Startseite Investigation of the aromaticity of mono, di, tri and tetraazaphenanthrene derivatives
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Investigation of the aromaticity of mono, di, tri and tetraazaphenanthrene derivatives

  • Erhan Öztürk , Zeynep Turhan İrak , Necdet Karakoyun ORCID logo , Ayşegül Gümüş ORCID logo und Selçuk Gümüş ORCID logo EMAIL logo
Veröffentlicht/Copyright: 20. November 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this chapter mono, di, tri and tetraaza substituted phenanthrene derivatives have been investigated computationally with B3LYP/6-31 + G(d,p) level of theory. Substitution of carbon atom of the main structure with nitrogen obviously disturbs the aromaticity, indeed it decreases it. Thus, the idea of regaining of the aromaticity back by using electron withdrawing groups came across. As a result of the computational calculations, energetically most unfavored structures have been found to be those where aza substitutiona are vicinal. Secondly, the aromaticities of the present species depend on the position of the centric substituent. In addition, the effect position of the side substituent has been considered. The system becomes more aromatic (possess greater negative NICS values or smaller HOMA value) when the electron withdrawing atoms or groups are adjacent to the centrically substituted heteroatoms.

References

[1] Rabjohn N. Organic syntheses, collective, vol. 4. Washington, D.C.: The National Academies Press, 1963.Suche in Google Scholar

[2] Kalescky R, Kraka E, Cremer D. Description of Aromaticity with the help of vibrational spectroscopy: anthracene and phenanthrene. J Phys Chem A. 2014;118:223–37.10.1021/jp4092514Suche in Google Scholar

[3] Cheucci G. Hydrodehalogenation of halogenated pyridines and quinolines by sodium borohydride/N,N,N0,N0–tetramethylethylenediamine under palladium catalysis. Tet Lett. 2010;51:1562–5.10.1016/j.tetlet.2010.01.053Suche in Google Scholar

[4] Shestakov AN, Pankova AS, Kuznetsov MA. Cycloisomerization – a straightforward way to benzo[h]quinolines and benzo[c]acridines. Chem Heterocycl Compd. 2017;53:1103–13.10.1007/s10593-017-2179-5Suche in Google Scholar

[5] Mamane V, Louerat F, Lehl J, Abboud MFY. A general and efficient method for the synthesis of benzo–(iso)quinoline derivatives. Tetrahedron. 2008;64:10699–705.10.1016/j.tet.2008.09.015Suche in Google Scholar

[6] Ball CJ, Gilmore J, Willis MC. Copper–catalyzed tandem C_N bond formation: an efficient annulative synthesis of functionalized cinnolines. Angew Chem Int Ed. 2012;51:5718–22.10.1002/anie.201201529Suche in Google Scholar

[7] Bencini A, Lippolis V. 1,10–Phenanthroline: A versatile building block for the construction of ligands for various purposes. Coord Chem Rev. 2010;254:2096–180.10.1016/j.ccr.2010.04.008Suche in Google Scholar

[8] Summers LA. The phenanthrolines. Adv Heterocycl Chem. 1978;22:1–69.10.1016/S0065-2725(08)60102-6Suche in Google Scholar

[9] Sammes PG, Yahioglu G. 1,10–phenanthroline: a versatile ligand. Chem Soc Rev. 1994;23:327–34.10.1039/cs9942300327Suche in Google Scholar

[10] Luman CR, Castellano FN. Phenanthroline Ligands. In: McCleverty JA, Meyer TJ, Lever ABP, editors. Comprehensive coordination chemistry, vol. II. Oxford, UK: Elsevier, 2004:25.Suche in Google Scholar

[11] Minkin VI, Glukhovtsev MN, Simkin BY. Aromaticity and antiaromaticity:electronic and structural aspects. New York: Wiley, 1994.Suche in Google Scholar

[12] Schleyer PR, Jiao H. What is aromaticity? Pure Appl Chem. 1996;68:209–18.10.1351/pac199668020209Suche in Google Scholar

[13] Glukhovtsev MN. Aromaticity today: energetic and structural criteria. J Chem Educ. 1997;74:132–6.10.1021/ed074p132Suche in Google Scholar

[14] Krygowski TM, Cyranski MK, Czarnocki Z, Hafelinger G, Katritzky AR. Aromaticity: a theoretical concept of immense practical importance. Tetrahedron. 2000;56:1783–96.10.1016/S0040-4020(99)00979-5Suche in Google Scholar

[15] Schleyer PR. Introduction: aromaticity. Chem Rev. 2001;101:1115–18.10.1021/cr0103221Suche in Google Scholar

[16] Cyranski MK, Krygowski TM, Katritzky AR, Schleyer PR. To what extent can aromaticity be defi ned uniquely? J Org Chem. 2002;67:1333–8.10.1021/jo016255sSuche in Google Scholar

[17] Schleyer PR, Maerker C, Dransfeld A, Jiao H, Hommes NJRE. Nucleus independent chemical shifts: a simple and effi cient aromaticity probe. J Am Chem Soc. 1996;118:6317–18.10.1021/ja960582dSuche in Google Scholar

[18] Jiao H, Schleyer PR. Aromaticity of pericyclic reaction transition structures: magnetic evidence. J Phys Org Chem. 1998;11:655–62.10.1002/(SICI)1099-1395(199808/09)11:8/9<655::AID-POC66>3.0.CO;2-USuche in Google Scholar

[19] Schleyer PR, Kiran B, Simion DV, Sorensen TS. Does Cr(CO)3 complexation reduce the aromaticity of benzene? J Amer Chem Soc. 2000;122:510–13.10.1021/ja9921423Suche in Google Scholar

[20] Quinonero D, Garau C, Frontera A, Ballaster P, Costa A, Deya PM. Quantifi cation of aromaticity in oxocarbons: the problem of the fi ctitious ‘nonaromatic’ reference system. Chem Eur J. 2002;8:433–8.10.1002/1521-3765(20020118)8:2<433::AID-CHEM433>3.0.CO;2-TSuche in Google Scholar

[21] Patchkovskii S, Thiel W. Nucleus–independent chemical shifts from semiempirical calculations. J Mol Model. 2002;6:67–75.10.1007/PL00010736Suche in Google Scholar

[22] Mohajeri A, Shahamirian M. Substituent effect on local aromaticity in mono and disubstituted heterocyclic analogs of naphthalene. J Phys Org Chem. 2010;23:440–50.10.1002/poc.1619Suche in Google Scholar

[23] Krygowski TM, Palusiak M, Płonka A, Zachara–Horeglad JE. Relationship between substituent effect and aromaticity – Part III: naphthalene as a transmitting moiety for substituent effect. J Phys Org Chem. 2007;20:297–306.10.1002/poc.1127Suche in Google Scholar

[24] Krygowski TM, Cyranski MK. Structural aspects of aromaticity. Chem Rev. 2001;101:1385−419.10.1021/cr990326uSuche in Google Scholar PubMed

[25] Gümüş S. The aromaticity of substituted diazanaphthalenes. Comput Theor Chem. 2011;963:263–7.10.1016/j.comptc.2010.10.026Suche in Google Scholar

[26] Stewart JJP. Optimization of parameters for semi empirical methods I. Method J Comput Chem. 1989;10:209–20.10.1002/jcc.540100208Suche in Google Scholar

[27] Stewart JJP. Optimization of parameters for semi empirical methods II. Applications J Comput Chem. 1989;10:221–64.10.1002/jcc.540100209Suche in Google Scholar

[28] Leach AR. Molecular modelling. Essex: Longman, 1997.Suche in Google Scholar

[29] Kohn W, Sham LJ. Self–consistent equations including exchange and correlation effects. Phys Rev. 1965;140:1133–8.10.1103/PhysRev.140.A1133Suche in Google Scholar

[30] Parr RG, Yang W. Density functional theory of atoms and molecules. London: Oxford University Press, 1989.Suche in Google Scholar

[31] Becke AD. Density–functional exchange–energy approximation with correct asymptotic behavior. Phys Rev A. 1988;38:3098–100.10.1103/PhysRevA.38.3098Suche in Google Scholar

[32] Vosko SH, Vilk L, Nusair M. Accurate spin–dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys. 1980;58:1200–11.10.1139/p80-159Suche in Google Scholar

[33] Lee C, Yang W, Parr RG. Development of the Colle–Salvetti correlation–energy formula into a functional of the electron density. Phys Rev B. 1988;37:785–9.10.1103/PhysRevB.37.785Suche in Google Scholar

[34] Scuseria GE. Comparison of coupled–cluster results with a hybrid of Hartree–Fock and density functional theory. J Chem Phys. 1992;97:7528–30.10.1063/1.463977Suche in Google Scholar

[35] Sosa C, Lee C. Density functional description of transition structures using nonlocal corrections. silylene insertion reactions into the hydrogen molecule. J Chem Phys. 1993;98:8004–11.10.1063/1.464554Suche in Google Scholar

[36] Wilson PJ, Amos RD, Handy NC. Density functional predictions for metal and ligand nuclear shielding constants in diamagnetic closed–shell first–row transition–metal complexes. Phys Chem Chem Phys. 2000;2:187–94.10.1039/a907167iSuche in Google Scholar

[37] Pulay P, Hinton JF, Wolinski K. Nuclear magnetic shieldings and molecular structure. In: Tossel JA, editor. NATO ASI series C, vol. 386. Netherlands: Kluwer, 1993.Suche in Google Scholar

[38] Hehre WJ, Radom L, Schleyer PR, Pople JA. Ab initio molecular orbital theory. New York: Wiley, 1986.Suche in Google Scholar

[39] Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Wallingford, CT: Gaussian Inc., 2009.Suche in Google Scholar

[40] Yu L, Zhou X, Wu D, Xiang H. Synthesis of phenazines by Cu–catalyzed homocoupling of 2–halogen anilines in water. J Organometall Chem. 2012;705:75–8.10.1016/j.jorganchem.2011.12.030Suche in Google Scholar

[41] Stanger A. What is … aromaticity: a critique of the concept of aromaticity—can it really be defined? Chem Commun. 2009;15:1939–47.10.1039/b816811cSuche in Google Scholar PubMed

Published Online: 2019-11-20

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 11.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/psr-2018-0176/html
Button zum nach oben scrollen