Abstract
Dyes synthesized by condensation of e. g. 4-N,N-dialkylaminobenzaldehydes, 5-N,N-dialkylamino-2-thiophenaldehydes or 5-N,N-dialkylamino-2-furaldehydes, with open chain active methylene compounds have been given the labels merocyanine, neutrocyanine, methine or styryl dyes. All these classifications are misnomers. In terms of systematic nomenclature, their proper classification is as streptomerocyanine dyes. They are used in textile coloration and in dye diffusion thermal transfer printing (D2T2). Furthermore, they have been investigated for their potential as sensitizer dyes in dye sensitized solar cells (DSSC) and for photorefractive applications.
References
1. Würthner F, Wortmann R, Meerholz K. Chromophore design for photorefractive organic materials. Chem Phys Chem. 2002;3:17.10.1002/1439-7641(20020118)3:1<17::AID-CPHC17>3.0.CO;2-NSearch in Google Scholar
2. Würthner F, Thalacker C, Matschiner R, Lukaszuk K, Wortmann R. Optimization of neutrocyanine chromophores based on five-membered heterocycles for photorefractive applications. Chem Commun. 1998;1739.10.1039/a804168gSearch in Google Scholar
3. Irick G, Straley JM. Yellow to red methine dyes derived from 1,3- indandione. Text Chem Color. 1969;1:178.Search in Google Scholar
4. Berneth H. Methine dyes and pigments. In: Elvers B, editor. Ullmann´s encyclopedia of industrial chemistry. Weinheim: Wiley-VCH, 2012.Search in Google Scholar
5. Tyutyulkov N, Fabian J, Mehlhorn A, Dietz F, Tadjer A. Polymethine dyes – structure and properties. Sofia: St Kliment Ohridski University Press, 1991.Search in Google Scholar
6. Mustroph H. Polymethine dyes. Phys Sci Rev. 2020;5. DOI:10.1515/psr-2019-0084.Search in Google Scholar
7. Pauling L. A theory of the colors of dyes. Proc Natl Acad Sci. 1939;25:577.10.1073/pnas.25.11.577Search in Google Scholar
8. Förster T. Quantenmechanische Rechnungen zur Theorie der organischen Farbstoffe. Z Phys Chem B. 1940;47:245.10.1515/zpch-1940-4713Search in Google Scholar
9. Herzfeld KF, Sklar AL. Colour and constitution of polymethine dyes. Rev Mod Phys. 1942;14:294.10.1103/RevModPhys.14.294Search in Google Scholar
10. Gregory P. Classification of dyes by chemical structure. In: Waring DR, Hallas G, editors. The chemistry and application of dyes. New York: Plenum Press; 1990.10.1007/978-1-4684-7715-3_2Search in Google Scholar
11. Hamer FM, Winton BS, Trimethincyanine A. a trimethinoxonol and some compounds related to trimethinoxonols; some di- and tetra-methinmerocyanines. J Chem Soc. 1949;1126.10.1039/jr9490001126Search in Google Scholar
12. Mustroph H. Merocyanine dyes. Phys Sci Rev 2021;6:accepted. DOI:10.1515/psr-2020-0145.Search in Google Scholar
13. Radeglia R. 13C-NMR-Spektroskopische Untersuchungen der Elektronenstruktur von einfachen Polymethinen. 13C-Chemische Verschiebungen, 13C-H- Kopplungskonstanten und Eu(DPM)3-Verschiebungseffekte. J Prakt Chem. 1973;315:1121.10.1002/prac.19733150616Search in Google Scholar
14. Scheibe G, Seiffert W, Hohlneicher G, Jutz C, Springer HJ. Trans- Protonenkopplungskonstanten und C–C-Abstände bei Cyaninen, Merocyaninen und Olefinen. Tetrahedron Lett. 1966;5053.10.1016/S0040-4039(00)90326-5Search in Google Scholar
15. Radeglia R, Dähne S. Lösungsmittelinduzierte Elektronenverschiebungen in einfachen Merocyanin-Farbstoffen. J Mol Struct. 1970;5:399.10.1016/0022-2860(70)80045-XSearch in Google Scholar
16. Scheibe P, Schneider S, Dörr F, Daltrozzo E. Spektroskopische Untersuchungen an Merocyaninen I. UV- und NMR-Spektren von malodinitril- substituierten vinylogen Säureamiden. Ber Bunsenges Phys Chem. 1976;80:630.10.1002/bbpc.19760800711Search in Google Scholar
17. Blanchard-Desce M, Alain V, Bedworth PV, Marder SR, Fort A, Runser C, et al. Large quadratic hyperpolarizabilities with donor-acceptor polyenes exhibiting optimum bond length alternation: correlation between structure and hyperpolarizability. Chem Eur J. 1997;3:1091.10.1002/chem.19970030717Search in Google Scholar
18. Mustroph H, Reiner K, Senns B, Mistol J, Ernst S, Keil D, et al. The effects of substituents and solvents on the ground-state π-electronic structure and electronic absorption spectra of a series of model merocyanine dyes and their theoretical interpretation. Chem Eur J. 2012;18:8140.10.1002/chem.201101830Search in Google Scholar PubMed
19. Brooker LG. Some recent developments in the chemistry of photographic sensitizing dyes. Experientia Suppl. 1955;2:229.Search in Google Scholar
20. König W. Über den Begriff der „Polymethinfarbstoffe“ und eine davon ableitbare allgemeine Farbstoff-Formel als Grundlage einer neuen Systematik der Farbenchemie. J Prakt Chem. [2] 1926;112: 1.10.1002/prac.19261120101Search in Google Scholar
21. Hallas G. Effects of extended conjugation in some basic dyes. J Soc Dyers Colourists. 1970;86:237.10.1111/j.1478-4408.1970.tb02953.xSearch in Google Scholar
22. Griffiths J. Colour and constitution of organic molecules. London: Academic Press, 1976.Search in Google Scholar
23. Fabian J, Hartmann H. Light absorption of organic colorants. Berlin: Springer, 1980.10.1007/978-3-642-67587-4Search in Google Scholar
24. Mustroph H, Ernst S, Senns B, Towns AD. Molecular electronic spectroscopy: from often neglected fundamental principles to limitations of state- of-the-art computational methods. Color Technol. 2015;131:9.10.1111/cote.12120Search in Google Scholar
25. Mustroph H. Dyes: quantum chemical calculation of electronic spectra. Phys Sci Rev. 2019;4. DOI:10.1515/psr-2019-0040.Search in Google Scholar
26. Mustroph H, Towns A. Fine structure in electronic spectra of cyanine dyes: are sub-bands largely determined by a dominant vibration or a collection of singly- excited vibrations? Chem Phys Chem. 2018;19:1016.10.1002/cphc.201701300Search in Google Scholar
27. Malhotra SS, Whiting MC. Researches on polyenes. Part VII. The preparation and electronic absorption spectra of homologous series of simple cyanines, merocyanines, and oxonols. J Chem Soc. 1960;3812.10.1039/jr9600003812Search in Google Scholar
28. König W, Seifert K. Über das Vinylen-Homologe des „Michlerschen Hydrolblaus“. Ber Dtsch Chem Ges. 1934;67:2112.10.1002/cber.19340671242Search in Google Scholar
29. Peters AT, Wild MS. Styryl dyes for synthetic-polymer fibres. Part I – synthesis and characterization of some 4-amino-β,β-dicyanonstyrenes and ethyl- α-cyano-4-aminocinnamates. J Soc Dyers Colour. 1977;93:126.10.1111/j.1478-4408.1977.tb03333.xSearch in Google Scholar
30. Peters AT, Wild MS. Styryl dyes for synthetic-polymer fibres. Part II – colour, dyeing and fastness properties of some 4-amino-β,β-dicyanonstyrenes and ethyl- α-cyano-4-aminocinnamates. J Soc Dyers Colour. 1977;93:133.10.1111/j.1478-4408.1977.tb03334.xSearch in Google Scholar
31. Peters AT, Wild MS. Styryl dyes for synthetic-polymer fibres. Part III – derivatives of 2.methyl-4-(N-ethyl-N-β-hydroxyethyl) amino β,β-dicyanostyrenes. J Soc Dyers Colour. 1978;94:106.10.1111/j.1478-4408.1978.tb03401.xSearch in Google Scholar
32. Bradbury R. Dyes for dye diffusion thermal transfer (D2T2) printing. In: Freeman HS, Peters AT, editors. Colorants for non-textile applications. Amsterdam: Elsevier, 2000.10.1016/B978-044482888-0/50033-7Search in Google Scholar
33. Hertel E, Hoffmann KA. Über die Wirkung von Substituenten an olefinischen Kohlenstoffatomen auf die physikalisch-chemischen Eigenschaften der chromophoren Gruppen Vinylen und Divinylen. Z Phys Chem B. 1941;50:382.10.1515/zpch-1941-5021Search in Google Scholar
34. Gokhale UV, Seshadri S. Synthesis of 1,1-dicyano-2,4-diaryl-1,3-butadienes – a novel chromophore. Dyes Pigm. 1986;7:389.10.1016/0143-7208(86)80006-7Search in Google Scholar
35. Baumann W. The world´s most brilliant blue. A new dyestuff for polyester fibres. Foron brilliant blue S-R. Int Gazette (Sandoz). 1983;48:4.Search in Google Scholar
36. Baumann W. CH 636 116. 22 Dec 1978.10.1007/BF00738137Search in Google Scholar
37. Hu J-Z, Skrabal P, Zollinger H. A comparison of the absorption spectra of a series of blue disperse dyes with the calorimetric evaluation of their dyeings. Dyes Pigm. 1987;8:189.10.1016/0143-7208(87)80003-7Search in Google Scholar
38. Mishra A, Fischer MK, Bäuerle P. Metal-free organic dyes for dye-sensitized solar cells: from structure : property relationships to design rules. Angew Chem Int Ed. 2009;48:2474.10.1002/anie.200804709Search in Google Scholar PubMed
© 2020 Walter de Gruyter GmbH, Berlin/Boston