Abstract
Green chemistry education requires learning about the scientific facts of chemistry of the environment and also applying the implications of this knowledge to human lifestyles. All students need to learn how chemistry works as a physical science in its part of the ecological system of our planet. Green chemistry also must be modeled as a lifestyle so that this knowledge can be properly applied. In this chapter, the author describes how various green chemistry topics have been incorporated into the science curriculum at Greenhills School. Furthermore, the author also relates how this knowledge is applied in the school setting so that global sustaining principles can be caught by the next generation of our planet’s stewards.
Acknowledgements
While I am the main “author” of this chapter, I must recognize and acknowledge the contribution of my colleagues at Greenhills School in Ann Arbor, Michigan. Much of what I have written is about how the school community, collectively, teaches and models green chemistry education. This has been the underlying theme of the science department at Greenhills School since its start in 1968. My examples come from courses taught throughout the science curriculum at the school. Just as it takes a village to raise a child, it takes a school community to educate them to be good stewards of our planet.
© 2018 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- The environmental fate of synthetic organic chemicals
- Forensics: evidence examination via Raman spectroscopy
- Optical spectroscopy as a tool for battery research
- Selenium and Tellurium Electrophiles in Organic Synthesis
- Introduction to cheminformatics for green chemistry education
- Analyzing Raman spectroscopic data
- Green chemistry in secondary school
- Recent advances in the self-assembly of polynuclear metal–selenium and –tellurium compounds from 14–16 reagents
- Physicochemical approaches to gold and silver work, an overview: Searching for technologies, tracing routes, attempting to preserve
Artikel in diesem Heft
- The environmental fate of synthetic organic chemicals
- Forensics: evidence examination via Raman spectroscopy
- Optical spectroscopy as a tool for battery research
- Selenium and Tellurium Electrophiles in Organic Synthesis
- Introduction to cheminformatics for green chemistry education
- Analyzing Raman spectroscopic data
- Green chemistry in secondary school
- Recent advances in the self-assembly of polynuclear metal–selenium and –tellurium compounds from 14–16 reagents
- Physicochemical approaches to gold and silver work, an overview: Searching for technologies, tracing routes, attempting to preserve