Startseite Hexagonal manganites: Strong coupling of ferroelectricity and magnetic orders
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Hexagonal manganites: Strong coupling of ferroelectricity and magnetic orders

  • Bernd Lorenz EMAIL logo
Veröffentlicht/Copyright: 19. September 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Hexagonal manganites belong to an exciting class of materials exhibiting strong interactions between a highly frustrated magnetic system, the ferroelectric polarization, and the lattice. The existence and mutual interaction of different magnetic ions (Mn and rare earth) results in complex magnetic phase diagrams and novel physical phenomena. A summary and discussion of the various properties, underlying physical mechanisms, the role of the rare earth ions, and the complex interactions in multiferroic hexagonal manganites are presented in this review.

Acknowledgements

This study would not have been possible without the dedicated work of two former graduate students, Clarina dela Cruz (now at Oak Ridge National Laboratory) and Fei Yen (now at Harbin Institute of Technology, Shenzhen). The majority of contributions to this review was supported in part by the US Air Force Office of Scientific Research, the T.L.L. Temple Foundation, the J. J. and R. Moores Endowment, and the State of Texas through the Texas Center for Superconductivity at the University of Houston.

References

[1] Khomskii DI. Coupled electricity and magnetism in solids: multiferroics and beyond. Preprint, arXiv:Cond-mat/1510.05174v2., 2015.Suche in Google Scholar

[2] Bertaut F, Forrat F, Fang P. Compt Rend Acad Sci. 1963;256:1958.Suche in Google Scholar

[3] Yakel HL, Koehler WC, Bertaut EF, Forrat EF. On the crystal structure of the manganese (iii) trioxides of the heavy lanthanides and yttrium. Acta Cryst. 1963;16:957.10.1107/S0365110X63002589Suche in Google Scholar

[4] Fiebig M, Lottermoser T, Kneip MK, Bayer M. Correlations between magnetic and electrical orderings in multiferroic manganites. J Appl Phys. 2006;99:08E302.10.1063/1.2172198Suche in Google Scholar

[5] Yen F, dela Cruz C, Lorenz B, Galstyan E, Sun YY, Gospodinov M, et al. Magnetic phase diagrams of hexagonal ErMnO3, YbMnO3, TmMnO3, and HoMnO3. J Mater Res. 2007;22:2163.10.1557/jmr.2007.0271Suche in Google Scholar

[6] Smolenskii GA, Bokov VA. Coexistence of magnetic and electric ordering in crystals. J Appl Phys. 1964;35:915.10.1063/1.1713535Suche in Google Scholar

[7] Huang ZJ, Cao Y, Sun YY, Xue YY, Chu CW. Coupling between the ferroelectric and antiferromagnetic orders in YMnO3. Phys Rev B. 1997;56:2623.10.1103/PhysRevB.56.2623Suche in Google Scholar

[8] Halasyamani PS, Poeppelmeier KR. Noncentrosymmetric oxides. Chem Mater. 1998;10:2753.10.1021/cm980140wSuche in Google Scholar

[9] Atanasov M, Reinen D. Density functional studies on the lone pair effect of the trivalent group (V) elements: I. Electronic structure, vibronic coupling, and chemical criteria for the occurrence of lone pair distortions in AX3 molecules (A = N to Bi; X = H, and F to I). J Phys Chem A. 2001;105:5450.10.1021/jp004511jSuche in Google Scholar

[10] Seshadri R, Hill NA. Visualizing the role of bi 6s “lone pairs” in the off-center distortion in ferromagnetic BiMnO3. Chem Mater. 2001;13:2892.10.1021/cm010090mSuche in Google Scholar

[11] van Aken BB, Palstra TTM, Filippetti A, Spaldin NA. The origin of ferroelectricity in magnetoelectric YMnO3. Nat Mater. 2004;3:164.10.1038/nmat1080Suche in Google Scholar PubMed

[12] Lukaszewicz K, Karut-Kalicińska J. X-ray investigations of the crystal structure and phase transitions of YMnO3. Ferroelectrics. 1974;7:81.10.1080/00150197408237954Suche in Google Scholar

[13] Nénert G, Ren Y, Stokes H, Palstra TTM. Symmetry changes at the ferroelectric transition in the multiferroic YMnO3. Preprint, arXiv: cond-mat/0504546.Suche in Google Scholar

[14] Nénert G, Pollet M, Marinel S, Blake GR, Meetsma A, Palstra TTM. Experimental evidence for an intermediate phase in the multiferroic YMnO3. J Phys: Condens Matter. 2007;19:466212.10.1088/0953-8984/19/46/466212Suche in Google Scholar

[15] Jeong IK, Hur N, Proffen T. High-temperature structural evolution of hexagonal multiferroic YMnO3 and YbMnO3. J Appl Cryst. 2007;40:730.10.1107/S0021889807025101Suche in Google Scholar

[16] Gibbs AS, Knight KS, Lightfoot P. High-temperature phase transitions of hexagonal YMnO3. Phys Rev B. 2011;83:094111.10.1103/PhysRevB.83.094111Suche in Google Scholar

[17] Abrahams SC. Atomic displacements at and order of all phase transitions in multiferroic YMnO3 and BaTiO3. Acta Cryst B. 2009;65:450.10.1107/S0108768109021144Suche in Google Scholar

[18] Cano A. Hidden order in hexagonal RMnO3 multiferroics (R=Dy-Lu, In, Y, and Sc). Phys Rev B. 2014;89:214107.10.1103/PhysRevB.89.214107Suche in Google Scholar

[19] Huang F-T, Wang X, Oh YS, Kurushima K, Mori S, Horibe Y, et al. Delicate balance between ferroelectricity and antiferroelectricity in hexagonal InMnO3. Phys Rev B. 2013;87:184109.10.1103/PhysRevB.87.184109Suche in Google Scholar

[20] Lilienblum M, Lottermoser T, Manz S, Selbach SM, Cano A, Fiebig M. Ferroelectricity in the multiferroic hexagonal manganites. Nat Phys. 2015;11:1070.10.1038/nphys3468Suche in Google Scholar

[21] Bertaut EF, Mercier M. Structure magnetique de MnYO3. Phys Lett. 1964;5:27.10.1016/S0375-9601(63)80014-6Suche in Google Scholar

[22] Koehler WC. Yakel H, Wollan EO, Cable JW. A note on the magnetic structures of rare earth manganese oxides. Phys Lett. 1964;9:93.10.1016/0031-9163(64)90089-7Suche in Google Scholar

[23] Yu T, Gao P, Wu T, Tyson TA. Ferroelectricity in single crystal InMnO3. Appl Phys Lett. 2013;102:172901.10.1063/1.4803171Suche in Google Scholar

[24] Tomuta DG, Ramakrishnan S, Nieuwenhuys GJ, Mydosh JA. The magnetic susceptibility, specific heat and dielectric constant of hexagonal YMnO3, LuMnO3 and ScMnO3. J Phys.: Condens Matter. 2001;13:4543.10.1088/0953-8984/13/20/315Suche in Google Scholar

[25] Katsufuji T, Masaki M, Machida A, Moritomo M, Kato K, Nishibori E, et al. Crystal structure and magnetic properties of hexagonal RMnO3 (R=Y, Lu, and Sc) and the effect of doping. Phys Rev B. 2002;66:134434.10.1103/PhysRevB.66.134434Suche in Google Scholar

[26] Kamegashira N, Satoh H, Ashizuka S. Synthesis and crystal structure of hexagonal DyMnO3. Mater Sci Forum. 2004;449–52:1045.10.4028/www.scientific.net/MSF.449-452.1045Suche in Google Scholar

[27] Fiebig M, Lottermoser T, Pisarev RV. Spin-rotation phenomena and magnetic phase diagrams of hexagonal RMnO3. J Appl Phys. 2003;93:8194.10.1063/1.1544513Suche in Google Scholar

[28] Fabrèges X, Mirebeau I, Bonville P, Petit S, Lebras-Jasmin G, Forget A, et al. Magnetic order in YbMnO3 studied by neutron diffraction and Mössbauer spectroscopy. Phys Rev B. 2008;78:214422.10.1103/PhysRevB.78.214422Suche in Google Scholar

[29] Muñoz A, Alonso JA, Martinez-Lope MJ, Casais MT, Martinez JL, Fernandez-Diaz MT. Magnetic structure of hexagonal RMnO3 (R=Y, Sc): Thermal evolution from neutron powder diffraction data. Phys Rev B. 2000;62:9498.10.1103/PhysRevB.62.9498Suche in Google Scholar

[30] Park J, Kong U, Pirogov A, Choi SI, Park JG, Vjoi YN, et al. Neutron-diffraction studies of YMnO3. Appl Phys A. 2002;74:S796.10.1007/s003390201806Suche in Google Scholar

[31] Reif J, Rau C, Matthias E. Influence of magnetism on second harmonic generation. Phys Rev Lett. 1993;71:1931.10.1103/PhysRevLett.71.1931Suche in Google Scholar PubMed

[32] Pavlov VV, Pisarev RV, Kirilyuk A, Rasing T. Observation of a translational nonlinear magneto-optical effect in thin magnetic garnet films. Phys Rev Lett. 1997;78:2004.10.1103/PhysRevLett.78.2004Suche in Google Scholar

[33] Fröhlich D, Leute S, Pavlov VV, Pisarev RV. Nonlinear optical spectroscopy of the two-order-parameter compound YMnO3. Phys Rev Lett. 1998;81:3239.10.1103/PhysRevLett.81.3239Suche in Google Scholar

[34] Fiebig M, Fröhlich D, Kohn K, Leute S, Lottermoser T, Pavlov VV, et al. Determination of the magnetic symmetry of hexagonal manganites by second harmonic generation. Phys Rev Lett. 2000;84:5620.10.1103/PhysRevLett.84.5620Suche in Google Scholar PubMed

[35] Iizuka-Sakano T, Hanamura E, Tanabe Y. Second-harmonic-generation spectra of the hexagonal manganites RMnO3. J Phys: Condens Matter. 2001;13:3031.10.1088/0953-8984/13/13/316Suche in Google Scholar

[36] Fiebig M, Degenhardt C, Pisarev RV. Interaction of frustrated magnetic sublattices in ErMnO3. Phys Rev Lett. 2002;88:027203.10.1103/PhysRevLett.88.027203Suche in Google Scholar PubMed

[37] Lonkai T, Hohlwein D, Ihringer J, Prandl W. The magnetic structures of YMnO3 and HoMnO3. Appl Phys A. 2002;74:S843.10.1007/s003390101158Suche in Google Scholar

[38] Iwata N, Kohn K. Dielectric anomalies at magnetic transitions of hexagonal rare earth manganese oxides RMnO3. J Phys Soc Jpn. 1998;67:3318.10.1143/JPSJ.67.3318Suche in Google Scholar

[39] Sugie H, Iwata N, Kohn K. Magnetic ordering of rare earth ions and magnetic–electric interaction of hexagonal RMnO3 (R=Ho, Er, Yb or Lu). J Phys Soc Jpn. 2002;71:1558.10.1143/JPSJ.71.1558Suche in Google Scholar

[40] Zhong CG, Fang JH. The coupling effect between ferroelectric and frustrated antiferromagnetic ordering in hexagonal ferroelectromagnet. Solid State Commun. 2003;128:449.10.1016/j.ssc.2003.08.027Suche in Google Scholar

[41] Lorenz B, Litvinchuk AP, Gospodinov MM, Chu CW. Field-induced reentrant novel phase and a ferroelectric-magnetic order coupling in HoMnO3. Phys Rev Lett. 2004;92:087204.10.1103/PhysRevLett.92.087204Suche in Google Scholar PubMed

[42] Yen F, dela Cruz CR, Lorenz B, Sun YY, Wang YQ, Gospodinov MM, et al. Low temperature dielectric anomalies in HoMnO3: the complex phase diagram. Phys Rev B. 2005;71:180407(R).10.1103/PhysRevB.71.180407Suche in Google Scholar

[43] Brown PJ, Chatterji T. Neutron diffraction and polarimetric study of the magnetic and crystal structures of HoMnO3 and YMnO3. J Phys: Condens Matter. 2006;18:10085.Suche in Google Scholar

[44] Vajk OP, Kenzelmann M, Lynn JW, Kim SB, Cheong SW. Magnetic order and spin dynamics in ferroelectric HoMnO3. Phys Rev Lett. 2005;94:087601.10.1103/PhysRevLett.94.087601Suche in Google Scholar PubMed

[45] Fiebig M, Degenhardt C, Pisarev RV. Magnetic phase diagram of HoMnO3. J Appl Phys. 2002;91:8867.10.1063/1.1450837Suche in Google Scholar

[46] Fiebig M, Lottermoser T, Lonkai T, Goltsev AV, Pisarev RV. Magnetoeletric effects in multiferroic manganites. J Mag Mag Mater. 2005;290–291:883.10.1016/j.jmmm.2004.11.282Suche in Google Scholar

[47] Nandi S, Kreyssig A, Tan L, Kim JW, Yan JQ, Lang JC, et al. Nature of Ho magnetism in multiferroic HoMnO3. Phys Rev Lett. 2008;100:217201.10.1103/PhysRevLett.100.217201Suche in Google Scholar PubMed

[48] Condran SG, Plumer ML. A model of magnetic order in hexagonal HoMnO3. J Phys: Condens Matter. 2010;22:162201.10.1088/0953-8984/22/16/162201Suche in Google Scholar PubMed

[49] Sharma PA, Ahn JS, Hur N, Park S, Kim SB, Lee S, et al. Thermal conductivity of geometrically frustrated, ferroelectric YMnO3: extraordinary spin–phonon interactions. Phys Rev Lett. 2004;93:177202.10.1103/PhysRevLett.93.177202Suche in Google Scholar PubMed

[50] Zhou HD, Denyszyn JC, Goodenough JB. Effect of Ga doping on the multiferroic properties of RMn1-xGaxO3 (R=Ho, Y). Phys Rev B. 2005;72:224401.10.1103/PhysRevB.72.224401Suche in Google Scholar

[51] Zhou HD, Lu J, Vasic R, Vogt BW, Janik JA, Brooks JS, et al. Relief of frustration through spin disorder in multiferroic Ho1-xYxMnO3. Phys Rev B. 2007;75:132406.10.1103/PhysRevB.75.132406Suche in Google Scholar

[52] Vasić R, Zhou HD, Jobiliong E, Wiebe CR, Brooks JS. Probing multiferroicity and spin–spin interactions via dielectric measurements on Y-doped HoMnO3 in high magnetic fields. Phys Rev B. 2007;75:014436.10.1103/PhysRevB.75.014436Suche in Google Scholar

[53] Zhou HD, Vasić R, Lu J, Brooks JS, Wiebe CR. The effect of Er doping on the multiferroics of Ho1-xErxMnO3. J Phys: Condens Matter. 2008;20:035211.10.1088/0953-8984/20/03/035211Suche in Google Scholar

[54] Hur N, Jeong IK, Hundley MF, Kim SB, Cheong SW. Giant magnetoelectric effect in multiferroic HoMnO3 with a high ferroelectric transition temperature. Phys Rev B. 2009;79:134120.10.1103/PhysRevB.79.134120Suche in Google Scholar

[55] Lorenz B, Yen F, Gospodinov MM, Chu CW. Field-induced phases in HoMnO3 at low temperatures. Phys Rev B. 2005;71:014438.10.1103/PhysRevB.71.014438Suche in Google Scholar

[56] Zhou HD, Janik JA, Vogt BW, Jo YJ, Balicas L, Case MJ, et al. Specific heat of geometrically frustrated and multiferroic RMn1-xGaxO3 (R=Ho, Y). Phys Rev B. 2006;74:094426.10.1103/PhysRevB.74.094426Suche in Google Scholar

[57] Midya A, Das SN, Mandal P, Pandya S, Ganesan V. Anisotropic magnetic properties and giant magnetocaloric effect in antiferromagnetic RMnO3 crystals (R=Dy, Tb, Ho, Yb). Phys Rev B. 2011;84:235127.10.1103/PhysRevB.84.235127Suche in Google Scholar

[58] Liu P, Wang XL, Cheng ZX, Du Y, Kimura H. Structural, dielectric, antiferromagnetic, and thermal properties of the frustrated hexagonal Ho1-xErxMnO3 manganites. Phys Rev B. 2011;83:144404.10.1103/PhysRevB.83.144404Suche in Google Scholar

[59] Oleaga A, Salazar A, Prabhakaran D, Cheng JG, Zhou JS. Critical begavior of the paramagnetic to antiferromagnetic transition in orthorhombic and hexagonal phases of RMnO3 (R=Sm, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y). Phys Rev B. 2012;85:184425.10.1103/PhysRevB.85.184425Suche in Google Scholar

[60] dela Cruz CR, Yen F, Lorenz B, Wang YQ, Sun YY, Gospodinov MM, et al. Strong spin–lattice coupling in multiferroic HoMnO3: thermal expansion anomalies and pressure effect. Phys Rev B. 2005;71:060407(R).10.1103/PhysRevB.71.060407Suche in Google Scholar

[61] Litvinchuk AP, Iliev MN, Popov VN, Gospodinov MM. Raman and infrared-active phonons in hexagonal HoMnO3 single crystals: magnetic ordering effects. J Phys: Condens Matter. 2004;16:809.Suche in Google Scholar

[62] Souchkov AB, Simpson JR, Quijada M, Ishibashi H, Hur N, Ahn JS, et al. Exchange interaction effects on the optical properties of LuMnO3. Phys Rev Lett. 2003;91:027203.10.1103/PhysRevLett.91.027203Suche in Google Scholar PubMed

[63] Fabréges X, Petit S, Mirebeau I, Pailhés S, Pinsard L, Forget A, et al. Spin–lattice coupling, frustration, and magnetic order in multiferroic RMnO3. Phys Rev Lett. 2009;103:067204.10.1103/PhysRevLett.103.067204Suche in Google Scholar PubMed

[64] Tyson TA, Wu T, Ahn KH, Kim SB, Cheong SW. Local spin-coupled distortions in multiferroic hexagonal HoMnO3. Phys Rev B. 2010;81:054101.10.1103/PhysRevB.81.054101Suche in Google Scholar

[65] Poirier M, Lemyre JC, Lahaie PO, Pinsard-Gaudart L, Revcolevschi A. Enhanced magnetoelastic coupling in hexagonal multiferroic HoMnO3. Phys Rev B. 2011;83:054418.10.1103/PhysRevB.83.054418Suche in Google Scholar

[66] Muñoz A, Alonso JA, Martinez-Lope MJ, Casais MT, Martinez JL, Fernandez-Diaz MT. Evolution of the magnetic structure of hexagonal HoMnO3 from neutron powder diffraction data. Chem Mater. 2001;13:1497.10.1021/cm0012264Suche in Google Scholar

[67] Choi YJ, Lee N, Sharma PA, Kim SB, Vajk OP, Lynn JW, et al. Giant magnetic fluctuations at the critical endpoint in insulating HoMnO3. Phys Rev Lett. 2013;110:157202.10.1103/PhysRevLett.110.157202Suche in Google Scholar PubMed

[68] Lemyre JC, Poirier M. Microwave investigation of the phase diagram of hexagonal multiferroic HoMnO3. Phys Rev B. 2009;79:094423.10.1103/PhysRevB.79.094423Suche in Google Scholar

[69] Vajk OP, Kenzelmann M, Lynn JW, Kim SB, Cheong SW. Neutron-scattering studies of magnetism in multiferroic HoMnO3. J Appl Phys. 2006;99:08E301.10.1063/1.2162090Suche in Google Scholar

[70] Lee S, Pirogov A, Kang M, Jang KH, Yonemura M, Kamiyama T, et al. Giant magneto-elastic coupling in multiferroic hexagonal manganites. Nature (London), 2008;451:805.10.1038/nature06507Suche in Google Scholar PubMed

[71] Chatterji T, Ouladdiaf B, Henry PF, Bhattacharya D. Magnetoelastic effects in multiferroic YMnO3. J Phys: Condens Matter. 2012;24:336003.10.1088/0953-8984/24/33/336003Suche in Google Scholar PubMed

[72] Lottermoser T, Fiebig M. Magnetoelectric behavior of domain walls in multiferroic HoMnO3. Phys Rev B. 2004;70:220407(R).10.1103/PhysRevB.70.220407Suche in Google Scholar

[73] Lottermoser T, Lonkai T, Amann U, Hohlwein D, Ihringer J, Fiebig M. Magnetic phase control by an electric field. Nature (London). 2004;430:541.10.1038/nature02728Suche in Google Scholar PubMed

[74] Ueland BG, Lynn JW, Laver M, Choi YJ, Cheong SW. Origin of electric-field-induced magnetization in multiferroic HoMnO3. Phys Rev Lett. 2010;104:147204.10.1103/PhysRevLett.104.147204Suche in Google Scholar PubMed

[75] Fennie CJ, Rabe KM. Ferroelectric transition in YMnO3 from first principles. Phys Rev B. 2005;72:100103.10.1103/PhysRevB.72.100103Suche in Google Scholar

[76] Stengel M, Fennie CJ, Ghosez P. Electrical properties of improper ferroelectrics from first principles. Phys Rev B. 2012;86:094112.10.1103/PhysRevB.86.094112Suche in Google Scholar

[77] Cho DY, Kim JY, Park BG, Rho KJ, Park JH, Noh HJ, et al. Ferroelectricity driven by Y d0-ness with rehybridization in YMnO3. Phys Rev Lett. 2007;98:217601.10.1103/PhysRevLett.98.217601Suche in Google Scholar

[78] Katsufuji T, Mori S, Masaki M, Moritomo Y, Yamamoto N, Takagi H. Dielectric and magnetic anomalies and spin frustration in hexagonal RMnO3 (R=Y, Yb, and Lu). Phys Rev B. 2001;64:104419.10.1103/PhysRevB.64.104419Suche in Google Scholar

[79] Aken BBV, Bos JWG, de Groot RA, Palstra TTM. Asymmetry of electron and hole doping in YMnO3. Phys Rev B. 2001;63:125127.10.1103/PhysRevB.63.125127Suche in Google Scholar

[80] Aikawa Y, Katsufuji T, Arima T, Kato K. Effect of Mn trimerization on the magnetic and dielectric properties of hexagonal YMnO3. Phys Rev B. 2005;71:184418.10.1103/PhysRevB.71.184418Suche in Google Scholar

[81] Lonkai T, Tomuta DG, Hoffmann JU, Schneider R, Hohlwein D, Ihringer J. Magnetic two-dimensional short-range order in hexagonal manganites. J Appl Phys. 2003;93:8191.10.1063/1.1558594Suche in Google Scholar

[82] Park J, Park JG, Jeon GS, Choi HY, Lee C, Jo W, et al. Magnetic ordering and spin-liquid state of YMnO3. Phys Rev B. 2003;68:104426.10.1103/PhysRevB.68.104426Suche in Google Scholar

[83] Dixit A, Smith AE, Subramanian MA, Lawes G. Suppression of multiferroic order in hexagonal YMn1-xInxO3. Solid State Commun. 2010;150:746.10.1016/j.ssc.2010.01.031Suche in Google Scholar

[84] Singh AK, Patnaik S, Kaushik SD, Siruguri V. Dominance of magnetoelastic coupling in multiferroic hexagonal YMnO3. Phys Rev B. 2010;81:184406.10.1103/PhysRevB.81.184406Suche in Google Scholar

[85] Bertaut EF, Pauthenet R, Mercier M. Sur des proprietes magnetiques du manganite d’ytterbium. Phys Lett. 1965;18:13.10.1016/0031-9163(65)90007-7Suche in Google Scholar

[86] Kozlenko DP, Kichanov SE, Lee S, Park JG, Savenko BN. Pressure-induced spin fluctuations and spin reorientation in hexagonal manganites. J Phys: Condens Matter. 2007;19:156228.10.1088/0953-8984/19/15/156228Suche in Google Scholar

[87] Janoschek M, Roessli B, Keller L, Gvasaliya SN, Conder K, Pomjakushina E. Reduction of the ordered magnetic moment in YMnO3 with hydrostatic pressure. J Phys: Condens Matter. 2005;17:L425.10.1088/0953-8984/17/42/L01Suche in Google Scholar

[88] Petit S, Moussa F, Hennion M, Pailhés S, Pinsard-Gaudart L, Ivanov A. Spin phonon coupling in hexagonal multiferroic YMnO3. Phys Rev Lett. 2007;99:266604.10.1103/PhysRevLett.99.266604Suche in Google Scholar PubMed

[89] Sato TJ, Lee SH, Katsufuji T, Masaki M, Park S, Copley JRD, Takagi H. Unconventional spin fluctuations in the hexagonal antiferromagnet YMnO3. Phys Rev B. 2003;68:014432.10.1103/PhysRevB.68.014432Suche in Google Scholar

[90] Chatterji T, Ghosh S, Singh A, Regnault LP, Rheinstädter M. Spin dynamics of YMnO3 studied via inelastic neutron scattering and the anisotropic hubbard model. Phys Rev B. 2007;76:144406.10.1103/PhysRevB.76.144406Suche in Google Scholar

[91] Demmel F, Chatterji T. Persistent spin waves above the Néel temperature in YMnO3. Phys Rev B. 2007;76:212402.10.1103/PhysRevB.76.212402Suche in Google Scholar

[92] Tachibana M, Yamazaki J, Kawaij H, Atake T. Heat capacity and critical behavior of hexagonal YMnO3. Phys Rev B. 2005;72:064434.10.1103/PhysRevB.72.064434Suche in Google Scholar

[93] Lee S, Pirogov A, Han JH, Park JG, Hoshikawa A, Kamiyama T. Direct observation of a coupling between spin, lattice and electric dipole moment in multiferroic YMnO3. Phys Rev B. 2005;71:180413(R).10.1103/PhysRevB.71.180413Suche in Google Scholar

[94] Poirier M, Laliberté F, Pinsard-Gaudart L, Revcolevschi A. Magnetoelastic coupling in hexagonal multiferroic YMnO3 using ultrasound measurements. Phys Rev B. 2007;76:174426.10.1103/PhysRevB.76.174426Suche in Google Scholar

[95] Pimenov A, Mukhin AA, Ivanov VY, Travkin VD, Balbashov AM, Loidl A. Possible evidence for electromagnons in multiferroic manganites. Nat Phys 2006;2:97.10.1038/nphys212Suche in Google Scholar

[96] Senff D, Link P, Hradil K, Hiess A, Regnault LP, Sidis Y, et al. Magnetic excitations in multiferroic TbMnO3: evidence for a hybridized soft mode. Phys Rev Lett. 2007;98:137206.10.1103/PhysRevLett.98.137206Suche in Google Scholar PubMed

[97] Fukumura H, Matsui S, Harima H, Kisoda K, Takahashi T, Yoshimura T, et al. Raman scattering on multiferroic YMnO3. J Phys: Condens Matter. 2007;19:365239.Suche in Google Scholar

[98] Zaghrioui M, Phuoc VT, Souza RA, Gervais M. Polarized reflectivity and lattice dynamics calculation of multiferroic YMnO3. Phys Rev B. 2008;78:184305.10.1103/PhysRevB.78.184305Suche in Google Scholar

[99] Vermette J, Jandl S, Mukhin AA, Ivanov VY, Balbashov A, Gospodinov MM, et al. Raman study of the antiferromagnetic phase transitions in hexagonal YMnO3 and LuMnO3. J Phys: Condens Matter. 2010;22:356002.10.1088/0953-8984/22/35/356002Suche in Google Scholar PubMed

[100] Vermette J, Jandl S, Gospodinov MM. Raman study of spin-phonon coupling in ErMnO3. J Phys Condens Matter. 2008;20:425219.10.1088/0953-8984/20/42/425219Suche in Google Scholar

[101] Lewtas HJ, Boothroyd AT, Rotter M, Prabhakaran D, Müller H, Le MD, et al. Magnetic excitations in multiferroic LuMnO3 studied by inelastic neutron scattering. Phys Rev B. 2010;82:184420.10.1103/PhysRevB.82.184420Suche in Google Scholar

[102] Skumryev V, Kuz’min MD, Gospodinov M, Fontcuberta J. Anisotropic paramagnetic response of hexagonal RMnO3. Phys Rev B. 2009;79:212414.10.1103/PhysRevB.79.212414Suche in Google Scholar

[103] Xu HW, Iwasaki J, Shimizu T, Satoh H, Kamegashira N. Structure, magnetic susceptibility and heat capacity of ScMnO3. J Alloys Compd. 1995;221:274.10.1016/0925-8388(94)01458-2Suche in Google Scholar

[104] Bieringer M, Greedan JE. Magnetic structure and spin reorientation transition in ScMnO3. J Solid State Chem. 1999;143:132.10.1006/jssc.1998.8127Suche in Google Scholar

[105] Fiebig M, Fröhlich D, Lottermoser T, Pisarev RV. Photoinduced instability of the magnetic structure of hexagonal ScMnO3. Phys Rev B. 2002;65:224421.10.1103/PhysRevB.65.224421Suche in Google Scholar

[106] Galstyan E, Lorenz B, Nartyrosyan KS, Yen F, Sun YY, Gospodinov MM, et al. Magnetic hysteretic phenomena in multiferroic HoMnO3 single crystals and polycrystals with nano- and micrometer particle size. J Phys Condens Matter. 2008;20:325241.10.1088/0953-8984/20/32/325241Suche in Google Scholar

[107] Aken BBV, Palstra TTM. Influence of magnetic on ferroelectric ordering in LuMnO3. Phys Rev B. 2004;69:134113.10.1103/PhysRevB.69.134113Suche in Google Scholar

[108] Bieringer M, Greedan JE, Wills AS. Investigation of magnetic structure evolution in the substitutional solid solution ScxLu1-xMnO3. Appl Phys A. 2002;74:S601.10.1007/s003390201532Suche in Google Scholar

[109] Fiebig M, Fröhlich D, Lottermoser T, Kohn K. Spin-angle topography of hexagonal manganites by magnetic second-harmonic generation. Appl Phys Lett. 2000;77:4401.10.1063/1.1331346Suche in Google Scholar

[110] Giaquinta DM, zur Loye HC. InMnO3: a new transition metal oxide with an unusual ABO3 structure. J Am Chem Soc. 1992;114:10952.10.1021/ja00053a037Suche in Google Scholar

[111] Greedan JE, Bieringer M, Britten JF, Giaquinta DM, zur Loye HC. Synthesis, crystal structure, and unusual magnetic properties of InMnO3. J Solid State Chem. 1995;116:118.10.1006/jssc.1995.1192Suche in Google Scholar

[112] Vajenine GV, Hoffmann R, zur Loye HC. The electronic structures and magnetic properties of one-dimensional ABO6 chains in Sr3ABO6 (A=Co, Ni; B=Pt, Ir) and two-dimensional MO3 sheets in InMO3 (M-Fe, Mn). Chem Phys. 1996;204:469.10.1016/0301-0104(95)00335-5Suche in Google Scholar

[113] Serrao CR, Krupanidhi SB, Bhattacharjee J, Waghmare UV, Kundu AK, Rao CNR. InMnO3: a biferroic. J Appl Phys. 2006;100:076104.10.1063/1.2356093Suche in Google Scholar

[114] Belik AA, Kamba S, Savinov M, Nuzhnyy D, Tachibana M, Takayama-Muromachi E, et al. Magnetic and dielectric properties of hexagonal InMnO3. Phys Rev B. 2009;79:054411.10.1103/PhysRevB.79.054411Suche in Google Scholar

[115] Rusakov DA, Belik AA, Kamba S, Savinov M, Nuzhnyy D, Kolodiazhnyi T, et al. Structural evolution and properties of solid solutions of hexagonal InMnO3 and InGaO3. Inorg Chem. 2011;50:3559.10.1021/ic102477cSuche in Google Scholar PubMed

[116] Fabrèges X, Mirebeau I, Petit S, Bonville P, Belik AA. Frustration-driven magnetic order in hexagonal InMnO3. Phys Rev B. 2011;84:054455.10.1103/PhysRevB.84.054455Suche in Google Scholar

[117] Abrahams SC. Ferroelectricity and structure in the YMnO3 family. Acta Cryst B. 2001;57:485.10.1107/S0108768101009399Suche in Google Scholar

[118] Oak MA, Lee JH, Jang HM, Goh JS, Choi HJ, Scott JF. 4d-5p orbital mixing and asymmetric in 4d-o 2p hybridization in InMnO3: a new bonding mechanism for hexagonal ferroelectricity. Phys Rev Lett. 2011;106:047601.10.1103/PhysRevLett.106.047601Suche in Google Scholar PubMed

[119] Kumagai Y, Belik AA, Lilienblum M, Leo N, Fiebig M, Spaldin NA. Observation of persistent centrosymmetricity in the hexagonal manganite family. Phys Rev B. 2012;85:174422.10.1103/PhysRevB.85.174422Suche in Google Scholar

[120] Meier D, Ryll H, Kiefer K, Klemke B, Hoffmann JU, Ramesh R, et al. Mutual induction of magnetic 3d and 4f order in multiferroic hexagonal ErMnO3. Phys Rev B. 2012;86:184415.10.1103/PhysRevB.86.184415Suche in Google Scholar

[121] Sekhar MC, Lee S, Choi G, Lee C, Park JG. Doping effects of hexagonal manganites Er1-xYxMnO3 with triangular spin structure. Phys Rev B. 2005;72:014402.10.1103/PhysRevB.72.014402Suche in Google Scholar

[122] Park J, Kong U, Choi SI, Park JG, Lee C, Jo W. Magnetic structure studies of ErMnO3. Appl Phys A. 2002;74:S802.10.1007/s003390201632Suche in Google Scholar

[123] Standard EC, Stanislavchuk T, Sirenko AA, Lee N, Cheong SW. Magnons and crystal-field transitions in hexagonal RMnO3 (R=Er, Tm, Yb, Lu) single crystals. Phys Rev B. 2012;85:144422.10.1103/PhysRevB.85.144422Suche in Google Scholar

[124] Massa NE, del Campo L, Meneses DDS, Echegut P, Martinez-Lope MJ, Alonso JA. Phonons and hybrid modes in the high and low temperature far infrared dynamics of hexagonal TmMnO3. J Phys: Condens Matter. 2014;26:275901.10.1088/0953-8984/26/27/275901Suche in Google Scholar PubMed

[125] Salama HA, Stewart GA. Exchange-induced Tm magnetism in multiferroic h-TmMnO3. J Phys: Condens Matter. 2009;21:386001.10.1088/0953-8984/21/38/386001Suche in Google Scholar PubMed

[126] Zhou JS, Goodenough JB, Gallardo-Amores JM, Morán E, Alario-Franco MA, Caudillo R. Hexagonal versus perovskite phase of manganite RMnO3 (R=Y, Ho, Er, Tm, Yb, Lu). Phys Rev B. 2006;74:014422.10.1103/PhysRevB.74.014422Suche in Google Scholar

[127] Uusi-Esko K, Malm J, Imamura N, Yamauchi H, Karppinen M. Chracterization of RMnO3 (R=Sc, Y, Dy-Lu): high-pressure synthesized metastable perovskites and their hexagonal precursor phases. Mat Chem Phys. 2008;112:1029.10.1016/j.matchemphys.2008.07.009Suche in Google Scholar

[128] Wang XM, Zhao ZY, Fan C, Liu XG, Li QJ, Zhang FB, et al. Low-temperature heat transport, specific heat, and magnetic properties of the hexagonal TmMnO3 single crystals. Phys Rev B. 2012;86:174413.10.1103/PhysRevB.86.174413Suche in Google Scholar

[129] Adem U, Mostovoy M, Bellido N, Nugroho AA, Simon C, Palstra TTM. Scaling behavior of the magnetocapacitance of YbMnO3. J Phys: Condens Matter. 2009;21:496002.10.1088/0953-8984/21/49/496002Suche in Google Scholar PubMed

[130] Salama HA, Stewart GA, Ryan DH, Elouneg-Jamroz M, Edge AVJ. A Mössbauer sepctroscopy investigation of h-YbMnO3. J Phys: Condens Matter. 2008;20:255213.Suche in Google Scholar

[131] Salama HA, Voyer CJ, Ryan DH, Stewart GA. Magnetic order of the rare earth sublattice in h-YbMnO3. J Appl Phys. 2009;105:07E110.10.1063/1.3068011Suche in Google Scholar

[132] Ivanov VY, Mukhin AA, Prokhorov AS, Balbashov AM, Iskhakova LD. Magnetic properties and phase transitions in hexagonal DyMnO3 single crystals. Phys Solid State. 2006;48:1726.10.1134/S1063783406090186Suche in Google Scholar

[133] Harikrishnan S, Rößler S, Kumar CMN, Bhat HL, Rößler UK, Wirth S, et al. Phase transitions and rare-earth magnetism in hexagonal and orthorhombic DyMnO3 single crystals. J Phys: Condens Matter, 2009;21:096002.Suche in Google Scholar

[134] Wehrenfennig C, Meier D, Lottermoser T, Lonkai T, Hoffmann JU, Aliouane N, et al. Incompatible magnetic order in multiferroic hexagonal DyMnO3. Phys Rev B. 2010;82:100414(R).10.1103/PhysRevB.82.100414Suche in Google Scholar

[135] Fiebig M, Lottermoser T, Fröhlich D, Goltsev AV, Pisarev RV. Observation of coupled magnetic and electric domains. Nature (London). 2002;419:818.10.1038/nature01077Suche in Google Scholar PubMed

[136] Hanamura E, Hagita K, Tanabe Y. Clamping of ferroelectric and antiferromagnetic order parameters of YMnO3. J Phys Condens Matter. 2003;15:L103.10.1088/0953-8984/15/3/102Suche in Google Scholar

[137] Goltsev AV, Pisarev RV, Lottermoser T, Fiebig M. Structure and interaction of antiferromagnetic domain walls in hexagonal YMnO3. Phys Rev Lett. 2003;90:177204.10.1103/PhysRevLett.90.177204Suche in Google Scholar PubMed

[138] Choi T, Horibe Y, Yi HT, Choi YJ, Wu W, Cheong SW. Insulating interlocked ferroelectric and structural antiphase domain walls in multiferroic YMnO3. Nat Mater. 2010;9:253.10.1038/nmat2632Suche in Google Scholar PubMed

[139] Meier D, Leo N, Jungk T, Soergel E, Becker P, Bohatý L, et al. Translation domains in multiferroics. Preprint, arXiv: cond-mat/1008.3290.10.1080/01411594.2012.696116Suche in Google Scholar

[140] Chae SC, Lee N, Horibe Y, Tanimura M, Mori S, Gao B, et al. Direct observation of the proliferation of ferroelectric loop domains and vortex-antivortex pairs. Phys Rev Lett. 2012;108:167603.10.1103/PhysRevLett.108.167603Suche in Google Scholar PubMed

[141] Geng Y, Lee N, Choi YJ, Cheong SW, Wu W. Collective magnetism at multiferroic domains walls. Nano Lett. 2012;12:6055.10.1021/nl301432zSuche in Google Scholar PubMed

[142] Chae SC, Horibe Y, Jeong DY, Lee N, Iida K, Tanimura M, et al. Evolution of the domain topology in a ferroelectric. Phys Rev Lett. 2013;110:167601.10.1103/PhysRevLett.110.167601Suche in Google Scholar PubMed

[143] Geng Y, Das H, Wysocki AL, Wang X, Cheong SW, Mostovoy M, et al. Direct visualization of magnetoelectric domains. Nat Mater. 2014;13:163.10.1038/nmat3813Suche in Google Scholar PubMed

[144] Schaab J, Krug IP, Nickel F, Gottlob DM, Doganay H, Cano A, et al. Imaging and characterization of conducting ferroelectric domain walls by photoemission electron microscopy. Appl Phys Lett. 2014;104:232904.10.1063/1.4879260Suche in Google Scholar

[145] Kumagai Y, Spaldin NA. Structural domain walls in polar hexagonal manganites. Nat Commun. 2013;4:1540.10.1038/ncomms2545Suche in Google Scholar PubMed

[146] Mettout B, Toledano P, Lilienblum M, Fiebig M. Combinatorial model for the ferroelectric domain-network formation in hexagonal manganites. Phys Rev B. 2014;89:024103.10.1103/PhysRevB.89.024103Suche in Google Scholar

[147] Meier QN, Lilienblum M, Griffin SM, Conder K, Pomjakushina E, Yan Z, et al. Global formation of topological defects in the multiferroic hexagonal manganites. Phys Rev X. 2017;7:041014.10.1103/PhysRevX.7.041014Suche in Google Scholar

[148] Holtz ME, Shapovalov K, Mundy JA, Chang CS, Yan Z, Bourret E, et al. Topological defects in hexagonal manganites: Inner structure and emergent electrostatics. Nano Lett. 2017;17:5883.10.1021/acs.nanolett.7b01288Suche in Google Scholar PubMed

[149] Du Y, Wang XL, Chen DP, Dou SX, Cheng ZX, Higgins M, et al. Domain wall conductivity in oxygen deficient multiferroic YMnO3 single crystals. Appl Phys Lett. 2011;99:252107.10.1063/1.3671393Suche in Google Scholar

[150] Ruff E, Krohns S, Lilienblum M, Meier D, Fiebig M, Lunkenheimer P, et al. Conductivity contrast and tunneling charge transport in the vortexlike ferroelectric domain patterns of multiferroic hexagonal YMnO3. Phys Rev Lett. 2017;118:036803.10.1103/PhysRevLett.118.036803Suche in Google Scholar PubMed

[151] Meier D, Seidel J, Cano A, Delaney K, Kumagai Y, Mostovoy M, et al. Anisotropic conductance at improper ferroelectric domain walls. Nat Mater. 2012;11:284.10.1038/nmat3249Suche in Google Scholar PubMed

[152] Mundy JA, Schaab J, Kumagai Y, Cano A, Stengel M, Krug IP, et al. Functional electronic inversion layers at ferroelectric domain walls. Nat Mater. 2017;16:622.10.1038/nmat4878Suche in Google Scholar PubMed

[153] Wu W, Horibe Y, Lee N, Cheong SW, Guest JR. Conduction of topologically protected charged ferroelectric domain walls. Phys Rev Lett. 2012;108:077203.10.1103/PhysRevLett.108.077203Suche in Google Scholar PubMed

[154] Schaab J, Skjaervo SH, Krohns S, Dai X, Holtz ME, Cano A, et al. Electrical half-wave rectification at ferroelectric domain walls. Nat Nano. 2018:13:1028.10.1038/s41565-018-0253-5Suche in Google Scholar PubMed

[155] Marti X, Sanchez F, Hrabovsky D, Fabrega L, Ruyter A, Fontcuberta J, et al. Exchange biasing and electric polarization with YMnO3. Appl Phys Lett. 2006;89:032510.10.1063/1.2234285Suche in Google Scholar

[156] Jang SY, Lee D, Lee JH, Noh TW, Jo Y, Jung MH, et al. Oxygen vacancy induced re-entrant spin glass behavior in multiferroic ErMnO3 thin films. Appl Phys Lett. 2008;93:162507.10.1063/1.3006325Suche in Google Scholar

[157] Singh AK, Snure M, Tiwari A, Patnaik S. Effect of epitaxial strain on the magneto-electric coupling of YMnO3 thin films. J Appl Phys. 2009;106:014109.10.1063/1.3168423Suche in Google Scholar

[158] Lee D, Kim HS, Jang SY, Joh KW, Noh TW, Yu J, et al. Double polarization hysteresis loop induced by the domain pinning by defect dipoles in HoMnO3 epitaxial thin films. Phys Rev B. 2010;81:012101.10.1103/PhysRevB.81.012101Suche in Google Scholar

[159] Lee JH, Murugavel P, Lee D, Noh TW, Jo Y, Jung MH, et al. Multiferroic properties of epitaxially stabilized hexagonal DyMnO3 thin films. Appl Phys Lett. 2007;90:012903.10.1063/1.2429021Suche in Google Scholar

[160] Choi WS, Moon SJ, Seo SSA, Lee D, Lee H, Murugavel P, et al. Optical spectroscopic investigation on the coupling of electronic and magnetic structure in multiferroic hexagonal RMnO3 (R=Gd, Tb, Dy, and Ho) thin films. Phys Rev B. 2008;78:054440.10.1103/PhysRevB.78.054440Suche in Google Scholar

[161] Choi WS, Kim DG, Seo SSA, Moon SJ, Lee D, Lee JH, et al. Electronic structures of hexagonal RMnO3 (R=Gd, Tb, Dy, and Ho) thin films: Optical spectroscopy and first-principles calculations. Phys Rev B. 2008;77:045137.10.1103/PhysRevB.77.045137Suche in Google Scholar

[162] Kim DJ, Connell JG, Seo SSA, Gruverman A. Domain wall conductivity in semiconducting hexagonal ferroelectric TbMnO3 thin films. Nanotechnology. 2016;27:155705.10.1088/0957-4484/27/15/155705Suche in Google Scholar PubMed

Published Online: 2019-09-19

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 12.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/psr-2019-0014/html
Button zum nach oben scrollen