Abstract
An O2-electrode was fabricated using a metal ion implanted SrTiO3 single crystal. The time resolved oxygen exchange rate of ion implanted strontium titanate (SrTiO3) single crystals was studied by means of oxygen solid electrolyte coulometry (OSEC). Transmission electron microscopy (TEM) was performed in order to determine structural changes after ion implantation. Moreover, theoretical modelling based on defect chemistry under equilibrium conditions was applied for determining of effective rate constants. OSEC measurements turn out to be a damage and calibration free method, which was used for the first time in order to characterize kinetic parameters of oxygen exchange on single crystalline surfaces.
References
[1] Gallo A, Simoes-Moreira J, Costa H, Santos M, Dos Santos EM. Energy storage in the energy transition context: a technology review. Renew Sust Energ Rev. 2016;65:800–22.10.1016/j.rser.2016.07.028Suche in Google Scholar
[2] Cheng F, Chen J. Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem Soc Rev. 2012;41:2502172–92.10.1039/c1cs15228aSuche in Google Scholar
[3] Van Noorden R. The rechargeable revolution: a better battery. Nat. 2014;507:26–8.10.1038/507026aSuche in Google Scholar
[4] Ma Q, Iwanschitz B, Dashjav E, Baumann S, Sebold D, Raj IA, et al. Microstructural variations and their influence on the performance of solid oxide fuel cells based on yttrium-substituted strontium titanate ceramic anodes. J Power Sources. 2015;279:678–85.10.1016/j.jpowsour.2015.01.063Suche in Google Scholar
[5] Ruiz-Morales JC, Canales-Vazquez J, Savaniu C, Marrero-L´opez D, Zhou W, Irvine JT. Disruption of extended defects in solid oxide fuel cell anodes for methane oxidation. Nat. 2006;439: 568–71.10.1038/nature04438Suche in Google Scholar
[6] Miller DN, Irvine JT. B-site doping of lanthanum strontium titanate for solid oxide fuel cell anodes. J Power Sources. 2011;196:7323–7.10.1016/j.jpowsour.2010.11.067Suche in Google Scholar
[7] Gerblinger J, Meixner H. Fast oxygen sensors based on sputtered strontium titanate, Sensors and Actuators B. Chem. 1991;4: 99–102. 265.10.1016/0925-4005(91)80183-KSuche in Google Scholar
[8] Hanzig J, Zschornak M, Nentwich M, Hanzig F, Gemming S, Leisegang T, et al. Strontium titanate: an all-in-one rechargeable energy storage material. J Power Sources. 2014;267:700–5.10.1016/j.jpowsour.2014.05.095Suche in Google Scholar
[9] Hanzig J, Mehner E, Jachalke S, Hanzig F, Zschornak M, Richter C, et al. Dielectric to pyroelectric phase transition induced by defect migration. New J Phys. 2015;17:023036.10.1088/1367-2630/17/2/023036Suche in Google Scholar
[10] Stöcker H, Hanzig J, Zschornak M, Mehner E, Jachalke S, Richter C, et al. Strontium titanate: from symmetry changes to functionality. Cryst Res Technol. 2016;1:1600222.10.1002/crat.201600222Suche in Google Scholar
[11] Hanzig J, Zschornak M, Mehner E, Hanzig F, Münchgesang W, Leisegang T, et al. The anisotropy of oxygen vacancy migration in SrTiO3. J Phys Condens Matter. 2016;28:225001.10.1088/0953-8984/28/22/225001Suche in Google Scholar PubMed
[12] Nassau K, Miller A. Strontium titanate: an index to the literature on properties and the growth of single crystals. J Crystal Growth. 1988;91:373–81.10.1016/0022-0248(88)90254-0Suche in Google Scholar
[13] De Souza R, Zehnpfenning J, Martin M, Maier J. Determining oxygen isotope profiles in oxides with time-of-flight SIMS. Solid State Ionics. 2005;176:1465–71.10.1016/j.ssi.2005.03.012Suche in Google Scholar
[14] Mahato N, Banerjee A, Gupta A, Omar S, Balani K. Progress in material selection for solid oxide fuel cell technology: a review. Prog Mater Sci. 2015;72:141–337.10.1016/j.pmatsci.2015.01.001Suche in Google Scholar
[15] Kilner JA, Burriel M. Materials for intermediate-temperature solid oxide fuel cells. Annu Rev Mater Res. 2014;44:365–93.10.1146/annurev-matsci-070813-113426Suche in Google Scholar
[16] Ruiz-Morales JC, Canales-Vázquez J, Savaniu C, López DM, Zhou W, Irvine JTS. Disruption of extended defects in solid oxide fuel cell anodes for methane oxidation. Nat. 2006;439:568–71.10.1038/nature04438Suche in Google Scholar
[17] Marina OA, Canfield NL, Stevenson JW. Thermal, electrical, and electrocatalytical properties of lanthanum-doped strontium titanate. Solid State Ionics. 2002;149:21–8.10.1016/S0167-2738(02)00140-6Suche in Google Scholar
[18] Shen X, Sasaki K. Robust SOFC anode materials with la doped SrTiO3 backbone structure. Int J Hydrogen Energy. 2016;41:17044–52.10.1016/j.ijhydene.2016.08.024Suche in Google Scholar
[19] Upadhyay RK, Soin N, Roy SS. Role of graphene/metal oxide composites as photocatalysts, adsorbents and disinfectants in water treatment: a review. Reaserch Adv. 2014;4:3823–51.Suche in Google Scholar
[20] Hertkorn D, Benkler M, Gleißner U, Büker F, Megnin C, Müller C, et al. Morphology and oxygen vacancy investigation of strontium titanate-based photo electrochemical cells. J Mater Sci. 2015;50:40–8.10.1007/s10853-014-8563-ySuche in Google Scholar
[21] Johnsson M, Lemmens P. Crystallography and Chemistry of Perovskites. In: Kronmüller H, Parki S., editor(s). Handbook of Magnetism and Advanced Magnetic MaterialsNovel Materials Vol. 4. Chichester, Uk: John Wiley & Sons Ltd, 2006:2098–106.Suche in Google Scholar
[22] Stöcker H, Zschornak M, Richter C, Hanzig J, Hanzig F, Hinze A, et al. Surface-near modifications of SrTiO3 local symmetry due to nitrogen implantation investigated by grazing incidence XANES. Scripta Mater. 2014;86:1–4.10.1016/j.scriptamat.2014.02.014Suche in Google Scholar
[23] Bernas H. Ion beam-induced amorphization: A crystal-to-glass transition? In: Sigmund P., editor(s). Ion beam Science: Solved and Unsolved Problems, Matematisk-fysiske Meddelelser ed. Vol. 52. Copenhagen: The Royal Danish Academy of Science and Letters, 2006:383–403.Suche in Google Scholar
[24] Liedtke R, Hoffmann S, Waser R. Recrystallization of oxygen ion implanted Ba 0.7Sr0.3TiO3 thin films. J Am Ceram Soc. 2000;83:436–8.10.1111/j.1151-2916.2000.tb01214.xSuche in Google Scholar
[25] Simpson TW. Recrystallisation of strontium titanate, PhD thesis, University of Western Ontario, 1993.Suche in Google Scholar
[26] Merkle R, Maier J. Wie wird sauerstoff in oxide eingebaut? Kinetische studie einer “simplen” Feststoffreaktion am modellmaterial SrTiO3. Angew Chem. 2008;120:3936–58.10.1002/ange.200700987Suche in Google Scholar
[27] Denk I, Münch W, Maier J. Partial conductivities in SrTiO3: bulk polarization experiments, oxygen concentration cell measurements, and defect-chemical modeling. J Am Ceram Soc. 1995;78:3265–72.10.1111/j.1151-2916.1995.tb07963.xSuche in Google Scholar
[28] Roque-Malherbe RMA. In: Roque-Malherbe RMA., editor(s). The physical chemistry of materials, CRC Press ed. Boca Raton London New York: Taylor&Francis Group, 20109781138117709Suche in Google Scholar
© 2018 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- CO2-based hydrogen storage – formic acid dehydrogenation
- Drug target prediction using chem- and bioinformatics
- Green chemistry and the grand challenges of sustainability
- Zinc-Selenium reagents in organic synthesis
- Positive electrodes based on Ion-implanted SrTiO3
- Size and shape-controlled synthesis of Ru nanocrystals
- Selenium– and tellurium–halogen reagents
Artikel in diesem Heft
- CO2-based hydrogen storage – formic acid dehydrogenation
- Drug target prediction using chem- and bioinformatics
- Green chemistry and the grand challenges of sustainability
- Zinc-Selenium reagents in organic synthesis
- Positive electrodes based on Ion-implanted SrTiO3
- Size and shape-controlled synthesis of Ru nanocrystals
- Selenium– and tellurium–halogen reagents