper ferroelectricity: a mechanism for controllable polarization-magnetization coupling. Phys Rev Lett. 2011;106:107204.10.1103/PhysRevLett.106.107204Suche in Google Scholar PubMed
[66] Benedek NA, Mulder AT, Fennie CJ. Polar octahedral rotations: a path to new multifunctional materials. J Solid State Chem. 2012;195:11–20. Polar Inorganic Materials: Design Strategies and Functional Properties.10.1016/j.jssc.2012.04.012Suche in Google Scholar
[67] Bristowe NC, Varignon J, Fontaine D, Bousquet E, Ghosez P. Ferromagnetism induced by entangled charge and orbital orderings in ferroelectric titanate perovskites. Nat Commun. 2015;6:6677.10.1038/ncomms7677Suche in Google Scholar PubMed PubMed Central
[68] Song N, Rondinelli JM, Kim BG. Noncentrosymmetric structural transitions in ultrashort ferroelectric aGaO3~A'GaO3 superlattices. Phys Rev B. 2015;91:134104.10.1103/PhysRevB.91.134104Suche in Google Scholar
[69] Rondinelli JM, Fennie CJ. Octahedral rotation-induced ferroelectricity in cation ordered perovskites. Adv. Mater. 2012;24: 1961–8.10.1002/adma.201104674Suche in Google Scholar PubMed
[70] Zanolli Z, Wojde l JC, Íñiguez J, Ghosez P. Electric control of the magnetization in BiFeO3/LaFeO3 superlattices. Phys Rev B. 2013;88:060102.10.1103/PhysRevB.88.060102Suche in Google Scholar
[71] Xu B, Wang D, Zhao HJ, Íñiguez J, Chen XM, Bellaiche L. Hybrid improper ferroelectricity in multiferroic superlattices: finite-temperature properties and electric-field-driven switching of polarization and magnetization. Adv Funct Mater 2015;25:3626–33.10.1002/adfm.201501113Suche in Google Scholar
[72] Zhao HJ, Bellaiche L, Chen XM, Íñiguez J. Improper electric polarization in simple perovskite oxides with two magnetic sublattices. Nat Commun. 2017;8:1–11.10.1038/ncomms14025Suche in Google Scholar PubMed PubMed Central
[73] Treves D. Studies on orthoferrites at the Weizmann Institute of Science. J Appl Phys. 1965;36:1033–9.10.1063/1.1714088Suche in Google Scholar
[74] Tokunaga Y, Furukawa N, Sakai H, Taguchi Y, Arima T-H, Tokura Y. Composite domain walls in a multiferroic perovskite ferrite. Nat Mater. 2009;8:558–62.10.1038/nmat2469Suche in Google Scholar PubMed
[75] Panchwanee A, Upadhyay SK, Lalla NP, Sathe VG, Gupta A, Reddy VR. Low-temperature Raman, high magnetic field 57Fe Mössbauer, and X-ray diffraction study of magnetodielectric coupling in polycrystalline GdFeO3. Phys Rev B. 2019;99:064433.10.1103/PhysRevB.99.064433Suche in Google Scholar
[76] Gorodetsky G, Sharon B, Shtrikman S. Magnetic properties of an antiferromagnetic orthoferrite. J Appl Phys. 1968;39:1371–2.10.1063/1.1656309Suche in Google Scholar
[77] Morin FJ. Magnetic susceptibility of αFe2O3 and αFe2O3 with added titanium. Phys Rev. 1950;78:819–20.10.1103/PhysRev.78.819.2Suche in Google Scholar
[78] Zhao HJ,WRen, Y Yang,Íñiguez J, Chen XM, Bellaiche L., Near room-temperature multiferroic materials with tunable ferromagnetic and electrical properties, Nat Commun. 2014;5:4021.10.1038/ncomms5021Suche in Google Scholar PubMed
[79] Tokunaga Y, Iguchi S, Arima T, Tokura Y. Magnetic-field-induced ferroelectric state in DyFeO3. Phys Rev Lett. 2008;101:097205.10.1103/PhysRevLett.101.097205Suche in Google Scholar PubMed
[80] Johnson C, Prelorendjo L, Thomas M. Field induced spin reorientation in orthoferrites DyFeO3, HoFeO3 and ErFeO3. J Magn Magn Mater. 1980;15–18:557–8.10.1016/0304-8853(80)90662-9Suche in Google Scholar
[81] Stroppa A, Marsman M, Kresse G, Picozzi S. The multiferroic phase of DyFeO3: an ab initio study. New J Phys. 2010;12:093026.10.1088/1367-2630/12/9/093026Suche in Google Scholar
[82] Khim T-Y, Eom MJ, Kim JS, Park B-G, Kim J-Y, Park J-H. Strain control spin reorientation transition in DyFeO3/SrTiO3 epitaxial film. Appl Phys Lett. 2011;99:072501.10.1063/1.3623756Suche in Google Scholar
[83] Rajeswaran B, Khomskii DI, Zvezdin AK, Rao CNR, Sundaresan A. Fieldinduced polar order at the néel temperature of chromium in rare-earth orthochromites: interplay of rare-earth and CR magnetism. Phys Rev B. 2012;86:214409.10.1103/PhysRevB.86.214409Suche in Google Scholar
[84] Sahu JR, Serrao CR, Ray N, Waghmare UV, Rao CN. Rare earth chromites: a new family of multiferroics. J Mater Chem. 2007;17:42–4.10.1039/B612093HSuche in Google Scholar
[85] Serrao CR, Kundu AK, Krupanidhi SB,Waghmare UV, Rao CN. Biferroic YCro3. Phys Rev B. 2005;72:220101.10.1103/PhysRevB.72.220101Suche in Google Scholar
[86] Ghosh A, Dey K, Chakraborty M, Majumdar S, Giri S. Polar octahedral rotations, cation displacement and ferroelectricity in multiferroic Sm- CrO3. EPL (Europhys Lett) 2014;107:47012.10.1209/0295-5075/107/47012Suche in Google Scholar
[87] Saha R, Sundaresan A, Rao CN. Novel features of multiferroic and magnetoelectric ferrites and chromites exhibiting magnetically driven ferroelectricity. Mater. Horiz. 2014;1:20–31.10.1039/C3MH00073GSuche in Google Scholar
[88] Mercy A, Bieder J, Iniguez J, Ghosez P. Structurally triggered metalinsulator transition in rare-earth nickelates. Nat Commun 2017;8:1677.10.1038/s41467-017-01811-xSuche in Google Scholar PubMed PubMed Central
[89] Zhang Y, Schmitt MM, Mercy A, Wang J, Ghosez P. From charge- to orbital-ordered metal-insulator transition in alkaline-earth ferrites. Phys Rev B. 2018;98:081108.10.1103/PhysRevB.98.081108Suche in Google Scholar
[90] Hepting M, Minola M, Frano A, Cristiani G, Logvenov G, Schierle E, et al. Tunable charge and spin order in PrNiO3 thin films and superlattices. Phys. Rev. Lett. 2014;113:227206.10.1103/PhysRevLett.113.227206Suche in Google Scholar PubMed
[91] Catalan G. Progress in perovskite nickelate research. Phase Transitions. 2008;81:729–49.10.1080/01411590801992463Suche in Google Scholar
[92] Giovannetti G, Kumar S, Khomskii D, Picozzi S, van den Brink J. Multiferroicity in rare-earth nickelates rNiO3. Phys. Rev. Lett. 2009;103:156401.10.1103/PhysRevLett.103.037601Suche in Google Scholar PubMed
[93] Kumar D, Rajeev KP, Alonso JA, Martínez-Lope MJ. Spin-canted magnetism and decoupling of charge and spin ordering in NdNiO3. Phys Rev B. 2013;88:014410.10.1103/PhysRevB.88.014410Suche in Google Scholar
[94] da Silveira Lacerda LH, de Lazaro SR. Improvement of multiferroic property and change of magnetic ordering in new ANiO3 (A=Ti, Ge, Zr, Sn, Hf and Pb). Comput Mater Sci. 2018;153:228–34.10.1016/j.commatsci.2018.06.040Suche in Google Scholar
[95] Ding L, Manuel P, Khalyavin DD, Orlandi F, Kumagai Y, Oba F, et al. Unusual magnetic structure of the high-pressure synthesized perovskites ACrO3 (A=Sc, In, Tl). Phys Rev B. 2017;95:054432.10.1103/PhysRevB.95.054432Suche in Google Scholar
[96] Wang S,Wu X,Wang T, Zhang J, Zhang C, Yuan L, et al. Mild hydrothermal crystallization of heavy rare-earth chromite ReCrO3 (Re= Er, Tm, Yb, Lu) perovskites and magnetic properties. Inorg Chem. 2019;58:2315– 29.10.1021/acs.inorgchem.8b02596Suche in Google Scholar PubMed
[97] Zákutná D, Vlček J, Fitl P, Nemkovski K, Honecker D, Niiòanský D, et al. Noncollinear magnetism in nanosized cobalt chromite. Phys Rev B. 2018;98:064407.10.1103/PhysRevB.98.064407Suche in Google Scholar
[98] Kimura T, Goto T, Shintani H, Ishizaka K, Arima T, Tokura Y. Magnetic control of ferroelectric polarization. Nature (London) 2003;426:55.10.1038/nature02018Suche in Google Scholar PubMed
[99] Mochizuki M, Furukawa N. Theory of magnetic switching of ferroelectricity in spiral magnets. Phys Rev Lett. 2010;105:187601.10.1103/PhysRevLett.105.187601Suche in Google Scholar PubMed
[100] Goto T, Yamasaki Y, Watanabe H, Kimura T, Tokura Y. Anticorrelation between ferromagnetism and ferroelectricity in perovskite manganites. Phys Rev B. 2005;72:220403.10.1103/PhysRevB.72.220403Suche in Google Scholar
[101] Harris AB. Ferroelectricity induced by incommensurate magnetism (invited). J Appl Phys. 99, 08E303 (2006).10.1063/1.2177392Suche in Google Scholar
[102] Kenzelmann M, Harris AB, Jonas S, Broholm C, Schefer J, Kim SB, Zhang CL, Cheong SW, Vajk OP, Lynn JW. Magnetic inversion symmetry breaking and ferroelectricity in TbMnO3. Phys Rev Lett. 2005;95:087206.10.1103/PhysRevLett.95.087206Suche in Google Scholar PubMed
[103] Ribeiro JL, Vieira LG. Landau model for the phase diagrams of the orthorhombic rare-earth manganites rMnO3 (r = Eu, Gd, Tb, Dy, Ho). Phys Rev B. 2010;82:064410.10.1103/PhysRevB.82.064410Suche in Google Scholar
[104] Furukawa N, Mochizuki M. Roles of bond alternation in magnetic phase diagram of RMnO3. J Phys Soc J. 2010;79:033708.10.1143/JPSJ.79.033708Suche in Google Scholar
[105] Hu CD. Relationship between ferroelectricity and Dzyaloshinskii–Moriya interaction in multiferroics and the effect of bond-bending. Phys Rev B. 2008;77:174418.10.1103/PhysRevB.77.174418Suche in Google Scholar
[106] Mochizuki M, Furukawa N. Mechanism of lattice-distortion-induced electric-polarization flop in the multiferroic perovskite manganites. J Phys Soc Japan 2009a;78:053704.10.1143/JPSJ.78.053704Suche in Google Scholar
[107] Mochizuki M, Furukawa N. Microscopic model and phase diagrams of the multiferroic perovskite manganites. Phys Rev B. 2009b;80:134416.10.1103/PhysRevB.80.134416Suche in Google Scholar
[108] Fedorova NS, Ederer C, Spaldin NA, Scaramucci A. Biquadratic and ring exchange interactions in orthorhombic perovskite manganites. Phys Rev B. 2015;91:165122.10.1103/PhysRevB.91.165122Suche in Google Scholar
[109] Malashevich A, Vanderbilt D. First principles study of improper ferroelectricity in TbMnO3. Phys Rev Lett. 2008;101:037210.10.1103/PhysRevLett.101.037210Suche in Google Scholar PubMed
[110] Malashevich A, Vanderbilt D. Dependence of electronic polarization on octahedral rotations in TbMnO3 from first principles. Phys Rev B. 2009;80:224407.10.1103/PhysRevB.80.224407Suche in Google Scholar
[111] Xiang HJ, Wei S-H, Whangbo M-H, Da Silva JL. Spin–orbit coupling and ion displacements in multiferroic TbMnO3. Phys Rev Lett. 2008;101:037209.10.1103/PhysRevLett.101.037209Suche in Google Scholar PubMed
[112] Levanyuk AP, Sannikov DG. Reviews of topical problems: improper ferroelectrics. Sov Phys Uspekhi. 1974;17:199–214.10.1070/PU1974v017n02ABEH004336Suche in Google Scholar
[113] Aliouane N, Prokhnenko O, Feyerherm R, Mostovoy M, Strempfer J, Habicht K, Rule KC, et al. Magnetic order and ferroelectricity in RmnO3 multiferroic manganites: coupling between R- and MN-spins. J Phys: Condens Matter 2008;20:434215.10.1088/0953-8984/20/43/434215Suche in Google Scholar
[114] Kajimoto R, Yoshizawa H, Shintani H, Kimura T, Tokura Y. Magnetic structure of TbMnO3 by neutron diffraction. Phys Rev B. 2004;70:012401.10.1103/PhysRevB.70.219904Suche in Google Scholar
[115] Quezel S, Tcheou F, Rossat-Mignod J, Quezel G, Roudaut E. Magnetic structure of the perovskite-like compound TbMnO3. Phys B+C 1977;86:916–8.10.1016/0378-4363(77)90740-9Suche in Google Scholar
[116] Jang H, Lee J-S, Ko K-T, Noh W-S, Koo TY, Kim J-Y, et al. Coupled magnetic cycloids in multiferroic TbMnO3 and Eu3~4Y1~4MnO3. Phys Rev Lett. 2011;106:047203.10.1103/PhysRevLett.106.047203Suche in Google Scholar PubMed
[117] Mannix D, McMorrow DF, Ewings RA, Boothroyd AT, Prabhakaran D, Joly Y, et al. X-ray scattering study of the order parameters in multiferroic TbMno3. Phys Rev B. 2007;76:184420.10.1103/PhysRevB.76.184420Suche in Google Scholar
[118] Wilkins SB, Forrest TR, Beale TA, Bland SR, Walker HC, Mannix D, et al. Nature of the magnetic order and origin of induced ferroelectricity in TbMnO3. Phys Rev Lett. 2009;103:207602.10.1103/PhysRevLett.103.207602Suche in Google Scholar PubMed
[119] Walker HC, Fabrizi F, Paolasini L, de Bergevin F, Herrero-Martin J, Boothroyd AT, et al. Femtoscale magnetically induced lattice distortions in multiferroic TbMnO3. Science 2011;333:1273–6.10.1126/science.1208085Suche in Google Scholar PubMed
[120] Aliouane N, Argyriou DN, Strempfer J, Zegkinoglou I, Landsgesell S, Zimmermann MV. Field-induced linear magnetoelastic coupling in multiferroic tbmno3. Phys Rev B 2006;73:020102.10.1103/PhysRevB.73.020102Suche in Google Scholar
[121] Aliouane N, Schmalzl K, Senff D, Maljuk A, Prokeš K, Braden M. Flop of electric polarization driven by the flop of the mn spin cycloid in multiferroic TbMnO3. Phys Rev Lett. 2009;102:207205.10.1103/PhysRevLett.102.207205Suche in Google Scholar PubMed
[122] Argyriou DN, Aliouane N, Strempfer J, Zegkinoglou I, Bohnenbuck B, Habicht K, Zimmermann MV. Melting of incommensurate-ferroelectric phase with magnetic field in multiferroic TbMnO3. Phys Rev B. 2007;75:020101.10.1103/PhysRevB.75.020101Suche in Google Scholar
[123] Kimura T, Lawes G, Goto T, Tokura Y, Ramirez AP. Magnetoelectric phase diagrams of orthorhombic rMnO3 (r = Gd, Tb, and Dy). Phys Rev B. 2005;71:224425.10.1103/PhysRevB.71.224425Suche in Google Scholar
[124] Aoyama T, Yamauchi K, Iyama A, Picozzi S, Shimizu T, Kimura K. Giant spin-driven ferroelectric polarization in TbMnO3 under high pressure. Nat Commun. 2014;5:4927.10.1038/ncomms5927Suche in Google Scholar PubMed
[125] Aupiais I, Mochizuki M, Sakata H, Grasset R, Gallais Y, Sacuto A, et al. Colossal electromagnon excitation in the non-cycloidal phase of TbMnO3 under pressure. NPJ Q Mater. 2018;3:60.10.1038/s41535-018-0130-3Suche in Google Scholar
[126] Goto T, Kimura T, Lawes G, Ramirez AP, Tokura Y. Ferroelectricity and giant magnetocapacitance in perovskite rare-earth manganites. Phys Rev Lett. 2004;92:257201.10.1103/PhysRevLett.92.257201Suche in Google Scholar PubMed
[127] Feyerherm R, Dudzik E, Aliouane N, Argyriou DN. Commensurate dy magnetic ordering associated with incommensurate lattice distortion in multiferroic DyMnO3. Phys Rev B. 2006;73:180401.10.1103/PhysRevB.73.180401Suche in Google Scholar
[128] Prokhnenko O, Feyerherm R, Dudzik E, Landsgesell S, Aliouane N, Chapon LC, et al. Enhanced ferroelectric polarization by induced dy spin order in multiferroic DyMnO3. Phys Rev Lett. 2007;98:057206.10.1103/PhysRevLett.98.057206Suche in Google Scholar PubMed
[129] Feyerherm R, Dudzik E, Prokhnenko O, Argyriou DN. Rare earth magnetism and ferroelectricity in rMnO3. J Phys: Conf Ser. 2010;200:012032.10.1088/1742-6596/200/1/012032Suche in Google Scholar
[130] Lu C, Dong S, Xia Z, Luo H, Yan Z, Wang H, et al. Polarization enhancement and ferroelectric switching enabled by interacting magnetic structures in DyMnO3 thin films. Sci Rep. 2013;3:3374.10.1038/srep03374Suche in Google Scholar PubMed PubMed Central
[131] Zhang N, Dong S, Liu J-M. Ferroelectricity generated by spin-orbit and spin-lattice couplings in multiferroic DyMnO3. Front Phys. 2012;7:408–17.10.1007/s11467-011-0225-9Suche in Google Scholar
[132] Aoyama T, Iyama A, Shimizu K, Kimura T. Multiferroicity in orthorhombic rMnO3 (r = Dy, Tb, and Gd) under high pressure. Phys Rev B 2015;91:081107.10.1103/PhysRevB.91.081107Suche in Google Scholar
[133] Arima T, Goto T, Yamasaki Y, Miyasaka S, Ishii K, Tsubota M, Inami T, Murakami Y, Tokura Y. Magnetic-field-induced transition in the lattice modulation of colossal magnetoelectric GdMnO3 and TbMnO3 compounds. Phys Rev B. 2005;72:100102.10.1103/PhysRevB.72.100102Suche in Google Scholar
[134] Ferreira WS, Agostinho Moreira J, Almeida A, Chaves MR, Aráujo JP, Oliveira JB, et al. Spin–phonon coupling and magnetoelectric properties: EuMnO3 versus GdMnO3. Phys Rev B. 2009;79:054303.10.1103/PhysRevB.79.054303Suche in Google Scholar
[135] Feyerherm R, Dudzik E, Wolter AU, Valencia S, Prokhnenko O, Maljuk A, et al. Magnetic-field induced effects on the electric polarization in rMnO3(r = Dy,Gd). Phys Rev B. 2009;79:134426.10.1103/PhysRevB.79.134426Suche in Google Scholar
[136] Skaugen A, Shukla DK, Feyerherm R, Dudzik E, Islam Z, Strempfer J. Magnetic order in GdMnO3 in magnetic fields. J Phys: Conf Ser. 2014;519:012007.10.1088/1742-6596/519/1/012007Suche in Google Scholar
[137] Yamasaki Y, Sagayama H, Abe N, Arima T, Sasai K, Matsuura M, et al. Cycloidal spin order in the a-axis polarized ferroelectric phase of orthorhombic perovskite manganite. Phys Rev Lett. 2008;101:097204.10.1103/PhysRevLett.101.097204Suche in Google Scholar PubMed
[138] Hemberger J, Schrettle F, Pimenov A, Lunkenheimer P, Ivanov VY, Mukhin AA, et al. Multiferroic phases of Eu1−xYxMnO3. Phys Rev B. 2007;75:035118.10.1103/PhysRevB.75.035118Suche in Google Scholar
[139] Ivanov VY, Mukhin AA, Travkin VD, Prokhorov AS, Kadomtseva AM, Popov YF, et al. Magnetic, dielectric and magnetoelectric properties of new family of orthorhombic multiferroic Eu1−xYxMNO3 manganites. J Magn Magn Mater. 2006;300:130.10.1016/j.jmmm.2005.10.165Suche in Google Scholar
[140] Tokunaga M, Yamasaki Y, Onose Y, Mochizuki M, Furukawa N, Tokura Y. Novel multiferroic state of Eu1−xyxMnO3 in high magnetic fields. Phys Rev Lett. 2009;103:187202.10.1103/PhysRevLett.103.187202Suche in Google Scholar PubMed
[141] Kadomtseva A, Popov Y, Vorobev G, Ivanov V, Mukhin A, Balbashov A. Specific features of the magnetic field-induced orientational transition in EuMnO3. J Exp Theor Phys Lett. 2005;81:590–3.10.1134/1.2029951Suche in Google Scholar
[142] Qiu R, Bousquet E, Cano A. Pressure-induced insulator–metal transition in EuMnO3. J Phys: Condens Matter. 2017;29:305801.10.1088/1361-648X/aa75beSuche in Google Scholar PubMed
[143] Chen CT, Lin BN, Hsu YY, Liao JD, Cheng WH, Lin CY, et al. Anomalous variation of a-type antiferromagnetic order and two-dimensional ferromagnetic fluctuation in orbital-ordered La1−xEuxMnO3. Phys Rev B. 2003;67:214424.10.1103/PhysRevB.67.214424Suche in Google Scholar
[144] Danjoh S, Jung J-S, Nakamura H, Wakabayashi Y, Kimura T. Anomalous induction of ferroelectric polarization by magnetization reversal in the phase-separated multiferroic manganite Eu0.8Y0.2MnO3. Phys Rev B. 2009;80:180408.10.1103/PhysRevB.80.180408Suche in Google Scholar
[145] Ishiwata S, Kaneko Y, Tokunaga Y, Taguchi Y, Arima T-h, Tokura Y. Perovskite manganites hosting versatile multiferroic phases with symmetric and antisymmetric exchange strictions. Phys Rev B. 2010;81:100411.10.1103/PhysRevB.81.100411Suche in Google Scholar
[146] Ivanov VY, Mukhin AA, Glushkov VV, Balbashov AM. Spontaneous reorientation of the electric polarization in Eu1−xHoxMnO3 multiferroics. Sov J Exp Theor Phys Lett. 2013;97:28–33.10.1134/S0021364013010037Suche in Google Scholar
[147] Kalvius GM, Litterst FJ, Hartmann O, Wäppling R, Krimmel A, Mukhin AA, Balbashov AM, Loidl A. Magnetic properties of the multiferroic compounds Eu1−xYxMnO3 (x = 0.2 and 0.3). J Phys Conf Ser. 2014;551:012014.10.1088/1742-6596/551/1/012014Suche in Google Scholar
[148] Ku H, Chen C, Lin B. A-type antiferromagnetic order, 2d ferromagnetic fluctuation and orbital order in stoichiometric La1−xEuxMnO3. J Magn Magn Mater. 2004;272 276:85–87. Proceedings of the International Conference on Magnetism (ICM 2003).10.1016/j.jmmm.2003.11.091Suche in Google Scholar
[149] Moreira JA, Almeida A, Ferreira WS, Chaves MR, Kundys B, Ranjith R. Polar properties of Eu0.6Y0.4MnO3 ceramics and their magnetic field dependence. J Phys: Condens Matter 2009;21:446002.10.1088/0953-8984/21/44/446002Suche in Google Scholar PubMed
[150] Noda K, Akaki M, Kikuchi T, Akahoshi D, Kuwahara H. Magneticfield- induced switching between ferroelectric phases in orthorhombicdistortion- controlled RMnO3. J Appl Phys. 2006;99:080000.10.1063/1.2177207Suche in Google Scholar
[151] Oliveira J, Moreira JA, Almeida A, Chaves MR, da Silva JM, Oliveira JB, et al. Phase diagram of the orthorhombic, lightly lutetium doped EuMnO3 magnetoelectric system. Phys Rev B. 2011;84:094414.10.1103/PhysRevB.84.094414Suche in Google Scholar
[152] Pimenov A, Loidl A, Mukhin AA, Travkin VD, Ivanov VY, Balbashov AM. Terahertz spectroscopy of electromagnons in Eu1−xYxMnO3. Phys Rev B. 2008;77:014438.10.1103/PhysRevB.77.014438Suche in Google Scholar
[153] Tadokoro Y, Shan YJ, Nakamura T, Nakamura S. Crystal structure and characterizations of perovskite oxides (Eu1−xSrx)MnO3 (0.0≤x≤0.5). Solid State Ionics. 1998;108:261–7.10.1016/S0167-2738(98)00048-4Suche in Google Scholar
[154] Tokunaga M, Katakura I, Yamasaki Y, Onose Y, Tokura Y. High-field study of multiferroic properties in orthorhombic Eu1−xYxMnO3. J Phys: Conf Ser. 2009;150:042212.10.1088/1742-6596/150/4/042212Suche in Google Scholar
[155] Troyanchuk I, Samsonenko N, Szymczak H, Nabialek A. Magnetic study of the Ca1−xEuxMnO3(0≤x≤1) perovskites. J Solid State Chem. 1997;131:144–9.10.1006/jssc.1997.7369Suche in Google Scholar
[156] Yamasaki Y, Miyasaka S, Goto T, Sagayama H, Arima T, Tokura Y. Ferroelectric phase transitions of 3d-spin origin in Eu1−xYxMnO3. Phys Rev B. 2007;76:184418.10.1103/PhysRevB.76.184418Suche in Google Scholar
[157] Issing S, Pimenov A, Ivanov VY, Mukhin AA, Geurts J. Compositiondependent spin-phonon coupling in mixed crystals of the multiferroic manganite Eu1−xYxMnO3 (0 ≤ x ≤ 0.5) studied by raman spectroscopy. Phys Rev B. 2010;81: 024304.10.1103/PhysRevB.81.024304Suche in Google Scholar
[158] Murakawa H, Onose Y, Kagawa F, Ishiwata S, Kaneko Y, Tokura Y. Rotation of an electric polarization vector by rotating magnetic field in cycloidal magnet Eu0.55Y0.45MnO3. Phys Rev Lett. 2008;101:197207.10.1103/PhysRevLett.101.197207Suche in Google Scholar PubMed
[159] Skaugen A, Schierle E, van der Laan G, Shukla DK, Walker HC, Weschke E, et al. Long-range antiferromagnetic order of formally nonmagnetic Eu3+ van vleck ions observed in multiferroic Eu1−xYxMnO3. Phys Rev B. 2015;91:180409.10.1103/PhysRevB.91.180409Suche in Google Scholar
[160] Lorenz B, Wang YQ, Sun YY, Chu CW. Large magnetodielectric effects in orthorhombic HoMnO3 and YMnO3. Phys Rev B. 2004;70:212412.10.1103/PhysRevB.70.212412Suche in Google Scholar
[161] Muñoz A, Casáis MT, Alonso JA, Martínez-Lope MJ, Martínez JL, Fernández-Díaz MT. Complex magnetism and magnetic structures of the metastable HoMnO3 perovskite. Inorg Chem. 2001;40:1020–8.10.1021/ic0011009Suche in Google Scholar
[162] Feng SM, Chai YS, Zhu JL, Manivannan N, Oh YS, Wang LJ, et al. Determination of the intrinsic ferroelectric polarization in orthorhombic HoMnO3. New J Phys. 2010;12:073006.10.1088/1367-2630/12/7/073006Suche in Google Scholar
[163] Okamoto H, Imamura N, Hauback BC, Karppinen M, Yamauchi H, Fjellvåg H. Neutron powder diffraction study of crystal and magnetic structures of orthorhombic LuMnO3. Solid State Commun. 2008;146:152–6.10.1016/j.ssc.2008.01.036Suche in Google Scholar
[164] Pomjakushin VY, Kenzelmann M, Dönni A, Harris AB, Nakajima T, Mitsuda S, et al. Evidence for large electric polarization from collinear magnetism in TmMnO3. New J Phys. 2009;11:043019.10.1088/1367-2630/11/4/043019Suche in Google Scholar
[165] Garganourakis M, Bodenthin Y, de Souza RA, Scagnoli V, Dönni A, Tachibana M, et al. Magnetic and electronic orderings in orthorhombic rMnO3 (r = Tm, Lu) studied by resonant soft x-ray powder diffraction. Phys Rev B. 2012;86:054425.10.1103/PhysRevB.86.054425Suche in Google Scholar
[166] Glavic A, Becher C, Voigt J, Schierle E, Weschke E, Fiebig M, et al. Stability of spin-driven ferroelectricity in the thin-film limit: coupling of magnetic and electric order in multiferroic TbMnO3 films. Phys Rev B. 2013;88:054401.10.1103/PhysRevB.88.054401Suche in Google Scholar
[167] Glavic A, Voigt J, Persson J, Su Y, Schubert J, de Groot J, et al. High quality TbMnO3 films deposited on YAlO3. J Alloys Compd. 2011;509:5061–3.10.1016/j.jallcom.2011.03.015Suche in Google Scholar
[168] Mukherjee S, Shimamoto K, Windsor YW, Ramakrishnan M, Parchenko S, Staub U, et al. Multiferroic phase diagram of e-type rMnO3 films studied by neutron and x-ray diffraction. Phys Rev B. 2018;98:174416.10.1103/PhysRevB.98.174416Suche in Google Scholar
[169] Li X, Lu C, Dai J, Dong S, Chen Y, Hu N, et al. Novel multiferroicity in GdMnO3 thin films with self-assembled nano-twinned domains. Sci Rep. 2014;4:7019.10.1038/srep07019Suche in Google Scholar PubMed PubMed Central
[170] Fina I, Fàbrega L, Martí X, Sánchez F, Fontcuberta J. Magnetic switch of polarization in epitaxial orthorhombic YMnO3 thin films. Appl Phys Lett. 2010;97:232905.10.1063/1.3523352Suche in Google Scholar
[171] Jiménez-Villacorta F, Gallastegui JA, Fina I, Marti X, Fontcuberta J. Strain-driven transition from E-type to A-type magnetic order in YMnO3 epitaxial films. Phys Rev B. 2012;86:024420.10.1103/PhysRevB.86.024420Suche in Google Scholar
[172] Hou YS, Yang JH, Gong XG, Xiang HJ. Prediction of a multiferroic state with large electric polarization in tensile-strained TbMnO3. Phys Rev B. 2013;88:060406.10.1103/PhysRevB.88.060406Suche in Google Scholar
[173] Shimamoto K, Mukherjee S, Bingham NS, Suszka AK, Lippert T, Niedermayer C, et al. Single-axis-dependent structural and multiferroic properties of orthorhombic rMno3(r = Gd–Lu). Phys Rev B. 2017;95:184105.10.1103/PhysRevB.95.184105Suche in Google Scholar
[174] Afanasiev D, Hortensius JR, Ivanov B, Sasani A, Bousquet E, Blanter Y, et al. Light-driven ultrafast phonomagnetism. arXiv:1912.01938v1.Suche in Google Scholar
[175] Disa A, Fechner M, Nova T, Liu B, Först M, Prabhakaran D, et al. Polarizing an antiferromagnet by optical engineering of the crystal field. Nat Phys. 2020;16:937.10.1038/s41567-020-0936-3Suche in Google Scholar
[176] Fechner M, Sukhov A, Chotorlishvili L, Kenel C, Berakdar J, Spaldin NA. Magnetophononics: ultrafast spin control through the lattice. Phys. Rev. Mate. 2018;2:064401.10.1103/PhysRevMaterials.2.064401Suche in Google Scholar
[177] Gu M, Rondinelli JM. Nonlinear phononic control and emergent magnetism in Mott insulating titanates. Phys Rev B. 2018;98:024102.10.1103/PhysRevB.98.024102Suche in Google Scholar
[178] Juraschek DM, Fechner M, Balatsky AV, Spaldin NA. Dynamical multiferroicity. Phys Rev Mater. 2017b;1:014401.10.1103/PhysRevMaterials.1.014401Suche in Google Scholar
[179] Juraschek DM, Fechner M, Spaldin NA. Ultrafast structure switching through nonlinear phononics. Phys Rev Lett. 2017;118:054101.10.1103/PhysRevLett.118.054101Suche in Google Scholar PubMed
[180] Khalsa, G, Benedek N. Ultrafast optically induced ferromagnetic/antiferromagnetic phase transition in GdTiO3 from first principles. NPJ Quantum Mater. 2018;3:15.10.1038/s41535-018-0086-3Suche in Google Scholar
[181] Nova TF, Cartella A, Cantaluppi A, Först M, Bossini D, Mikhaylovskiy RV, et al. An effective magnetic field from optically driven phonons. Nat Phys. 2017;13:132.10.1038/nphys3925Suche in Google Scholar
[182] Radaelli PG. Breaking symmetry with light: ultrafast ferroelectricity and magnetism from three-phonon coupling. Phys Rev B. 2018;97:085145.10.1103/PhysRevB.97.085145Suche in Google Scholar
[183] Gong C, Kim EM, Wang Y, Lee G, Zhang X. Multiferroicity in atomic van der Waals heterostructures. Nat Commun. 2019;10:2657.10.1038/s41467-019-10693-0Suche in Google Scholar PubMed PubMed Central
[184] Liu F, You L, Seyler KL, Li X, Yu P, Lin J, et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat Commun. 2016;7:1–6.10.1038/ncomms12357Suche in Google Scholar PubMed PubMed Central
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Reviews
- Non-collinear magnetism & multiferroicity: the perovskite case
- Fluorescent styryl chromophores with rigid (pyrazole) donor and rigid (benzothiophenedioxide) acceptor – complete density functional theory (DFT), TDDFT and nonlinear optical study
- Investigating the biological actions of some Schiff bases using density functional theory study
- Traditional uses, biological activities, and phytochemicals of Lecaniodiscus cupanioides: a review
- Protein modeling
- Advancements in cancer chemotherapy
- Synthesis of magnetic ferrogels: a tool-box approach for finely tuned magnetic- and temperature-dependent properties
Artikel in diesem Heft
- Frontmatter
- Reviews
- Non-collinear magnetism & multiferroicity: the perovskite case
- Fluorescent styryl chromophores with rigid (pyrazole) donor and rigid (benzothiophenedioxide) acceptor – complete density functional theory (DFT), TDDFT and nonlinear optical study
- Investigating the biological actions of some Schiff bases using density functional theory study
- Traditional uses, biological activities, and phytochemicals of Lecaniodiscus cupanioides: a review
- Protein modeling
- Advancements in cancer chemotherapy
- Synthesis of magnetic ferrogels: a tool-box approach for finely tuned magnetic- and temperature-dependent properties