Abstract
Proteins are essential and versatile polymers consisting of sequenced amino acids that often possess an organized three-dimensional arrangement, (a result of their monomeric composition), which determines their biological role in cellular function. Proteins are involved in enzymatic catalysis; they participate in genetic information decoding and transmission processes, in cell recognition, in signaling, and transport of substances, in regulation of intra and extracellular conditions, and other functions.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Campbell, MK. Bioquímica, 3a ed. Porto Alegre: Artmed; 2006.Suche in Google Scholar
2. Nelson, DL, Cox, MM. Princípios de Bioquímica de Lehninger, 6a ed. Porto Alegre: Artmed; 2014.Suche in Google Scholar
3. Voet, D, Voet, JG. Bioquímica, 4a ed. Porto Alegre: Artmed; 2013.Suche in Google Scholar
4. Pantazes, RJ, Grisewood, MJ, Maranas, CD. Recent advances in computational protein design. Curr Opin Struc Biol 2011;21:467–72. https://doi.org/10.1016/j.sbi.2011.04.005.Suche in Google Scholar PubMed
5. Khoury, GA, Smadbeck, J, Kieslich, CA, Floudas, CA. Protein folding and de novo protein design for biotechnological applications. Trends Biotechnol 2014;32:99–109. https://doi.org/10.1016/j.tibtech.2013.10.008.Suche in Google Scholar PubMed PubMed Central
6. Pande, VS, Grosberg, AY, Tanaka, T, Rokhsar, DS. Pathways for protein folding: is a new view needed?. Curr Opin Struc Biol 1998;8:68–79. https://doi.org/10.1016/s0959-440x(98)80012-2.Suche in Google Scholar PubMed
7. Daggett, V, Fersht, AR. Is there a unifying mechanism for protein folding?. Trends Biochem Sci 2003;28:18–25. https://doi.org/10.1016/s0968-0004(02)00012-9.Suche in Google Scholar PubMed
8. Onuchic, JN, Wolynes, PG. Theory of protein folding. Curr Opin Struc Biol 2004;14:70–5. https://doi.org/10.1016/j.sbi.2004.01.009.Suche in Google Scholar PubMed
9. Krishna, MM, Englander, SW. A unified mechanism for protein folding: predetermined pathways with optional errors. Protein Sci 2007;16:449–64. https://doi.org/10.1110/ps.062655907.Suche in Google Scholar PubMed PubMed Central
10. Karplus, M. Behind the folding funnel diagram. Nat Chem Biol 2011;17:401–4. https://doi.org/10.1038/nchembio.565.Suche in Google Scholar PubMed
11. Piana, S, Klepeis, JL, Shaw, DE. Assessing the accuracy of physical models used in protein-folding simulations: quantitative evidence from long molecular dynamics simulations. Curr Opin Struc Biol 2014;24:98–105. https://doi.org/10.1016/j.sbi.2013.12.006.Suche in Google Scholar PubMed
12. Pirogova, E, Istivan, T. Toward development of novel peptide-based cancer therapeutics: computational design and experimental evaluation. In: Wang, X, editor. Bioinformatics of human proteomics Springer; 2013:103–26 pp.10.1007/978-94-007-5811-7_5Suche in Google Scholar
13. Dantzer, J, Moad, C, Heiland, R, Mooney, S. MutDB services: interactive structural analysis of mutation data. Nucleic Acids Res 2005;33:W311–4. https://doi.org/10.1093/nar/gki404.Suche in Google Scholar PubMed PubMed Central
14. Pinto, JR, Parvatiyar, MS, Jones, MA, Liang, J, Ackerman, MJ, Potter, JD. A functional and structural study of troponin C mutations related to hypertrophic cardiomyopathy. J Biol Chem 2009;284:19090–100. https://doi.org/10.1074/jbc.m109.007021.Suche in Google Scholar
15. Hicks, S, Wheeler, DA, Plon, SE, Kimmel, M. Prediction of missense mutation functionality depends on both the algorithm and sequence alignment employed. Hum Mutat 2011;32:661–8. https://doi.org/10.1002/humu.21490.Suche in Google Scholar PubMed PubMed Central
16. Melvin, RG, Katewa, SD, Ballard, JWO. A candidate complex approach to study functional mitochondrial DNA challenges: sequence variation and quaternary structure modeling of Drosophila simulans cytochrome c oxidase. J Mol Evol 2008;66:232–42. https://doi.org/10.1007/s00239-008-9078-4.Suche in Google Scholar PubMed
17. Van Zundert, GCP, Rodrigues, JPGLM, Trellet, M, Schmitz, C, Kastritis, PL, Karaca, E, et al.. The HADDOCK2.2 Web Server: user-friendly integrative modeling of biomolecular complexes. J Mol Biol 2016;428:720–5. https://doi.org/10.1016/j.jmb.2015.09.014.Suche in Google Scholar PubMed
18. Rodrigues, JPGLM, Bonvin, AMJJ. Integrative computational modeling of protein-protein interactions. FEBS J 2014;281:1988–2003. https://doi.org/10.1111/febs.12771.Suche in Google Scholar PubMed
19. Rodrigues, JPGLM, Melquiond, ASJ, Karaca, E, Trellet, M, Van Dijk, M, Van Zundert, GCP, et al.. Defining the limits of homology modeling in information-driven protein docking. Proteins 2013;81:2119–28. https://doi.org/10.1002/prot.24382.Suche in Google Scholar PubMed
20. Haas, J, Roth, S, Arnold, K, Kiefer, F, Schmidt, T, Bordoli, L, et al.. The protein model portal – a comprehensive resource for protein structure and model information. Database 2013;2013:1–8. https://doi.org/10.1093/database/bat031.Suche in Google Scholar PubMed PubMed Central
21. Drexler, KE. Molecular engineering: an approach to the development of general capabilities for molecular manipulation. Proc Natl Acad Sci USA 1981;78:5275–8. https://doi.org/10.1073/pnas.78.9.5275.Suche in Google Scholar PubMed PubMed Central
22. Pablo, C. Molecular technology. Designing proteins and peptides. Nature 1983;301:200.10.1038/301200a0Suche in Google Scholar PubMed
23. Basu, K, Campbell, RL, Guo, S, Sun, T, Davies, PL. Modeling repetitive, non-globular proteins. Protein Sci 2016;25:946–58. https://doi.org/10.1002/pro.2907.Suche in Google Scholar PubMed PubMed Central
24. Sali, A, Blundell, TL. Comparative protein modeling by satisfaction of special restraints. J Mol Biol 1993;234:779–815. https://doi.org/10.1006/jmbi.1993.1626.Suche in Google Scholar PubMed
25. Baker, D, Sali, A. Protein structure prediction and structural genomics. Science 2001;294:93–6. https://doi.org/10.1126/science.1065659.Suche in Google Scholar PubMed
26. Schwede, T, Sali, A, Honig, B, Levitt, M, Berman, HM, Jones, D, et al.. Outcome of a workshop on applications of protein models in biomedical research. Structure 2009;17:151–9. https://doi.org/10.1016/j.str.2008.12.014.Suche in Google Scholar PubMed PubMed Central
27. Mariani, V, Kiefer, F, Schmidt, T, Haas, J, Schwede, T. Assessment of template based protein structure predictions in CASP9. Proteins 2011;79:37–58. https://doi.org/10.1002/prot.23177.Suche in Google Scholar PubMed
28. Guex, N, Peitsch, MC, Schwed, T. Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: a historical perspective. Electrophoresis 2009;30:S162–73. https://doi.org/10.1002/elps.200900140.Suche in Google Scholar PubMed
29. Zhang, Y, Thiele, I, Weekes, D, Li, Z, Jaroszewski, L, Ginalski, K, et al.. Three-dimensional structural view of the central metabolic network of Thermotoga maritima. Science 2009;325:1544–9. https://doi.org/10.1126/science.1174671.Suche in Google Scholar PubMed PubMed Central
30. Berman, HM, Westbrook, J, Feng, Z, Gilliland, G, Bhat, TN, Weissig, H, et al.. The protein data bank. 1999-. ITCr; 2006:675–84 pp.10.1107/97809553602060000722Suche in Google Scholar
31. Schwede, T, Kopp, J, Guex, N, Peitsch, MC. SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 2003;31:3381–5. https://doi.org/10.1093/nar/gkg520.Suche in Google Scholar PubMed PubMed Central
32. Bordoli, L, Kiefer, F, Arnold, K, Benkert, P, Battey, J, Schwede, T. Protein structure homology modeling using SWISS-MODEL workspace. Nat Protoc 2009;4:1–13. https://doi.org/10.1038/nprot.2008.197.Suche in Google Scholar PubMed
33. Berman, HM, Kleywegt, GJ, Nakamura, H, Markley, JL. How community has shaped the Protein Data Bank. Structure 2013;21:1485–91. https://doi.org/10.1016/j.str.2013.07.010.Suche in Google Scholar PubMed PubMed Central
34. Finn, RD, Bateman, A, Clements, J, Coggill, P, Eberhardt, RY, Eddy, SR, et al.. Pfam: the protein families database. Nucleic Acids Res 2014;42:222–30. https://doi.org/10.1093/nar/gkt1223.Suche in Google Scholar PubMed PubMed Central
35. Biasini, M, Bienert, S, Waterhouse, A, Arnold, K, Studer, G, Schmidt, T, et al.. SWISS-MODEL: modeling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 2014;42:W252–8. https://doi.org/10.1093/nar/gku340.Suche in Google Scholar PubMed PubMed Central
36. Zardecki, C, Dutta, S, Goodsell, DS, Voigt, M, Burley, SK. RCSB Protein Data Bank: a resource for chemical, biochemical, and structural explorations of large and small biomolecules. J Chem Educ 2016;93:569–75. https://doi.org/10.1021/acs.jchemed.5b00404.Suche in Google Scholar
37. Berman, HM, Westbrook, J, Feng, Z, Gilliland, G, Bhat, TN, Weissig, H, et al.. The Protein Data Bank. Nucleic Acids Res 2000;28:235–42. https://doi.org/10.1093/nar/28.1.235.Suche in Google Scholar PubMed PubMed Central
38. Arnold, K, Bordoli, L, Kopp, J, Schwede, T. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 2006;22:195–201. https://doi.org/10.1093/bioinformatics/bti770.Suche in Google Scholar PubMed
39. Pettersen, EF, Goddard, TD, Huang, CC, Couch, GS, Greenblatt, DM, Meng, EC, et al.. UCSF Chimera – a visualization system for exploratory research and analysis. J Comput Chem 2004;25:1605–12. https://doi.org/10.1002/jcc.20084.Suche in Google Scholar PubMed
40. DeLano, W. The PyMOL molecular graphics system [www.pymol.org] Available from: http://www.pymol.org [Accessed 22 Sep 2017].Suche in Google Scholar
41. Galperin, MY, Rigden, DJ, Fernandez-Suarez, XM. The 2015 Nucleic Acids Research Database Issue and molecular biology database collection. Nucleic Acids Res 2015;43:1–5. https://doi.org/10.1093/nar/gku1241.Suche in Google Scholar PubMed PubMed Central
42. Petrey, D, Honig, B. Structural bioinformatics of the interactome. Annu Rev Biophys 2014;43:193–210. https://doi.org/10.1146/annurev-biophys-051013-022726.Suche in Google Scholar PubMed PubMed Central
43. MacCallum, JL, Pérez, A, Schnieders, MJ, Hua, L, Jacobson, MP, Dill, KA. Assessment of protein structure refinement in CASP9. Proteins 2011;79:74–90. https://doi.org/10.1002/prot.23131.Suche in Google Scholar PubMed PubMed Central
44. Kryshtafovych, A, Fidelis, K, Moult, J. CASP9 results compared to those of previous casp experiments. Proteins 2011;79:196–207. https://doi.org/10.1002/prot.23182.Suche in Google Scholar PubMed PubMed Central
45. Verli, H. Bioinformática: da Biologia à flexibilidade molecular, 1a Ed. São Paulo: SBBq; 2014.Suche in Google Scholar
46. Kelley, LA, Mezulis, S, Yates, CM, Wass, MN, Sternberg, MJE. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 2015;10:845–58. https://doi.org/10.1038/nprot.2015.053.Suche in Google Scholar PubMed PubMed Central
47. Bradley, P, Misura, KM, Baker, D. Toward high-resolution de novo structure prediction for small proteins. Science 2005;309:1868–71. https://doi.org/10.1126/science.1113801.Suche in Google Scholar PubMed
48. Raval, A, Piana, S, Eastwood, MP, Dror, RO, Shaw, DE. Refinement of protein structure homology models via long, all-atom molecular dynamics simulations. Proteins 2012;80:2071–9. https://doi.org/10.1002/prot.24098.Suche in Google Scholar PubMed
49. Rajgaria, R, Wei, Y, Floudas, CA. Contact prediction for beta and alpha-beta proteins using integer linear optimization and its impact on the first principles 3D structure prediction method ASTRO-FOLD. Proteins 2010;78:1825–46. https://doi.org/10.1002/prot.22696.Suche in Google Scholar PubMed PubMed Central
50. Overington, JP, Al-Lazikani, B, Hopkins, AL. How many drug targets are these?. Nat Rev Drug Discov 2006;5:993–6. https://doi.org/10.1038/nrd2199.Suche in Google Scholar PubMed
51. Janson, G, Zhang, C, Prado, MG, Paiardini, A. PyMod 2.0: improvements in protein sequence-structure analysis and homology modeling within PyMOL. Bioinformatics 2016;33:444–6.10.1093/bioinformatics/btw638Suche in Google Scholar PubMed
52. Altschul, SF, Madden, TL, Schäffer, AA, Zhang, J, Zhang, Z, Miller, W, et al.. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997;25:3389–402. https://doi.org/10.1093/nar/25.17.3389.Suche in Google Scholar PubMed PubMed Central
53. Consortium UniProt. Reorganizing the protein space at the Universal Protein Resource (UniProt). Nucleic Acids Res 2012;40:71–5.10.1093/nar/gkr981Suche in Google Scholar PubMed PubMed Central
54. Bernstein, FC, Koetzle, TF, Williams, GJ, Meyer, EF, Brice, MD, Rodgers, JR, et al.. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol 1977;112:535–42. https://doi.org/10.1016/s0022-2836(77)80200-3.Suche in Google Scholar PubMed
55. Yang, J, Yan, R, Roy, A, Xu, D, Poisson, J, Zhang, Y. The I-TASSER Suite: protein structure and function prediction. Nat Methods 2015;12:7–8. https://doi.org/10.1038/nmeth.3213.Suche in Google Scholar PubMed PubMed Central
56. Moult, J, Fidelis, K, Kryshtafovych, A, Schwede, T, Tramontano, A. Critical assessment of methods of protein structure prediction (CASP) – round x. Proteins 2014;82:1–6. https://doi.org/10.1002/prot.24452.Suche in Google Scholar PubMed PubMed Central
57. MacCallum, JL, Hua, L, Schnieders, MJ, Pande, VS, Jacobson, MP, Dill, KA. Assessment of the protein-structure refinement category in CASP8. Proteins 2009;77:66–80. https://doi.org/10.1002/prot.22538.Suche in Google Scholar PubMed PubMed Central
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Reviews
- Non-collinear magnetism & multiferroicity: the perovskite case
- Fluorescent styryl chromophores with rigid (pyrazole) donor and rigid (benzothiophenedioxide) acceptor – complete density functional theory (DFT), TDDFT and nonlinear optical study
- Investigating the biological actions of some Schiff bases using density functional theory study
- Traditional uses, biological activities, and phytochemicals of Lecaniodiscus cupanioides: a review
- Protein modeling
- Advancements in cancer chemotherapy
- Synthesis of magnetic ferrogels: a tool-box approach for finely tuned magnetic- and temperature-dependent properties
Artikel in diesem Heft
- Frontmatter
- Reviews
- Non-collinear magnetism & multiferroicity: the perovskite case
- Fluorescent styryl chromophores with rigid (pyrazole) donor and rigid (benzothiophenedioxide) acceptor – complete density functional theory (DFT), TDDFT and nonlinear optical study
- Investigating the biological actions of some Schiff bases using density functional theory study
- Traditional uses, biological activities, and phytochemicals of Lecaniodiscus cupanioides: a review
- Protein modeling
- Advancements in cancer chemotherapy
- Synthesis of magnetic ferrogels: a tool-box approach for finely tuned magnetic- and temperature-dependent properties