Home Controllable design, synthesis and characterization of nanostructured rare earth metal oxides
Article
Licensed
Unlicensed Requires Authentication

Controllable design, synthesis and characterization of nanostructured rare earth metal oxides

  • Yunyun Zhou

    Yunyun Zhou was born in Qingdao, China in 1986. She received her bachelor degree in chemical engineering from the Ocean University of China in 2008, and obtained her Ph.D. in chemistry at the University of Nebraska-Lincoln under the supervision of Dr. Chin Li (Barry) Cheung in 2015. Her Ph.D. research focused on the investigation of rare earth oxides-based catalytic systems using spectroscopic, electron microscopic and electrochemical techniques. Zhou became an ORISE postdoctoral fellow after graduation and started to work at National Energy Technology Lab (NETL) since 2015 under the supervision of Dr. Christopher Matranga. Her postdoctoral work was studying iron-based catalyst for Fischer-Tropsch synthesis. Later, Zhou became a research scientist in 2016 and continued her Fischer-Tropsch research at NETL. She has also been involved in the DOE-sponsored oxygen separation and carbon material fabrication projects.

    EMAIL logo
Published/Copyright: November 20, 2019
Become an author with De Gruyter Brill

Abstract

Rare earth metal oxide nanomaterials have drawn much attention in recent decades due to their unique properties and promising applications in catalysis, chemical and biological sensing, separation, and optical devices. Because of the strong structure–property correlation, controllable synthesis of nanomaterials with desired properties has long been the most important topic in nanoscience and nanotechnology and still maintains a grand challenge. A variety of methods, involving chemical, physical, and hybrid method, have been developed to precisely control nanomaterials, including size, shape, dimensionality, crystal structure, composition, and homogeneity. These nanostructural parameters play essential roles in determining the final properties of functional nanomaterials. Full understanding of nanomaterial properties through characterization is vital in elucidating the fundamental principles in synthesis and applications. It allows researchers to discover the correlations between the reaction parameters and nanomaterial properties, offers valuable insights in improving synthetic routes, and provokes new design strategies for nanostructures. In application systems, it extrapolates the structure–activity relationship and reaction mechanism and helps to establish quality model for similar reaction processes. The purpose of this chapter is to provide a comprehensive overview and a practical guide of rare earth oxide nanomaterial design and characterization, with special focus on the well-established synthetic methods and the conventional and advanced analytical techniques. This chapter addresses each synthetic method with its advantages and certain disadvantages, and specifically provides synthetic strategies, typical procedures and features of resulting nanomaterials for the widely-used chemical methods, such as hydrothermal, solvothermal, sol–gel, co-precipitation, thermal decomposition, etc. For the nanomaterial characterization, a practical guide for each technique is addressed, including working principle, applications, materials requirements, experimental design and data analysis. In particular, electron and force microscopy are illuminated for their powerful functions in determining size, shape, and crystal structure, while X-ray based techniques are discussed for crystalline, electronic, and atomic structural determination for oxide nanomaterials. Additionally, the advanced characterization methodologies of synchrotron-based techniques and in situ methods are included. These non-traditional methods become more and more popular because of their capabilities of offering unusual nanostructural information, short experiment time, and in-depth problem solution.

Graphical Abstract:

About the author

Yunyun Zhou

Yunyun Zhou was born in Qingdao, China in 1986. She received her bachelor degree in chemical engineering from the Ocean University of China in 2008, and obtained her Ph.D. in chemistry at the University of Nebraska-Lincoln under the supervision of Dr. Chin Li (Barry) Cheung in 2015. Her Ph.D. research focused on the investigation of rare earth oxides-based catalytic systems using spectroscopic, electron microscopic and electrochemical techniques. Zhou became an ORISE postdoctoral fellow after graduation and started to work at National Energy Technology Lab (NETL) since 2015 under the supervision of Dr. Christopher Matranga. Her postdoctoral work was studying iron-based catalyst for Fischer-Tropsch synthesis. Later, Zhou became a research scientist in 2016 and continued her Fischer-Tropsch research at NETL. She has also been involved in the DOE-sponsored oxygen separation and carbon material fabrication projects.

References

[1] Arole VM, Munde SV. Fabrication of nanomaterials by top-down and bottom-up approaches-an overview. J Adv Appl Sci Technol. 2014;1:89–93.Search in Google Scholar

[2] Niederberger M, Pinna N. Metal oxide nanoparticles in organic solvents: synthesis, formation, assembly and application. London: Springer, 2009:1–5.10.1007/978-1-84882-671-7Search in Google Scholar

[3] Kumar KY, Muralidhara HB, Nayaka YA, Balasubramanyam J, Hanumanthappa H. Low-cost synthesis of metal oxide nanoparticles and their application in adsorption of commercial dye and heavy metal ion in aqueous solution. Powder Technol. 2013;246:125–36.10.1016/j.powtec.2013.05.017Search in Google Scholar

[4] Yan Z-G, Yan C-H. Controlled synthesis of rare earth nanostructures. J Mater Chem. 2008;18:5046–59.10.1039/b810586cSearch in Google Scholar

[5] Gedanken A, Mastai Y. The chemistry of nanomaterials: synthesis, properties and applications. Weinheim, Germany: Wiley- Interscience, 2005:113–69.10.1002/352760247X.ch6Search in Google Scholar

[6] Niederberger M, Pinna N. Metal oxide nanoparticles in organic solvents: synthesis, formation, assembly and application. London: Springer; 2009:7–18.10.1007/978-1-84882-671-7_2Search in Google Scholar

[7] Singh S, Srivastava P, Kapoor IP, Singh G. Preparation, characterization, and catalytic activity of rare earth metal oxide nanoparticles. J Therm Anal Calorim. 2013;111:1073–82.10.1007/s10973-012-2538-5Search in Google Scholar

[8] Patzke GR, Ying Z, Roman K, Franziska C. Oxide nanomaterials: synthetic developments, mechanistic studies, and technological innovations. Angew Chem Int Ed. 2011;50:826–59.10.1002/anie.201000235Search in Google Scholar PubMed

[9] Williams DB, Carter CB. Transmission electron microscopy: a textbook for materials science. Boston, MA: Springer US; 2009:3–22.10.1007/978-0-387-76501-3_1Search in Google Scholar

[10] Bunker G. Introduction to XAFS: A practical guide to X-ray absorption fine structure spectroscopy. Cambridge: Cambridge University Press, 2010.10.1017/CBO9780511809194Search in Google Scholar

[11] Lytle FW. X-ray absorption spectroscopy. Berichte der Bunsengesellschaft für physikalische Chemie. 1987;91:1251–7.10.1002/bbpc.19870911134Search in Google Scholar

[12] Yano J, Yachandra VK. X-ray absorption spectroscopy. Photosynth Res. 2009;102:241.10.1007/s11120-009-9473-8Search in Google Scholar

[13] Zhou Y, Lawrence NJ, Wang L, Kong L, Wu T-S, Liu J, et al. Resonant photoemission observations and DFT study of s–d hybridization in catalytically active gold clusters on ceria nanorods. Angew Chem Int Ed. 2013;52:6936–9.10.1002/anie.201301383Search in Google Scholar

[14] Crozier PA, Wang R, Sharma R. In situ environmental TEM studies of dynamic changes in cerium-based oxides nanoparticles during redox processes. Ultramicroscopy. 2008;108:1432–40.10.1016/j.ultramic.2008.05.015Search in Google Scholar

[15] Hernandez-Viezcas JA, Castillo-Michel H, Andrews JC, Cotte M, Rico C, Peralta-Videa JR, et al. In situ synchrotron x-ray fluorescence mapping and speciation of CeO2 and ZnO nanoparticles in soil cultivated soybean (glycine max). ACS Nano. 2013;7:1415–23.10.1021/nn305196qSearch in Google Scholar

[16] Li F-B, Newman RC, Thompson GE. In situ atomic force microscopy studies of electrodeposition mechanism of cerium oxide films: nucleation and growth out of a gel mass precursor. Electrochim Acta. 1997;42:2455–64.10.1016/S0013-4686(96)00433-1Search in Google Scholar

[17] Liu Z, Duchoň T, Wang H, Grinter DC, Waluyo I, Zhou J, et al. Ambient pressure XPS and IRRAS investigation of ethanol steam reforming on Ni–ceO2(111) catalysts: an in situ study of C–C and O–H bond scission. Phys Chem Chem Phys. 2016;18:16621–8.10.1039/C6CP01212DSearch in Google Scholar

[18] Sharma R. An environmental transmission electron microscope for in situ synthesis and characterization of nanomaterials. J Mater Res. 2005;20:1695–707.10.1557/JMR.2005.0241Search in Google Scholar

[19] Wu T-S, Zhou Y, Sabirianov RF, Mei W-N, Soo Y-L, Cheung CL. X-ray absorption study of ceria nanorods promoting the disproportionation of hydrogen peroxide. Chem Commun. 2016;52:5003–6.10.1039/C5CC10643ESearch in Google Scholar PubMed

[20] Sato S, Takahashi R, Kobune M, Gotoh H. Basic properties of rare earth oxides. Appl Catal A: Gen. 2009;356:57–63.10.1016/j.apcata.2008.12.019Search in Google Scholar

[21] Gai S, Li C, Yang P, Lin J. Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications. Chem Rev. 2014;114:2343–89.10.1021/cr4001594Search in Google Scholar PubMed

[22] Trovarelli A, Fornasiero P. Catalysis by ceria and related materials. Vol. 12. 2nd ed. London: Imperial Colledge Press, 2013.10.1142/p870Search in Google Scholar

[23] Apostolov AT, Apostolova IN, Wesselinowa JM. Magnetic properties of rare earth doped SnO2, TiO2 and CeO2 nanoparticles. Phys Status Solidi (B). 2018;255:1800179.10.1002/pssb.201800179Search in Google Scholar

[24] Kumar V, Ntwaeaborwa OM, Soga T, Dutta V, Swart HC. Rare earth doped zinc oxide nanophosphor powder: a future material for solid state lighting and solar cells. ACS Photonics. 2017;4:2613–37.10.1021/acsphotonics.7b00777Search in Google Scholar

[25] Alam U, Khan A, Ali D, Bahnemann D, Muneer M. Comparative photocatalytic activity of sol–gel derived rare earth metal (La, Nd, Sm and Dy)-doped ZnO photocatalysts for degradation of dyes. RSC Adv. 2018;8:17582–94.10.1039/C8RA01638KSearch in Google Scholar

[26] Liu G, Chen X. Handbook on the physics and chemistry of rare earths. vol. 37. Amsterdam: Elsevier, 2007:99–169.10.1016/S0168-1273(07)37033-5Search in Google Scholar

[27] Esch F, Fabris S, Zhou L, Montini T, Africh C, Fornasiero P, et al. Electron localization determines defect formation on ceria substrates. Science. 2005;309:752–5.10.1126/science.1111568Search in Google Scholar

[28] Lawrence NJ, Brewer JR, Wang L, Wu T-S, Wells-Kingsbury J, Ihrig MM, et al. Defect engineering in cubic cerium oxide nanostructures for catalytic oxidation. Nano Lett. 2011;11:2666–71.10.1021/nl200722zSearch in Google Scholar

[29] Yuan Q, Duan -H-H, Li -L-L, Sun L-D, Zhang Y-W, Yan C-H. Controlled synthesis and assembly of ceria-based nanomaterials. J Colloid Interface Sci. 2009;335:151–67.10.1016/j.jcis.2009.04.007Search in Google Scholar

[30] Zhang D, Du X, Shi L, Gao R. Shape-controlled synthesis and catalytic application of ceria nanomaterials. Dalton Tran. 2012;41:14455–75.10.1039/c2dt31759aSearch in Google Scholar

[31] Bazzi R, Flores-Gonzalez MA, Louis C, Lebbou K, Dujardin C, Brenier A, et al. Synthesis and luminescent properties of sub-5-nm lanthanide oxides nanoparticles. J Lumin. 2003;102-103:445–50.10.1016/S0022-2313(02)00588-4Search in Google Scholar

[32] Abdelaal HM. Facile hydrothermal fabrication of nano-oxide hollow spheres using monosaccharides as sacrificial templates. ChemistryOpen. 2015;4:72–5.10.1002/open.201402096Search in Google Scholar

[33] Gao Y, Zhao Q, Fang Q, Xu Z. Facile fabrication and photoluminescence properties of rare-earth-doped Gd2O3 hollow spheres via a sacrificial template method. Dalton Tran. 2013;42:11082–91.10.1039/c3dt50917fSearch in Google Scholar

[34] Liu R, Wu K, Li L-D, Sun L-D, Yan C-H. Self-sacrificed two-dimensional REO(CH3COO) template-assisted synthesis of ultrathin rare earth oxide nanoplates. Inorg Chem Front. 2017;4:1182–6.10.1039/C7QI00201GSearch in Google Scholar

[35] Yada M, Mihara M, Mouri S, Kuroki M, Kijima T. Rare earth (Er, Tm, Yb, Lu) oxide nanotubes templated by dodecylsulfate assemblies. Adv Mater. 2002;14:309–13.10.1002/1521-4095(20020219)14:4<309::AID-ADMA309>3.0.CO;2-QSearch in Google Scholar

[36] Wu GS, Xie T, Yuan XY, Cheng BC, Zhang LD. An improved sol–gel template synthetic route to large-scale CeO2 nanowires. Mater Res Bull. 2004;39:1023–8.10.1016/j.materresbull.2004.03.006Search in Google Scholar

[37] Si R, Zhang Y-W, You L-P, Yan C-H. Rare-earth oxide nanopolyhedra, nanoplates, and nanodisks. Angew Chem Int Ed. 2005;44:3256–60.10.1002/anie.200462573Search in Google Scholar

[38] Panda AB, Glaspell G, El-Shall MS. Microwave synthesis and optical properties of uniform nanorods and nanoplates of rare earth oxides. J Phys Chem C. 2007;111:1861–1864.10.1021/jp0670283Search in Google Scholar

[39] Wang D, Kang Y, Ye X, Murray CB. Mineralizer-assisted shape-control of rare earth oxide nanoplates. Chem Mater. 2014;26:6328–32.10.1021/cm502301uSearch in Google Scholar

[40] Bierman MJ, Van Heuvelen KM, Schmeißer D, Brunold TC, Jin S. Ferromagnetic semiconducting euo nanorods. Adv Mater. 2007;19:2677–81.10.1002/adma.200602612Search in Google Scholar

[41] Hamm CM, Alff L, Albert B. Synthesis of microcrystalline Ce2O3 and formation of solid solutions between cerium and lanthanum oxides. Zeitschrift für anorganische und allgemeine Chemie. 2014;640:1050–3.10.1002/zaac.201300663Search in Google Scholar

[42] Goto A, Ohta Y, Kitayama M. Solid-state synthesis of metastable ytterbium (ii) oxide. J Mater Sci Cheml Eng. 2018;06:15.10.4236/msce.2018.63007Search in Google Scholar

[43] Si R, Zhang Y-W, Zhou H-P, Sun L-D, Yan C-H. Controlled-synthesis, self-assembly behavior, and surface-dependent optical properties of high-quality rare-earth oxide nanocrystals. Chem Mater. 2007;19:18–27.10.1021/cm0618392Search in Google Scholar

[44] Reddy BM, Kumar TV, Durgasri N. Catalysis by ceria and related materials. London: Imperial College Press, 2013:397–464.10.1142/9781848169647_0008Search in Google Scholar

[45] Cao C-Y, Cui Z-M, Chen C-Q, Song W-G, Cai W. Ceria hollow nanospheres produced by a template-free microwave-assisted hydrothermal method for heavy metal ion removal and catalysis. J Phys Chem C. 2010;114:9865–70.10.1021/jp101553xSearch in Google Scholar

[46] Wang X, Li Y. Synthesis and characterization of lanthanide hydroxide single-crystal nanowires. Angew Chem. 2002;114:4984–7.10.1002/ange.200290048Search in Google Scholar

[47] Zhou Y, Lawrence NJ, Wu T-S, Liu J, Kent P, Soo Y-L, et al. Pd/CeO2−x nanorod catalysts for CO oxidation: insights into the origin of their regenerative ability at room temperature. ChemCatChem. 2014;6:2937–46.10.1002/cctc.201402243Search in Google Scholar

[48] Yang J, Quan Z, Kong D, Liu X, Lin J. Y2O3:eu3+ Microspheres: solvothermal synthesis and luminescence properties. Cryst Growth Des. 2007;7:730–5.10.1021/cg060717jSearch in Google Scholar

[49] Devaraju MK, Yin S, Sato T. A rapid hydrothermal synthesis of rare earth oxide activated Y(OH)3 and Y2O3 nanotubes. Nanotechnology. 2009;20:305302.10.1088/0957-4484/20/30/305302Search in Google Scholar PubMed

[50] Xun W, Yadong L. Synthesis and characterization of lanthanide hydroxide single-crystal nanowires. Angew Chem Int Ed. 2002;41:4790–3.10.1002/anie.200290049Search in Google Scholar PubMed

[51] Xu A-W, Fang Y-P, You L-P, Liu H-Q. A simple method to synthesize Dy(OH)3 and Dy2O3 nanotubes. J Am Chem Soc. 2003;125:1494–5.10.1021/ja029181qSearch in Google Scholar PubMed

[52] David C, Seon F United States Patent; Grant, Rhone-Poulenc CHimie: France 1996; vol. US5496528A.Search in Google Scholar

[53] Mai H-X, Sun L-D, Zhang Y-W, Si R, Feng W, Zhang H-P, et al. Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes. J Phys Chem B. 2005;109:24380–5.10.1021/jp055584bSearch in Google Scholar PubMed

[54] Tang CC, Bando Y, Liu BD, Golberg D. Cerium oxide nanotubes prepared from cerium hydroxide nanotubes. Adv Mater. 2005;17:3005–9.10.1002/adma.200501557Search in Google Scholar

[55] Yan L, Yu R, Chen J, Xing X. Template-free hydrothermal synthesis of CeO2 nano-octahedrons and nanorods: investigation of the morphology evolution. Cryst Growth Des. 2008;8:1474–7.10.1021/cg800117vSearch in Google Scholar

[56] Wang X, Li L, Zhang YG, Wang S, Zhang Z, Fei L, et al. High-yield synthesis of NiO nanoplatelets and their excellent electrochemical performance. Cryst Growth Des. 2006;6:2163–5.10.1021/cg060156wSearch in Google Scholar

[57] Wu Q, Zhang F, Xiao P, Tao H, Wang X, Hu Z, et al. Great influence of anions for controllable synthesis of CeO2 nanostructures: from nanorods to nanocubes. J Phys Chem C. 2008;112:17076–80.10.1021/jp804140eSearch in Google Scholar

[58] Zhang Y-W, Liu J-H, Si R, Yan Z-G, Yan C-H. Phase evolution, texture behavior, and surface chemistry of hydrothermally derived scandium (hydrous) oxide nanostructures. J Phys Chem B. 2005;109:18324–31.10.1021/jp051870bSearch in Google Scholar PubMed

[59] Aruna ST, Mukasyan AS. Combustion synthesis and nanomaterials. Curr Opin Solid State Mater Sci. 2008;12:44–50.10.1016/j.cossms.2008.12.002Search in Google Scholar

[60] Taekyung Y, Byungkwon L, Younan X. Aqueous-phase synthesis of single-crystal ceria nanosheets. Angew Chem Int Ed. 2010;49:4484–7.10.1002/anie.201001521Search in Google Scholar PubMed

[61] Zhong L-S, Hu J-S, Cao A-M, Liu Q, Song W-G, Wan L-J. 3D Flowerlike ceria micro/nanocomposite structure and its application for water treatment and CO removal. Chem Mater. 2007;19:1648–55.10.1021/cm062471bSearch in Google Scholar

[62] Li H, Lu G, Dai Q, Wang Y, Guo Y, Guo Y. Hierarchical organization and catalytic activity of high-surface-area mesoporous ceria microspheres prepared via hydrothermal routes. ACS Appl Mater Interfaces. 2010;2:838–46.10.1021/am900829ySearch in Google Scholar PubMed

[63] Zhang Y, Zhang L, Deng J, Dai H, He H. Controlled synthesis, characterization, and morphology-dependent reducibility of ceria−zirconia−yttria solid solutions with nanorod-like, microspherical, microbowknot-like, and micro-octahedral shapes. Inorg Chem. 2009;48:2181–92.10.1021/ic802195jSearch in Google Scholar PubMed

[64] Yang Z, Han D, Ma D, Liang H, Liu L, Yang Y. Fabrication of monodisperse CeO2 hollow spheres assembled by nano-octahedra. Cryst Growth Des. 2010;10:291–5.10.1021/cg900898rSearch in Google Scholar

[65] Wang X, Zhuang J, Peng Q, Li Y. Hydrothermal synthesis of rare-earth fluoride nanocrystals. Inorg Chem. 2006;45:6661–5.10.1021/ic051683sSearch in Google Scholar PubMed

[66] Chen G, Chen F, Liu X, Ma W, Luo H, Li J, et al. Hollow spherical rare-earth-doped yttrium oxysulfate: a novel structure for upconversion. Nano Res. 2014;7:1093–102.10.1007/s12274-014-0472-5Search in Google Scholar

[67] Ren X, Zhang P, Han Y, Yang X, Yang H. The studies of Gd2O3: Eu3+hollow nanospheres with magnetic and luminescent properties. Mater Res Bull. 2015;72:280–5.10.1016/j.materresbull.2015.08.010Search in Google Scholar

[68] Zhang D, Fu H, Shi L, Pan C, Li Q, Chu Y, et al. Synthesis of CeO2 nanorods via ultrasonication assisted by polyethylene glycol. Inorg Chem. 2007;46:2446–51.10.1021/ic061697dSearch in Google Scholar PubMed

[69] Du Y, Zhang S, Wang J, Wu J, Dai H. Nb2O5 nanowires in-situ grown on carbon fiber: a high-efficiency material for the photocatalytic reduction of Cr(VI). J Environ Sci. 2018;66:358–67.10.1016/j.jes.2017.04.019Search in Google Scholar PubMed

[70] Fu L, Liu ZM, Liu YQ, Han BX, Wang JQ, Hu PA, et al. Coating carbon nanotubes with rare earth oxide multiwalled nanotubes. Adv Mater. 2004;16:350–2.10.1002/adma.200306213Search in Google Scholar

[71] Strandwitz NC, Stucky GD. Hollow microporous cerium oxide spheres templated by colloidal silica. Chem Mater. 2009;21:4577–82.10.1021/cm901516bSearch in Google Scholar

[72] Guo Z, Jian F, Du F. A simple method to controlled synthesis of CeO2 hollow microspheres. Scr Mater. 2009;61:48–51.10.1016/j.scriptamat.2009.03.005Search in Google Scholar

[73] Titirici -M-M, Antonietti M, Thomas A. A generalized synthesis of metal oxide hollow spheres using a hydrothermal approach. Chem Mater. 2006;18:3808–12.10.1021/cm052768uSearch in Google Scholar

[74] Yang S-C, Su W-N, Lin SD, Rick J, Hwang B-J. Preparation of highly dispersed catalytic Cu from rod-like CuO–CeO2 mixed metal oxides: suitable for applications in high performance methanol steam reforming. Catal Sci Technol. 2012;2:807–12.10.1039/c2cy00330aSearch in Google Scholar

[75] Sun C, Li H, Chen L. Nanostructured ceria-based materials: synthesis, properties, and applications. Energy Environ Sci. 2012;5:8475–505.10.1039/c2ee22310dSearch in Google Scholar

[76] Demazeau G. Solvothermal reactions: an original route for the synthesis of novel materials. J Mater Sci. 2008;43:2104–14.10.1007/s10853-007-2024-9Search in Google Scholar

[77] Chen G, Xu C, Song X, Xu S, Ding Y, Sun S. Template-free synthesis of single-crystalline-like CeO2 hollow nanocubes. Cryst Growth Des. 2008;8:4449–53.10.1021/cg800288xSearch in Google Scholar

[78] Chen G, Zhu F, Sun X, Sun S, Chen R. Benign synthesis of ceria hollow nanocrystals by a template-free method. CrystEngComm. 2011;13:2904–8.10.1039/c0ce00758gSearch in Google Scholar

[79] Chengyun W, Yitai Q, Xie Y, Changsui W, Yang L, Guiwen Z. A novel method to prepare nanocrystalline (7 nm) ceria. Mater Sci Eng: B. 1996;39:160–2.10.1016/0921-5107(95)01525-6Search in Google Scholar

[80] Tianshu Z, Hing P, Huang H, Kilner J. Ionic conductivity in the CeO2-Gd2O3 system (0.05≤Gd/Ce≤0.4) prepared by oxalate coprecipitation. Solid State Ionics. 2002;148:567–73.10.1016/S0167-2738(02)00121-2Search in Google Scholar

[81] Higashi K, Sonoda K, Ono H, Sameshima S, Hirata Y. Synthesis and sintering of rare-earth-doped ceria powder by the oxalate coprecipitation method. J Mater Res. 2011;14:957–67.10.1557/JMR.1999.0127Search in Google Scholar

[82] Li J-G, Ikegami T, Mori T, Wada T. Reactive Ce0.8RE0.2O1.9 (RE = La, Nd, Sm, Gd, Dy, Y, Ho, Er, and Yb) powders via carbonate coprecipitation. 1. Synthesis and characterization. Chem Mater. 2001;13:2913–20.10.1021/cm010148xSearch in Google Scholar

[83] Collins E, Voit SL, Vedder R. Evaluation of Coprecipitation Processes for the Synthesis of Mixed-Oxide Fuel Feedstock Materials, 2011.10.2172/1024695Search in Google Scholar

[84] Danks AE, Hall SR, Schnepp Z. The evolution of ‘sol–gel’ chemistry as a technique for materials synthesis. Mater Horiz. 2016;3:91–112.10.1039/C5MH00260ESearch in Google Scholar

[85] Boettcher SW, Fan J, Tsung C-K, Shi Q, Stucky GD. Harnessing the sol–gel process for the assembly of non-silicate mesostructured oxide materials. Acc Chem Res. 2007;40:784–92.10.1021/ar6000389Search in Google Scholar PubMed

[86] Hu J, Deng W, Chen D. Ceria hollow spheres as an adsorbent for efficient removal of acid dye. ACS Sustainable Chem Eng. 2017;5:3570–82.10.1021/acssuschemeng.7b00396Search in Google Scholar

[87] Aerogel market size worth $3.29 Billion by 2025|CAGR 22.6 %; grand view research: press room, 2018. https://www.grandviewresearch.com/press-release/global-aerogel-marketSearch in Google Scholar

[88] Yang J, Lukashuk L, Li H, Föttinger K, Rupprechter G, Schubert U. High surface area ceria for CO oxidation prepared from cerium t-butoxide by combined sol–gel and solvothermal processing. Catal Lett. 2014;144:403–12.10.1007/s10562-013-1162-8Search in Google Scholar PubMed PubMed Central

[89] Hajizadeh-Oghaz M, Razavi RS, Barekat M, Naderi M, Malekzadeh S, Rezazadeh M. Synthesis and characterization of Y2O3 nanoparticles by sol–gel process for transparent ceramics applications. J Sol–gel Sci Technol. 2016;78:682–91.10.1007/s10971-016-3986-3Search in Google Scholar

[90] Yuan Q, Liu Q, Song W-G, Feng W, Pu W-L, Sun L-D, et al. Ordered mesoporous Ce1-xZrxO2 solid solutions with crystalline walls. J Am Chem Soc. 2007;129:6698–9.10.1021/ja070908qSearch in Google Scholar PubMed

[91] Patra A, Friend CS, Kapoor R, Prasad PN. Upconversion in Er3+: ZrO2nanocrystals. J Phys Chem B. 2002;106:1909–12.10.1021/jp013576zSearch in Google Scholar

[92] Patra A, Friend CS, Kapoor R, Prasad PN. Fluorescence upconversion properties of Er3+-doped TiO2 and BaTiO3 nanocrystallites. Chem Mater. 2003;15:3650–5.10.1021/cm020897uSearch in Google Scholar

[93] Saha S, Chowdhury PS, Patra A. Luminescence of Ce3+ in Y2SiO5 nanocrystals: role of crystal structure and crystal size. J Phys Chem B. 2005;109:2699–702.10.1021/jp0462106Search in Google Scholar PubMed

[94] Hussein GA. Rare earth metal oxides : formation, characterization and catalytic activity Thermoanalytical and applied pyrolysis review. J Anal Appl Pyrolysis. 1996;37:111–49.10.1016/0165-2370(96)00941-2Search in Google Scholar

[95] Cao YC. Synthesis of square gadolinium-oxide nanoplates. J Am Chem Soc. 2004;126:7456–7.10.1021/ja0481676Search in Google Scholar PubMed

[96] Xiao X, Zhang DE, Zhang F, Gong JY, Zhang XB, Wang YH, et al. Synthesis of feather-like CeO2 microstructures and enzymatic electrochemical catalysis for trichloroacetic acid. Funct Mater Lett. 2018;11:1850036.10.1142/S1793604718500364Search in Google Scholar

[97] Imagawa H, Sun S. Controlled synthesis of monodisperse CeO2 nanoplates developed from assembled nanoparticles. J Phys Chem C. 2012;116:2761–5.10.1021/jp210324xSearch in Google Scholar

[98] Mai H-X, Zhang Y-W, Si R, Yan Z-G, Sun L-D, You L-P, et al. High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties. J Am Chem Soc. 2006;128:6426–36.10.1021/ja060212hSearch in Google Scholar PubMed

[99] Zhou J, Liu Z, Li F. Upconversion nanophosphors for small-animal imaging. Chem Soc Rev. 2012;41:1323–49.10.1039/C1CS15187HSearch in Google Scholar PubMed

[100] Hua M, Zhang S, Pan B, Zhang W, Lv L, Zhang Q. Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Mater. 2012;211-212:317–31.10.1016/j.jhazmat.2011.10.016Search in Google Scholar PubMed

[101] Li X, Zhang F, Zhao D. Lab on upconversion nanoparticles: optical properties and applications engineering via designed nanostructure. Chem Soc Rev. 2015;44:1346–78.10.1039/C4CS00163JSearch in Google Scholar

[102] Jeong J, Kim N, Kim M-G, Kim W. Generic synthetic route to monodisperse sub-10 nm lanthanide oxide nanodisks: a modified digestive ripening process. Chem Mater. 2016;28:172–9.10.1021/acs.chemmater.5b03616Search in Google Scholar

[103] Zhou Z, Hu R, Wang L, Sun C, Fu G, Gao J. Water bridge coordination on the metal-rich facets of Gd2O3 nanoplates confers high T1 relaxivity. Nanoscale. 2016;8:17887–94.10.1039/C6NR06444BSearch in Google Scholar PubMed PubMed Central

[104] Wang D, Kang Y, Doan-Nguyen V, Chen J, Küngas R, Wieder NL, et al. Synthesis and oxygen storage capacity of two-dimensional Ceria nanocrystals. Angew Chem Int Ed. 2011;50:4378–81.10.1002/anie.201101043Search in Google Scholar

[105] Jadhav KR, Shaikh IM, Ambade KW, Kadam VJ. Applications of microemulsion based drug delivery system. Curr Drug Deliv. 2006;3:267–73.10.2174/156720106777731118Search in Google Scholar

[106] Jha SK, Dey S, Karki R. Microemulsions- potential carrier for improved drug delivery. Asian J Biomedl Pharm Sci. 2011;1:5.Search in Google Scholar

[107] Winsor PA. Hydrotropy, solubilisation and related emulsification processes. Trans Faraday Soc. 1948;44:376–98.10.1039/tf9484400376Search in Google Scholar

[108] Capek I. Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions. Adv Colloid Interface Sci. 2004;110:49–74.10.1016/j.cis.2004.02.003Search in Google Scholar

[109] Burda C, Chen X, Narayanan R, El-Sayed MA. Chemistry and properties of nanocrystals of different shapes. Chem Rev. 2005;105:1025–102.10.1021/cr030063aSearch in Google Scholar

[110] Zarur AJ, Ying JY. Reverse microemulsion synthesis of nanostructured complex oxides for catalytic combustion. Nature. 2000;403:65.10.1038/47450Search in Google Scholar

[111] Gröger H, Kind C, Leidinger P, Roming M, Feldmann C. Nanoscale sollow spheres: microemulsion-based synthesis, structural characterization and container-type functionality. Materials. 2010;3:4355–86.10.3390/ma3084355Search in Google Scholar

[112] Solans C, García-Celma MJ. Surfactants for microemulsions. Curr Opin Colloid Interface Sci. 1997;2:464–71.10.1016/S1359-0294(97)80093-3Search in Google Scholar

[113] Bumajdad A, Zaki MI, Eastoe J, Pasupulety L. Microemulsion-based synthesis of CeO2 powders with high surface area and high-temperature stabilities. Langmuir. 2004;20:11223–33.10.1021/la040079bSearch in Google Scholar PubMed

[114] Kockrick E, Schrage C, Grigas A, Geiger D, Kaskel S. Synthesis and catalytic properties of microemulsion-derived cerium oxide nanoparticles. J Solid State Chem. 2008;181:1614–1620.10.1016/j.jssc.2008.04.036Search in Google Scholar

[115] Li F-T, Ran J, Jaroniec M, Qiao SZ. Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion. Nanoscale. 2015;7:17590–610.10.1039/C5NR05299HSearch in Google Scholar PubMed

[116] Varma A, Mukasyan AS, Rogachev AS, Manukyan KV. Solution combustion synthesis of nanoscale materials. Chem Rev. 2016;116:14493–586.10.1021/acs.chemrev.6b00279Search in Google Scholar PubMed

[117] Bianchetti MF, Juárez RE, Lamas DG, de Reca NE, Pérez L, Cabanillas E. Synthesis of nanocrystalline CeO2–Y2O3 powders by a nitrate–glycine gel-combustion process. J Mater Res. 2011;17:2185–8.10.1557/JMR.2002.0320Search in Google Scholar

[118] Kang W, Ozgur DO, Varma A. Solution combustion synthesis of high surface area CeO2 nanopowders for catalytic applications: reaction mechanism and properties. ACS Appl Nano Mater. 2018;1:675–85.10.1021/acsanm.7b00154Search in Google Scholar

[119] Liu Q, Dong X, Xiao G, Zhao F, Chen F. A novel electrode material for symmetrical SOFCs. Adv Mater. 2010;22:5478–82.10.1002/adma.201001044Search in Google Scholar PubMed

[120] Mello PA, Barin JS, Guarnieri RA. Microwave-assisted sample preparation for trace element analysis. Amsterdam: Elsevier, 2014:59–75.10.1016/B978-0-444-59420-4.00002-7Search in Google Scholar

[121] Adam D. Out of the kitchen. Nature. 2003;421:571.10.1038/421571aSearch in Google Scholar PubMed

[122] Gabriel C, Gabriel S, Grant EH, Grant EH, Halstead BS, Michael P. Mingos D. Dielectric parameters relevant to microwave dielectric heating. Chem Soc Rev. 1998;27:213–24.10.1039/a827213zSearch in Google Scholar

[123] Kumar E, Selvarajan P, Muthuraj D. Synthesis and characterization of CeO2 nanocrystals by solvothermal route. Mater Res. 2013;16:269–76.10.1590/S1516-14392013005000021Search in Google Scholar

[124] Khachatourian AM, Golestani-Fard F, Sarpoolaky H, Vogt C, Vasileva E, Mensi M, et al. Microwave synthesis of Y2O3: Eu3+nanophosphors: A study on the influence of dopant concentration and calcination temperature on structural and photoluminescence properties. J Lumin. 2016;169:1–8.10.1016/j.jlumin.2015.08.059Search in Google Scholar

[125] Feldman D. Sonochemistry, theory, applications and uses of ultrasound in chemistry, by Timothy J. Mason and J. Phillip Lorimer, Wiley-Interscience, New York, 1989, 252, Journal of Polymer Science Part C: Polymer Letters 1989, 27, 537-537.10.1002/pol.1989.140271309Search in Google Scholar

[126] Xu H, Zeiger BW, Suslick KS. Sonochemical synthesis of nanomaterials. Chem Soc Rev. 2013;42:2555–67.10.1039/C2CS35282FSearch in Google Scholar

[127] Sáez V, Mason T. Sonoelectrochemical synthesis of nanoparticles. Molecules. 2009;14:4284.10.3390/molecules14104284Search in Google Scholar PubMed PubMed Central

[128] Ohl CD, Kurz T, Geisler R, Lindau O, Lauterborn W. Bubble dynamics, shock waves and sonoluminescence. Philos Trans R Soc London. Ser A: Math Phys Eng Sci. 1999;357:269–94.10.1098/rsta.1999.0327Search in Google Scholar

[129] Zhong H-X, Ma Y-L, Cao X-F, Chen X-T, Xue Z-L. Preparation and characterization of flowerlike Y2(OH)5NO3•1.5H2O and Y2O3 and their efficient removal of Cr(VI) from aqueous solution. J Phys Chem C. 2009;113:3461–6.10.1021/jp809429bSearch in Google Scholar

[130] Therese GH, Kamath PV. Electrochemical synthesis of metal oxides and hydroxides. Chem Mater. 2000;12:1195–204.10.1021/cm990447aSearch in Google Scholar

[131] Golden T, Shang Y, Qang Q, Zhou T. Electrochemical synthesis of rare earth ceramic oxide coatings. Eds. London: IntechOpen, 2015.10.5772/61056Search in Google Scholar

[132] Switzer J. Electrochemical synthesis of ceramic films and powders. American Ceramic Society Bulletin, American Ceramic Society, 1987;66.Search in Google Scholar

[133] Zhou Y, Phillips RJ, Switzer JA. Electrochemical synthesis and sintering of nanocrystalline cerium(IV) oxide powders. J Am Ceram Soc. 1995;78:981–5.10.1111/j.1151-2916.1995.tb08425.xSearch in Google Scholar

[134] Aldykiewicz AJ, Davenport AJ, Isaacs HS. Studies of the formation of cerium-rich protective films using X-ray absorption near-edge spectroscopy and rotating disk electrode methods. J Electrochem Soc. 1996;143:147–54.10.1149/1.1836400Search in Google Scholar

[135] Lu X-H, Huang X, Xie S-L, Zheng D-Z, Liu Z-Q, Liang C-L, et al. Facile electrochemical synthesis of single crystalline CeO2 octahedrons and their optical properties. Langmuir. 2010;26:7569–73.10.1021/la904882tSearch in Google Scholar PubMed

[136] Lu X, Zhai T, Cui H, Shi J, Xie S, Huang Y, et al. Redox cycles promoting photocatalytic hydrogen evolution of CeO2 nanorods. J Mater Chem. 2011;21:5569–72.10.1039/c0jm04466kSearch in Google Scholar

[137] Lei C, Zhong-Hai L, Lei S, Jun B, Wen-Han L, Chen G. Ultrafine nano suspensions of rare earth oxides prepared by high-energy ball milling in pure water. Acta Phys Chim Sin. 2004;20:722–6.10.3866/PKU.WHXB20040711Search in Google Scholar

[138] Salah N, Habib SS, Khan ZH, Memic A, Azam A, Alarfaj E, et al. High-energy ball milling technique for ZnO nanoparticles as antibacterial material. Int J Nanomedicine. 2011;6:863–9.10.2147/IJN.S18267Search in Google Scholar

[139] Mooney JB, Radding SB. Spray pyrolysis processing. Annu Rev Mater Sci. 1982;12:81–101.10.1146/annurev.ms.12.080182.000501Search in Google Scholar

[140] Perednis D, Gauckler LJ. Thin film deposition using spray pyrolysis. J Electroceram. 2005;14:103–11.10.1007/s10832-005-0870-xSearch in Google Scholar

[141] Hao J, Cocivera M. Optical and luminescent properties of undoped and rare-earth-doped Ga2O3 thin films deposited by spray pyrolysis. J Phys D: Appl Phys. 2002;35:433.10.1088/0022-3727/35/5/304Search in Google Scholar

[142] Elidrissi B, Addou M, Regragui M, Monty C, Bougrine A, Kachouane A. Structural and optical properties of CeO2 thin films prepared by spray pyrolysis. Thin Solid Films. 2000;379:23–7.10.1016/S0040-6090(00)01404-8Search in Google Scholar

[143] Xu Y, Yan X-T. Chemical vapour deposition: an integrated engineering design for advanced materials. London: Springer, 2010:1–28.10.1007/978-1-84882-894-0Search in Google Scholar

[144] Creighton JR, Ho P. Chemical vapor deposition. Materials Park: ASM International, 2001.Search in Google Scholar

[145] Jiang Y, Song H, Ma Q, Meng G. Deposition of Sm2O3 doped CeO2 thin films from Ce(DPM)4 and Sm(DPM)3 (DPM=2,2,6,6-tetramethyl-3,5-heptanedionato) by aerosol-assisted metal–organic chemical vapor deposition. Thin Solid Films. 2006;510:88–94.10.1016/j.tsf.2005.12.184Search in Google Scholar

[146] Todokoro H, Ezumi M United States Patent; HItachi, Ltd.: US, 1996; vol. US005872358A:26.Search in Google Scholar

[147] Goldstein JI, Newbury DE, Echlin P, Joy DC, Lyman CE, Lifshin E, et al. Scanning electron microscopy and X-ray microanalysis. 3rd ed. Boston, MA: Springer US, 2003:21–60.10.1007/978-1-4615-0215-9_2Search in Google Scholar

[148] Takaya M, Shinohara Y, Serita F, Ono-Ogasawara M, Otaki N, Toya T, et al. Dissolution of functional materials and rare earth oxides into pseudo alveolar fluid. Ind Health. 2006;44:639–44.10.2486/indhealth.44.639Search in Google Scholar PubMed

[149] Menéndez CL, Zhou Y, Marin CM, Lawrence NJ, Coughlin EB, Cheung CL, et al. Preparation and characterization of Pt/Pt: CeO2−xnanorod catalysts for short chain alcohol electrooxidation in alkaline media. RSC Adv. 2014;4:33489–96.10.1039/C4RA03807JSearch in Google Scholar

[150] Park E-J, Choi J, Park Y-K, Park K. Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells. Toxicology. 2008;245:90–100.10.1016/j.tox.2007.12.022Search in Google Scholar PubMed

[151] Goldstein JI, Newbury DE, Echlin P, Joy DC, Lyman CE, Lifshin E, et al. Scanning electron microscopy and X-ray microanalysis. 3rd ed. Boston, MA: Springer US, 2003:61–98.10.1007/978-1-4615-0215-9_3Search in Google Scholar

[152] Zanfoni N, Avril L, Imhoff L, Domenichini B, Bourgeois S. Direct liquid injection chemical vapor deposition of platinum doped cerium oxide thin films. Thin Solid Films. 2015;589:246–51.10.1016/j.tsf.2015.05.037Search in Google Scholar

[153] Goldstein JI, Newbury DE, Echlin P, Joy DC, Lyman CE, Lifshin E, et al. Scanning electron microscopy and X-ray microanalysis. 3rd ed. Boston, MA: Springer US, 2003:271–96.10.1007/978-1-4615-0215-9_6Search in Google Scholar

[154] Goldstein JI, Newbury DE, Echlin P, Joy DC, Lyman CE, Lifshin E, et al. Scanning electron microscopy and X-ray microanalysis. 3rd ed. Boston, MA: Springer US, 2003:297–353.10.1007/978-1-4615-0215-9_7Search in Google Scholar

[155] Silicon drift detector energy dispersive spectroscopy (SDD EDS/EDX) setup. 2018 http://sam.zeloof.xyz/eds/Search in Google Scholar

[156] Men Y, Gnaser H, Zapf R, Hessel V, Ziegler C, Kolb G. Steam reforming of methanol over Cu/CeO2/γ-Al2O3 catalysts in a microchannel reactor. Appl Catal A: Gen. 2004;277:83–90.10.1016/j.apcata.2004.08.035Search in Google Scholar

[157] Williams DB, Carter CB. Transmission electron microscopy: a textbook for materials science. Boston, MA: Springer US, 2009:371–88.10.1007/978-0-387-76501-3_22Search in Google Scholar

[158] Williams DB, Carter CB. Transmission electron microscopy: a textbook for materials science. Boston, MA: Springer US, 2009:389–405.10.1007/978-0-387-76501-3_23Search in Google Scholar

[159] Haigh SJ, Young NP, Sawada H, Takayanagi K, Kirkland AI. Imaging the active surfaces of cerium dioxide nanoparticles. ChemPhysChem. 2011;12:2397–9.10.1002/cphc.201100376Search in Google Scholar

[160] Lin Y, Wu Z, Wen J, Poeppelmeier KR, Marks LD. Imaging the atomic surface structures of CeO2 nanoparticles. Nano Lett. 2014;14:191–6.10.1021/nl403713bSearch in Google Scholar

[161] Liu X, Zhang C, Li Y, Niemantsverdriet JW, Wagner JB, Hansen TW. Environmental transmission electron microscopy (ETEM) studies of single iron nanoparticle carburization in synthesis gas. ACS Catal. 2017;7:4867–75.10.1021/acscatal.7b00946Search in Google Scholar

[162] Wagner JB, Cavalca F, Damsgaard CD, Duchstein LDL, Hansen TW. Exploring the environmental transmission electron microscope. Micron. 2012;43:1169–75.10.1016/j.micron.2012.02.008Search in Google Scholar

[163] Gao P, Kang Z, Fu W, Wang W, Bai X, Wang E. Electrically driven redox process in cerium oxides. J Am Chem Soc. 2010;132:4197–201.10.1021/ja9086616Search in Google Scholar

[164] Hatsujiro H, Toshio N, Terukazu E, Kishio F. High temperature gas reaction specimen chamber for an electron microscope. Jpn J Appl Phys. 1968;7:946.10.1143/JJAP.7.946Search in Google Scholar

[165] Boyes ED, Gai PL. Environmental high resolution electron microscopy and applications to chemical science. Ultramicroscopy. 1997;67:219–32.10.1016/S0304-3991(96)00099-XSearch in Google Scholar

[166] Williams DB, Carter CB. Transmission electron microscopy: a textbook for materials science. Boston, MA: Springer US, 2009:511–32.10.1007/978-0-387-76501-3_29Search in Google Scholar

[167] Williams DB, Carter CB. Transmission electron microscopy: a textbook for materials science. Boston, MA: Springer US, 2009:141–71.10.1007/978-0-387-76501-3_9Search in Google Scholar

[168] Pennycook SJ, Jesson DE. High-resolution Z-contrast imaging of crystals. Ultramicroscopy. 1991;37:14–38.10.1016/0304-3991(91)90004-PSearch in Google Scholar

[169] Howie A. Image contrast and localized signal selection techniques. J Microsc. 1979;117:11–23.10.1111/j.1365-2818.1979.tb00228.xSearch in Google Scholar

[170] Zhou Y, Menéndez CL, Guinel MJ, Needels EC, González-González I, Jackson DL, et al. Influence of nanostructured ceria support on platinum nanoparticles for methanol electrooxidation in alkaline media. RSC Adv. 2014;4:1270–5.10.1039/C3RA45829FSearch in Google Scholar

[171] Krumeich F, Müller E, Wepf RA, Nesper R. Characterization of catalysts in an aberration-corrected scanning transmission electron microscope. J Phys Chem C. 2011;115:1080–3.10.1021/jp105997hSearch in Google Scholar

[172] Egerton RF. Electron energy-loss spectroscopy in the electron microscope. Boston, MA: Springer US, 2011:1–28.10.1007/978-1-4419-9583-4Search in Google Scholar

[173] Egerton RF. Electron energy-loss spectroscopy in the electron microscope. Boston, MA: Springer US, 2011:293–397.10.1007/978-1-4419-9583-4_5Search in Google Scholar

[174] Williams DB, Carter CB. Transmission electron microscopy: a textbook for materials science. Boston, MA: Springer US, 2009:679–98.10.1007/978-0-387-76501-3_37Search in Google Scholar

[175] Mullins DR, Overbury SH, Huntley DR. Electron spectroscopy of single crystal and polycrystalline cerium oxide surfaces. Surf Sci. 1998;409:307–19.10.1016/S0039-6028(98)00257-XSearch in Google Scholar

[176] Hansma PK, Tersoff J. Scanning tunneling microscopy. J Appl Phys. 1987;61:R1–R24.10.1063/1.338189Search in Google Scholar

[177] Binnig G, Rohrer H. Scanning tunneling microscopy. Surf Sci. 1983;126:236–44.10.1007/978-1-4615-7682-2_1Search in Google Scholar

[178] Chen CJ. Introduction to scanning tunneling microscopy. Oxford: Oxford University Press, 2007.10.1093/acprof:oso/9780199211500.001.0001Search in Google Scholar

[179] Meyer E, Hug HJ, Bennewitz R. Scanning probe microscopy: the lab on a tip. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004:15–44.10.1007/978-3-662-09801-1_2Search in Google Scholar

[180] Binnig G, Quate CF, Gerber C. Atomic force microscope. Phys Rev Lett. 1986;56:930–3.10.1007/978-94-011-1812-5_4Search in Google Scholar

[181] Meyer E, Hug HJ, Bennewitz R. Scanning probe microscopy: the lab on a tip. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004:45–95.10.1007/978-3-662-09801-1_3Search in Google Scholar

[182] Fabris S, Vicario G, Balducci G, de Gironcoli S, Baroni S. Electronic and atomistic structures of clean and reduced ceria surfaces. J Phys Chem B. 2005;109:22860–7.10.1021/jp0511698Search in Google Scholar PubMed

[183] Torbrügge S, Reichling M, Ishiyama A, Morita S, Custance Ó. Evidence of subsurface oxygen vacancy ordering on reduced CeO2(111). Phys Rev Lett. 2007;99:056101.10.1103/PhysRevLett.99.056101Search in Google Scholar PubMed

[184] Epp J. Materials characterization using nondestructive evaluation (NDE) methods. Sawston: Woodhead Publishing, 2016:81–124.10.1016/B978-0-08-100040-3.00004-3Search in Google Scholar

[185] Bragg WH, Bragg WL. The reflection of X-rays by crystals. Proc R Soc London Ser A. 1913;88:428–38.10.4159/harvard.9780674366701.c30Search in Google Scholar

[186] Granqvist G. Award Memory Speech. 1915 https://www.nobelprize.org/prizes/physics/1915/ceremony-speech/Search in Google Scholar

[187] He BB. Introduction to two-dimensional X-ray diffraction. Powder Diffr. 2003;18:71–85.10.1154/1.1577355Search in Google Scholar

[188] International Centre for Diffraction Data. 2016 https://en.wikipedia.org/wiki/International_Centre_for_Diffraction_DataSearch in Google Scholar

[189] Inorganic Crystal Structure Database. https://cds.dl.ac.uk/cds/datasets/crys/icsd/llicsd.htmlSearch in Google Scholar

[190] Samsonov GV. The oxide handbook. Boston, MA: Springer US, 1973:9–35.10.1007/978-1-4615-9597-7_2Search in Google Scholar

[191] Scherrer P. Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse. 1918;1918:98–100.10.1007/978-3-662-33915-2_7Search in Google Scholar

[192] Langford JI, Wilson AJ. Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J Appl Crystallogr. 1978;11:102–13.10.1107/S0021889878012844Search in Google Scholar

[193] Bourja L, Bakiz B, Benlhachemi A, Ezahri M, Villain S, Gavarri JR. Synthesis and characterization of nanosized Ce1−xBixO2−δ solid solutions for catalytic applications. J Taibah Univ Sci. 2010;4:1–8.10.1016/S1658-3655(12)60021-1Search in Google Scholar

[194] Lussier JA, Souza DH, Whitfield PS, Bieringer M. Structural competition and reactivity of rare-earth oxide phases in YxPr2-xO3 (0.05 ≤ x ≤ 0.80). Inorg Chem. 2018;57:14106.10.1021/acs.inorgchem.8b01911Search in Google Scholar

[195] Swartz WE. X-ray photoelectron spectroscopy. Anal Chem. 1973;45:788A-800a.10.1021/ac60331a001Search in Google Scholar

[196] Watts F. Surface science techniques. vol. 46. Oxford, U.K.: Elsevier, 1994:5–23.Search in Google Scholar

[197] Alford TL, Feldman LC, Mayer JW. Fundamentals of nanoscale film analysis. Boston, MA: Springer US, 2007:199–213.Search in Google Scholar

[198] Karslıoğlu O, Bluhm H. Operando research in heterogeneous catalysis. Frenken J, Groot I, editors. Cham: Springer International Publishing, 2017:31–57.10.1007/978-3-319-44439-0_2Search in Google Scholar

[199] Hollander JM, Jolly WL. X-ray photoelectron spectroscopy. Acc Chem Res. 1970;3:193–200.10.1021/ar50030a003Search in Google Scholar

[200] Haasch RT. Practical materials characterization. New York, NY: Springer, 2014:93–132.10.1007/978-1-4614-9281-8_3Search in Google Scholar

[201] Hubin A, Terryn H. Comprehensive analytical chemistry. vol. 42. Amsterdam: Elsevier, 2004:277–312.10.1016/S0166-526X(04)80010-2Search in Google Scholar

[202] Light Sources of the World. 2015 http://www.light2015.org/Home/LearnAboutLight/Lightsources-of-the-world.htmlSearch in Google Scholar

[203] Newville M. Fundamentals of XAFS. Chicago, 2004:V1.7. http://xafs.org/Tutorials?action=AttachFile&do= get&target=Newville_xas_fundamentals.pdf.Search in Google Scholar

[204] IXAS wiki. http://www.ixasportal.net/wiki/TopPageSearch in Google Scholar

[205] XAFS. http://xafs.org/Search in Google Scholar

[206] Dietzek B, Cialla D, Schmitt M, Popp J. Confocal Raman microscopy. Dieing T, Hollricher O, Toporski J, editors. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011:21–42.10.1007/978-3-642-12522-5_2Search in Google Scholar

[207] Wachs IE. Raman and IR studies of surface metal oxide species on oxide supports: supported metal oxide catalysts. Catal Today. 1996;27:437–55.10.1016/0920-5861(95)00203-0Search in Google Scholar

[208] Guo M, Lu J, Wu Y, Wang Y, Luo M. UV and visible raman studies of oxygen vacancies in rare-earth-doped ceria. Langmuir. 2011;27:3872–7.10.1021/la200292fSearch in Google Scholar

[209] Hollricher O. Confocal Raman microscopy. Berlin, Heidelberg: Springer, 2011:43–60.10.1007/978-3-642-12522-5Search in Google Scholar

[210] Raman spectroscopy- overview and product solutions for Raman spectroscopy. 2010 https://www.azooptics.com/Article.aspx?ArticleID=309Search in Google Scholar

[211] Iida, A. Synchrotron Radiation X-Ray Fluorescence Spectrometry. In Meyers RA, editor. Encyclopedia of Analytical Chemistry, 2013. doi:10.1002/9780470027318.a9329.10.1002/9780470027318.a9329Search in Google Scholar

[212] Knöchel A, Petersen W, Tolkiehn G. X-ray fluorescence spectrometry with synchrotron radiation. Anal Chim Acta. 1985;173:105–16.10.1016/S0003-2670(00)84948-XSearch in Google Scholar

[213] Zhu Y, Cai X, Li J, Zhong Z, Huang Q, Fan C. Synchrotron-based X-ray microscopic studies for bioeffects of nanomaterials. Nanomed: Nanotechnol Biol Med. 2014;10:515–24.10.1016/j.nano.2013.11.005Search in Google Scholar

[214] Thommes M, Kaneko K, Neimark Alexander V, Olivier James P, Rodriguez-Reinoso F, Rouquerol J, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem. 2015;87:1051.10.1515/pac-2014-1117Search in Google Scholar

[215] Fadonia M, Lucarelli L. Temperature programmed desorption, reduction, oxidation and flow chemisorption for the characterisation of heterogeneous catalysts. Theoretical aspects, instrumentation and applications. Stud Surf Sci Catal. 1999;120A:177–225.10.1016/S0167-2991(99)80553-9Search in Google Scholar

[216] Bozek F, Mares J, Bozek M, Huzlik J Proceedings of the 5th WSEAS International Conference on Waste Management, Water Pollution, Air Pollution, Indoor Climate Iasi, Romania, 2011:170–5.Search in Google Scholar

[217] Xu C, Qu X. Cerium oxide nanoparticle: a remarkably versatile rare earth nanomaterial for biological applications. Npg Asia Mater. 2014;6:e90.10.1038/am.2013.88Search in Google Scholar

[218] Caputo F, Mameli M, Sienkiewicz A, Licoccia S, Stellacci F, Ghibelli L, et al. A novel synthetic approach of cerium oxide nanoparticles with improved biomedical activity. Sci Rep. 2017;7:4636.10.1038/s41598-017-04098-6Search in Google Scholar PubMed PubMed Central

[219] Kahru A, Dubourguier H-C. From ecotoxicology to nanoecotoxicology. Toxicology. 2010;269:105–19.10.1016/j.tox.2009.08.016Search in Google Scholar PubMed

[220] Gao J, Li R, Wang F, Liu X, Zhang J, Hu L, et al. Determining the cytotoxicity of rare earth element nanoparticles in macrophages and the involvement of membrane damage. Environ Sci Technol. 2017;51:13938–48.10.1021/acs.est.7b04231Search in Google Scholar PubMed

[221] Ma Y, Kuang L, He X, Bai W, Ding Y, Zhang Z, et al. Effects of rare earth oxide nanoparticles on root elongation of plants. Chemosphere. 2010;78:273–9.10.1016/j.chemosphere.2009.10.050Search in Google Scholar PubMed


Supplementary Material

The online version of this article offers supplementary material (DOI:https://doi.org/10.1515/psr-2018-0084).


Published Online: 2019-11-20

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 10.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/psr-2018-0084/html
Scroll to top button