Startseite Naturwissenschaften Slime control in paper mill using biological agents as biocides
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Slime control in paper mill using biological agents as biocides

  • Puneet Pathak EMAIL logo , Varun Kumar , Nishi Kant Bhardwaj und Chhavi Sharma
Veröffentlicht/Copyright: 30. April 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The environmental conditions of paper mills are suitable for the growth of slime-forming microorganisms due to the supply of nutrients, favorable temperature, and moisture. The slime formation causes the spoilage of raw materials & additives, breaks in the paper during papermaking, loss of production, reduces the hygienic quality of the end products, produces off-spec and rejected products, creates microbiological corrosion, and produces harmful gases. The main microorganisms are Bacteria (mainly Bacillus spp., Achromobacter spp., Enterobacter spp., Pseudomonas spp., Clostridium, etc.), Fungi (Aspergillus, Penicillium, Saccharomyces, etc.), and Algae. Besides the use of conventional toxic chemical biocides or slimicides, slime formation can also be controlled in an eco-friendly way using enzymes, bacteriophages, biodispersants, and biocontrol agents alone or along with biocides to remove the slime. Enzymes have shown their effectiveness over conventional chemicals due to nontoxic and biodegradable nature to provide clean and sustainable technology. Globally enzymes are being used at some of the paper mills and many enzymatic products are presently being prepared and under the trail at laboratory scale. The specificity of enzymes to degrade a specific substrate is the main drawback of controlling the mixed population of microorganisms present in slime. The enzyme has the potential to provide the chemical biocide-free solution as a useful alternative in the future with the development of new technologies. Microorganisms control in the paper mill may appear as a costly offer but the cost of uncontrolled microbial growth can be much higher leading to slime production and large economic drain.

References

1. Hamm U, Schabel S. Effluent-free papermaking: industrial experiences and latest developments in the German paper industry. Water Sci Technol. 2007;55:205–11.10.2166/wst.2007.230Suche in Google Scholar

2. Blanco A. Microbiology in papermaking, recent res. Devel Appl Microbiol Biotechnol. 2003;1:87–134.Suche in Google Scholar

3. Johnsrud S. Paper mill micro-organisms. Investigacion Y Tecnica Del Papel. 2000;146:499–508.Suche in Google Scholar

4. Simões M, Simões LC, Vieira MJ. A review of current and emergent biofilm control strategies. Lwt-Food Sci Technol. 2010;43:573–83.10.1016/j.lwt.2009.12.008Suche in Google Scholar

5. Flemming HC, Meier M, Schild T. Mini-review: microbial problems in paper production. Biofouling. 2013;29:683–96. DOI:10.1080/08927014.2013.798865.Suche in Google Scholar

6. Hassler T, Lindberg M, Schenker A. Slime and again. New knowledge and regulations spark the need for new ways to inhibit microbial growth. Paper 360°. 2007;8:28–32.Suche in Google Scholar

7. Kulkarni AG, Mathur RM, Jain RK, Gupta A. Microbial slime in papermaking operations-problems, monitoring and control practices. IPPTA. 2003;15:121–6.Suche in Google Scholar

8. Breyers JD, Ratner JP. Bioinspired implant materials befuddle bacteria. ASM News. 2004;70:232–7.Suche in Google Scholar

9. Grant R. Non-biological methods of biofilm control. Pap Technol. 2001;42:41–5.10.1111/an.2001.42.2.41.3Suche in Google Scholar

10. Flemming HC. Biofouling in water systems–cases, causes and countermeasures. Appl Microbial Biotechnol. 2002;59:629–40.10.1007/s00253-002-1066-9Suche in Google Scholar

11. Neu TR, Swerhone GD, Lawrence JR. Assessment of lectin-binding analysis for in situ detection of glycoconjugates in biofilm systems. Microbiology. 2001;147:299–313.10.1099/00221287-147-2-299Suche in Google Scholar

12. Oyass K. Closed system: more focus on slime problem. Skogindustri. 2001;55:20.Suche in Google Scholar

13. Bajpai P. Biotechnology for pulp and paper processing. New York: Springer Science & Business Media, 2012.10.1007/978-1-4614-1409-4Suche in Google Scholar

14. Brewer D. Studies on slime accumulations in pulp and paper mills. IV. Fungal floras of slime accumulations. Tappi J. 1960;43:609–11.Suche in Google Scholar

15. Sanborn JR Slime control in pulp and paper industry. Pap Trade J. 1965;8:42–49.Suche in Google Scholar

16. Eveleigh DE, Brewer D. Studies on slime accumulation in pulp and paper mills. VI. Isolation of thermophilic and thermotolerant fungi from paper mills. Can J Bot. 1963;41:1377–82.10.1139/b63-119Suche in Google Scholar

17. Verma P, Bhardwaj NK, Vardhan R. Microbial life in paper machine: prevention and control. IPPTA. 2014;26:44–8.Suche in Google Scholar

18. Nason HK, Shumard RS, Fleming JD. Microbiology of pulp and white water systems. Pap Trade J. 1940;110:13.Suche in Google Scholar

19. Baker ER. Using chlorine dioxide for slime control in alkaline paper machine systems. Tappi J. 1981;64:91–3.Suche in Google Scholar

20. Bendt HT. Slime control: a better way. Pulp Pap. 1971;45:129–33.Suche in Google Scholar

21. Farkes JP, Jones EH, Ormerod D. A simple, rapid means for detecting excessive biological activity in pulp and paper mill systems. Tappi J. 1987;70:165–8.Suche in Google Scholar

22. Geller AN. Slime control in closed water systems without hazardous chemicals. In: Proceedings of the European conference on pulp and paper research: the present and the future. Stockholm, Sweden, 1996:288–95.Suche in Google Scholar

23. Gould I. Alternative systems for slime control. In: Chemistry of papermaking conference. Manchester, UK, 1992:13.Suche in Google Scholar

24. Lindvall O. A clean paper machine has seldom microbiological problems. Invest Technol Pap. 2000;37:689–92.Suche in Google Scholar

25. Goldstein SD. Some overlooked fundamentals of slime control. Appita. 1987;40:213–6.Suche in Google Scholar

26. Kolari M, Nuutinen J, Rainey FA, Salkinoja-Salonen MS. Colored moderately thermophilic bacteria in paper-machine biofilms. J Ind Microbial Biotechnol. 2003;30:225–38.10.1007/s10295-003-0047-zSuche in Google Scholar

27. Lustenberger M, Deuber R. On the environmental friendliness of antislime agents in the paper industry. Wochenbl Papierfabr. 1991;119:204–6.Suche in Google Scholar

28. Patterson JV. 1986. Enzymes for improved deposit control. Papermaking chemical processing aids. TAPPI Semin. Notes. 23–7.Suche in Google Scholar

29. Blanco A, Negro C, Monte C, Tijero J. Overview of two major deposit problems in recycling: slime and stickies. Part 1: slime problems in recycling. Prog Pap Recycle. 2002;11:14–25.Suche in Google Scholar

30. Goldstein SD. Slime and deposit control in alkaline papermaking systems. In: Proceedings of the TAPPI, 1983 papermakers conference. Portland, OR:55–61.Suche in Google Scholar

31. Nelson TR. Appleton papers finds chlorine dioxide to be an alternative to cvonventional biocides in alkaline systems. Tappi J. 1982;65:69–73.Suche in Google Scholar

32. Blanco MA, Negro C, Gaspar I, Tijero J. Slime problems in the paper and board industry. Appl Microbiol Biotechnol. 1996;46:203–8.10.1007/s002530050806Suche in Google Scholar

33. Bott TR. Techniques for reducing the amount of biocide necessary to counteract the effects of biofilm growth in cooling water systems. Appl Therm Eng. 1998;18:1059–66.10.1016/S1359-4311(98)00017-9Suche in Google Scholar

34. Johnsrud SC. Biotechnology for solving slime problems in the pulp and paper industry. In Eds: Eriksson et al.: Biotechnology in the pulp and paper industry. Berlin, Heidelberg: Springer, 1997:311–28.10.1007/BFb0102079Suche in Google Scholar

35. Schenker AP, Gould IM. Modern microbiological control in closed recycled paper systems. In: In COST Action E1 Conference Improvement of recyclability and the recycling paper industry of the future. Las Palmas, 1996:24–6.Suche in Google Scholar

36. Schenker AP, Singleton FL, Davis CK. Non biocidal programmes for biofilm control in paper machine circuits. In: EUCEPA symposium 1998-chemistry in papermaking. Florence, Italy, 1998:331–54Suche in Google Scholar

37. Schenker AP. Biodispersion-Microbiological growth control of the future. Svensk Papperstidning-Nordisk Cellulosa. 1996;99:24–5.Suche in Google Scholar

38. Van Haute E. Biodispersant and enzyme treatments. A new approach to deposit control on paper machines. In: Appita annual conference, 26th international annual symposium. Bled, Slovenia. vol. 2. 1999:575–9.Suche in Google Scholar

39. Cotrino JC, Ordonez V. Green technology: last developments in enzymes for paper recycling. PaperCon. 2011:1630–9. https://www.tappi.org/content/events/11papercon/documents/287.223.pdf.Suche in Google Scholar

40. Johansen C, Falholt P, Gram L. Enzymatic removal and disinfection of bacterial biofilms. Appl Environ Microbiol. 1997;63:3724–8.10.1128/aem.63.9.3724-3728.1997Suche in Google Scholar

41. Bajpai P, Bajpai PK. Status of biotechnology in pulp and paper industry. Pap Int. 2001;5:29–35.Suche in Google Scholar

42. Benard D. More production by using enzymes. Wochenbl Papierfabr. 2010;138:838–9.Suche in Google Scholar

43. Buchert J, Verhoef R, Schols H, Ratto M, Blanco A, Craperi D, et al. Development of enzymatic slime control approaches for paper machines. In: 9th International Conference on Biotechnology in the Pulp and Paper Industry, Book of Abstracts, Durban, South Africa. 10–14 Oct 2004:31–2.Suche in Google Scholar

44. Loosvelt I, Datweiler C. Enzymatic products: uncharted territory for the pulp and paper industry. In: PTS pulp technology symposium. Dresden, Germany, 2007:27–8.Suche in Google Scholar

45. Paice M, Zhang X. Find their niche. Pulp Pap Can. 2005;106:17–20.Suche in Google Scholar

46. Rivera F, Jara A. Enzyme boilout in paper machines. Cellul Pap (Chile). 2007;23:14–17.Suche in Google Scholar

47. Xu H Enzymes: a versatile tool to alter fibre and paper performance. In: Scientific and technical advances in refining and mechanical pulping. Barcelona, Spain, 2005:11. Impact forum: fibre engineering, Paper 6, 11 pp.Suche in Google Scholar

48. Kristensen JB, Meyer RL, Laursen BS, Shipovskov S, Besenbacher F, Poulsen CH. Antifouling enzymes and the biochemistry of marine settlement. Biotechnol Adv. 2008;26:471–81.10.1016/j.biotechadv.2008.05.005Suche in Google Scholar

49. Longhi C, Scoarughi GL, Poggiali F, Cellini A, Carpentieri A, Seganti L, et al. Protease treatment affects both invasion ability and biofilm formation in Listeria monocytogenes. Microb Pathog. 2008;45:45–52.10.1016/j.micpath.2008.01.007Suche in Google Scholar

50. Oulahal N, Martial-Gros A, Bonneau M, Blum LJ. Removal of meat biofilms from surfaces by ultrasounds combined with enzymes and/or a chelating agent. Innovative Food Sci Emerg Technol. 2007;8:192–6.10.1016/j.ifset.2006.10.001Suche in Google Scholar

51. Colasurdo AR, Wilton J. Sonoco utilizes enzymes to control problems with slime and deposits. Pulp Pap. 1988;62:89–93.Suche in Google Scholar

52. Grussenmeyer H, Wollenweber HW. Microbial slime control in paper machine circuit waters using an enzyme preparation-part I. Wochenbl Papierfabr. 1992;22:915–7.Suche in Google Scholar

53. Grussenmeyer H, Wollenweber HW. Microbial slime control in paper machine circuit waters: part 2. Wochenbl Papierfabr. 1993;121:541–4.Suche in Google Scholar

54. Hatcher HJ. Enzymatic control of biological deposits in papermaking. Biotechnol Adv. 1984;2:309–17.10.1016/0734-9750(84)90011-9Suche in Google Scholar

55. Verhoef R, Schols HA, Blanco A, Siika-aho M, Rättö M, Buchert J, et al. Sugar composition and FT-IR analysis of exopolysaccharides produced by microbial isolates from paper mill slime deposits. Biotechnol Bioeng. 2005;91:91–105.10.1002/bit.20494Suche in Google Scholar PubMed

56. Bajpai P. Application of enzymes in the pulp and paper industry. Biotechnol Prog. 1999;15:147–57.10.1021/bp990013kSuche in Google Scholar PubMed

57. Ferris FG, Fyfe WS, Witten T, Schultze S, Beveridge TJ. Effect of mineral substrate hardness on the population density of epilithic microorganisms in two Ontario rivers. Can J Microbiol. 1989;35:744–7.10.1139/m89-122Suche in Google Scholar

58. Chaudhary A. Study and Control of Biological Slimes in a Paper Mill. (Ph.D. thesis) Panjab University, 1992. http://hdl.handle.net/10603/88565.Suche in Google Scholar

59. Bajpai P. Pulp and paper industry: Microbiological issues in papermaking. USA: Elsevier, 2015.10.1016/B978-0-12-803408-8.00002-0Suche in Google Scholar

60. Marcato-Romain CE, Pechaud Y, Paul E, Girbal-Neuhauser E, Dossat-Letisse V. Removal of microbial multi-species biofilms from the paper industry by enzymatic treatments. Biofouling. 2012;28:305–14.10.1080/08927014.2012.673122Suche in Google Scholar PubMed

61. Torres CE, Negro C, Fuente E, Blanco A. Enzymatic approaches in paper industry for pulp refining and biofilm control. Appl Microbiol Biotechnol. 2012;96:327–44.10.1007/s00253-012-4345-0Suche in Google Scholar PubMed

62. Borges A, Meireles A, Mergulhão F, Melo L, Simões M. Biofilm control with enzymes. In Eds. Simões M., Borges A. and Simões L. C.,: Recent trends in biofilm science and technology, Academic Press, Elsevier, United Kingdom https://doi.org/10.1016/B978-0-12-819497-3.00011-8. 2020:249–71.10.1016/B978-0-12-819497-3.00011-8Suche in Google Scholar

63. Baker P, Hill PJ, Snarr BD, Alnabelseya N, Pestrak MJ, Lee MJ, et al. Exopolysaccharide biosynthetic glycoside hydrolases can be utilized to disrupt and prevent Pseudomonas aeruginosa biofilms. Sci Adv. 2016;2:e1501632.10.1126/sciadv.1501632Suche in Google Scholar PubMed PubMed Central

64. Asker D, Awad TS, Baker P, Howell PL, Hatton BD. Non-eluting, surface-bound enzymes disrupt surface attachment of bacteria by continuous biofilm polysaccharide degradation. Biomaterials. 2018;167:168–76.10.1016/j.biomaterials.2018.03.016Suche in Google Scholar PubMed

65. Hogan S, Zapotoczna M, Stevens NT, Humphreys H, O’Gara JP, O’Neill E. Potential use of targeted enzymatic agents in the treatment of Staphylococcus aureus biofilm-related infections. J Hosp Infect. 2017;96:177–82.10.1016/j.jhin.2017.02.008Suche in Google Scholar PubMed

66. Torres CE, Lenon G, Craperi D, Wilting R, Blanco Á. Enzymatic treatment for preventing biofilm formation in the paper industry. Appl Microbiol Biotechnol. 2011;92:95–103.10.1007/s00253-011-3305-4Suche in Google Scholar PubMed

67. Realco. Our Markets. 2016. Belgium. Available at: www.realco.be/en/our-markets. Accessed: 15 Sept 2020.Suche in Google Scholar

68. Novozymes. Biosolutions e Giving You Industrial Efficiency and Product Improvements with Cost Savings. 2019. Denmark. Available at: www.novozymes.com/en/solutions/Pages/default.aspx. Accessed: 15 Sep 2020.Suche in Google Scholar

69. Daignault L, Jones DR. The importance of cleaning and deposit control in improving paper machine efficiency. Pulp Pap Can. 2003;104:T194–T197.Suche in Google Scholar

70. Orndorff SA. Inventor; Westvaco Corp, assignee. Enzymatic catalyzed biocide system. United States patent US 4,370,199. 25 Jan 1983.Suche in Google Scholar

71. Jedrzejas MJ. Structural and functional comparison of polysaccharide-degrading enzymes. Crit Rev Biochem Mol Biol. 2000;35:221–51.10.1080/10409230091169195Suche in Google Scholar PubMed

72. Rättö M, Mustranta A, Siika-aho M. Strains degrading polysaccharides produced by bacteria from paper machines. Appl Microbiol Biotechnol. 2001;57:182–5.10.1007/s002530100729Suche in Google Scholar PubMed

73. Bar-Shimon M, Yehuda H, Cohen L, Weiss B, Kobeshnikov A, Daus A. Characterization of extracellular lytic enzymes produced by the yeast biocontrol agent Candida oleophila. Curr Genet. 2004;45:140–8.10.1007/s00294-003-0471-7Suche in Google Scholar PubMed

74. Nagarajkumar M, Bhaskaran R, Velazhahan R. Involvement of secondary metabolites and extracellular lytic enzymes produced by Pseudomonas fluorescens in inhibition of Rhizoctonia solani, the rice sheath blight pathogen. Microbiol Res. 2004;159:73–81.10.1016/j.micres.2004.01.005Suche in Google Scholar PubMed

75. Shastry S, Prasad MS. Technological application of an extracellular cell lytic enzyme in xanthan gum clarification. Braz J Microbiol. 2005;36:57–62.10.1590/S1517-83822005000100012Suche in Google Scholar

76. Stepnaya OA, Tsfasman IM, Chaika IA, Muranova TA, Kulaev IS. Extracellular yeast-lytic enzyme of the bacterium Lysobacter sp. XL 1. Biochemistry (Moscow). 2008;73:310–4.10.1134/S0006297908030115Suche in Google Scholar

77. Klahre J, Lustenberger M, Flemming HC. Mikrobielle Probleme in der Papierfabrikation. Teil 3. Monitoring. Das Papier (Darmstadt). 1998;52:590–6.Suche in Google Scholar

78. Orgaz B, Kives J, Pedregosa AM, Monistrol IF, Laborda F, SanJosé C. Bacterial biofilm removal using fungal enzymes. Enzym Microb Technol. 2006;40:51–6.10.1016/j.enzmictec.2005.10.037Suche in Google Scholar

79. Orgaz B, Neufeld RJ, SanJose C. Single-step biofilm removal with delayed release encapsulated Pronase mixed with soluble enzymes. Enzym Microb Technol. 2007;40:1045–51.10.1016/j.enzmictec.2006.08.003Suche in Google Scholar

80. Sutherland IW. Polysaccharases for microbial exopolysaccharides. Carbohydr Polym. 1999;38:319–28.10.1016/S0144-8617(98)00114-3Suche in Google Scholar

81. Blankenburg I, Schulte J. An ecological method for slime and deposit control. IPPTA. 1997;11:51–6.Suche in Google Scholar

82. Gould I. Biofilm control through non toxic additives. Papeterie. 1998;221:12–15.Suche in Google Scholar

83. Gould I. Non-biological methods of biofilm control. Pap Technol. 2001;42:41–5.Suche in Google Scholar

84. Pauly D. Studies into the mechanisms of slime formation in water circuits. In PTS symposium interface processes in paperboard manufacturing. Munich, Germany 2001:14Suche in Google Scholar

85. Saner M. Biodeposit control by non-toxic procedures and online monitoring of the biofilms. In: 51st Annual meeting. Grenoble, France, 1998:6.Suche in Google Scholar

86. Wright JB. Significantly reduced toxicity approach to paper machine deposit control. In: Proceedings of Tappi Engineering and Papermakers-Conference. TAPPI PRESS. Atlanta, GA, 1997:1083–8.Suche in Google Scholar

87. Tait K, Skillman LC, Sutherland IW. The efficacy of bacteriophage as a method of biofilm eradication. Biofouling. 2002;18:305–11.10.1080/0892701021000034418Suche in Google Scholar

88. Webb JS, Thompson LS, James S, Charlton T, Tolker-Nielsen T, Koch B, et al. Cell death in Pseudomonas aeruginosa biofilm development. J Bacteriol. 2003;185:4585–92.10.1128/JB.185.15.4585-4592.2003Suche in Google Scholar PubMed PubMed Central

89. Hughes KA, Sutherland IW, Jones MV. Biofilm susceptibility to bacteriophage attack: the role of phage-borne polysaccharide depolymerase. Microbiology. 1998;144:3039–47.10.1099/00221287-144-11-3039Suche in Google Scholar PubMed

90. Araki M, Hosomi M. Using bacteriophage for slime control in the paper mill. Tappi J. 1990;73:155–8.Suche in Google Scholar

91. Hanlon GW, Denyer SP, Olliff CJ, Ibrahim LJ. Reduction in exopolysaccharide viscosity as an aid to bacteriophage penetration through Pseudomonas aeruginosa biofilms. Appl Environ Microbiol. 2001;67:2746–53.10.1128/AEM.67.6.2746-2753.2001Suche in Google Scholar PubMed PubMed Central

92. Sharma M, Ryu JH, Beuchat LR. Inactivation of Escherichia coli O157: H7 in biofilm on stainless steel by treatment with an alkaline cleaner and a bacteriophage. J Appl Microbiol. 2005;99:449–59.10.1111/j.1365-2672.2005.02659.xSuche in Google Scholar PubMed

93. Vaatanen P, Harju-Jeanty P, Oy K, Plants V. A new microbiological method for controlling harmful bacteria in paper making. In: Biotechnology in the Pulp and Paper Industry. The Third International Conference. Stockholm, 16-19 Jun 1986:73–5.Suche in Google Scholar

94. Lu TK, Collins JJ. Dispersing biofilms with engineered enzymatic bacteriophage. Proc Natl Acad Sci USA. 2007;104:11197–202.10.1073/pnas.0704624104Suche in Google Scholar

95. Sillankorva S, Oliveira R, Vieira MJ, Sutherland I, Azeredo J. Bacteriophage Φ S1 infection of Pseudomonas fluorescens planktonic cells versus biofilms. Biofouling. 2004;20:133–8.10.1080/08927010410001723834Suche in Google Scholar

96. Doolittle MM, Cooney JJ, Caldwell DE. Lytic infection of Escherichia coli biofilms by bacteriophage T4. Can J Microbiol. 1995;41:12–18.10.1139/m95-002Suche in Google Scholar

97. Hibma AM, Jassim SA, Griffiths MW. Infection and removal of L-forms of Listeria monocytogenes with bred bacteriophage. Int J Food Microbiol. 1997;34:197–207.10.1016/S0168-1605(96)01190-7Suche in Google Scholar

98. Papaianni M, Cuomo P, Fulgione A, Albanese D, Gallo M, Paris D, et al. Bacteriophages promote metabolic changes in bacteria biofilm. Microorganisms. 2020;8:480.10.3390/microorganisms8040480Suche in Google Scholar PubMed PubMed Central

99. Olofsson AC, Hermansson M, Elwing H. N-acetyl-L-cysteine affects growth, extracellular polysaccharide production, and bacterial biofilm formation on solid surfaces. Appl Environ Microbiol. 2003;69:4814–22.10.1128/AEM.69.8.4814-4822.2003Suche in Google Scholar PubMed PubMed Central

100. Rodrigues L, Van der Mei H, Teixeira JA, Oliveira R. Biosurfactant from Lactococcus lactis 53 inhibits microbial adhesion on silicone rubber. Appl Microbiol Biotechnol. 2004;66:306–11.10.1007/s00253-004-1674-7Suche in Google Scholar PubMed

101. Mireles JR, Toguchi A, Harshey RM. Salmonella enterica serovar Typhimurium swarming mutants with altered biofilm-forming abilities: surfactin inhibits biofilm formation. J Bacteriol. 2001;183:5848–54.10.1128/JB.183.20.5848-5854.2001Suche in Google Scholar PubMed PubMed Central

102. Dufour M, Simmonds RS, Bremer PJ. Development of a laboratory scale clean-in-place system to test the effectiveness of “natural” antimicrobials against dairy biofilms. J Food Prot. 2004;67:1438–43.10.4315/0362-028X-67.7.1438Suche in Google Scholar

103. Gilbert P, Allison DG, McBain AJ. Biofilms in vitro and in vivo: do singular mechanisms imply cross-resistance? J Appl Microbiol. 2002;92:98S-110S.10.1046/j.1365-2672.92.5s1.5.xSuche in Google Scholar

104. Bunnage W, Schenker A. A new biocide for North America. In: Proceedings of the 1995 TAPPI papermakers conference. Atlanta, GA, 1995:189–96.Suche in Google Scholar

105. Chaudhary A, Gupta LK, Gupta JK, Banerjee UC. Control of slime in paper-manufacture. J Ind Microbiol Biotechnol. 1997;18:348–52.10.1038/sj.jim.2900393Suche in Google Scholar

Published Online: 2021-04-30

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 4.2.2026 von https://www.degruyterbrill.com/document/doi/10.1515/psr-2019-0049/html?lang=de
Button zum nach oben scrollen