Abstract
This chapter highlights the utility of electrophilic achiral and chiral organoselenium reagents in organic synthesis. A range of reactions from alkene functionalizations, the functionalization of aliphatic and aromatic C–H bonds using stoichiometric and catalytic approaches as well as rearrangement reactions are described. In addition, the utility of organotellurium reagents in organic synthesis is covered in this chapter.
References
[1] (a) Flohe L, Gunzler EA, Hh S. Glutathione peroxidase: a selenoenzyme. FEBS Lett. 1973;32:132–4; (b) Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG. Selenium: biochemical role as a component of glutathione peroxidase. Science. 1973;179:588–90; (c) Behne D, Kyriakopoulos A, Meinhold H, Kohrle J. Identification of type I iodothyronine 5ʹ-deiodinase as a selenoenzyme. Biochem Biophys Res Commun. 1990;173:1143–9; (d) Tamura T, Stadtman TC. A new selenoprotein from human lung adenocarcinoma cells: purification, properties, and thioredoxin reductase activity. Proc Natl Acad Sci USA. 1996;93:1006–10; (e) Thomas SP, Satheeshkumar K, Mugesh G, Row TNG. Unusually short chalcogen bonds involving organoselenium: insights into the Se–N bond cleavage mechanism of the antioxidant ebselen and analogues. Chem Eur J. 2015;21:6793–800; (f) Wirth T. Small organoselenium compounds: more than just glutathione peroxidase mimics. Angew Chem. 2015;127:10212–4; Angew Chem Int Ed. 2015;54:10074–6; (g) Akhoon SA, Naqvi, T Nisar S, Rizvi MA. Synthetic organo-selenium compounds in medicinal domain: a Review. Asian J Chem. 2015;27:2745–52; (h) Bhowmick D, Srivastava S, D’Silva P, Mugesh G. Highly efficient glutathione peroxidase and peroxiredoxin mimetics protect mammalian cells against oxidative damage. Angew Chem Int Ed. 2015;54:8569–73.10.1016/0014-5793(73)80755-0Search in Google Scholar PubMed
[2] (a) Sharpless KB, Lauer RF. Mild procedure for the conversion of epoxides to allylic alcohols. First organoselenium reagent. J Am Chem Soc. 1973;95:2697–9; (b) Sonnet PE. Olefin inversion. Tetrahedron 1980;36:557–604; (c) Clive DLJ, Kale VN. Generation of carbon-carbon double bonds from β-oxygenated phenylseleno, phenylthio, and iodo species. A new use for the chlorotrimethylsilane-sodium iodide reagent. J Org Chem. 1981;46:231–4; (d) Schmid H. A standard definition of the term “thiranium ion” phosphorus sulfur silicon relat elem. 1988;36:197–200; (e) Mihelich ED. Stereoselective synthesis of highly substituted tetrahydrofurans through acid-catalyzed ring closure of selenyl diols. J Am Chem Soc. 1990;112:8995–7. (f) Wirth T. Chiral selenium compounds in organic synthesis. Tetrahedron. 1999;55:1–28.10.1021/ja00789a055Search in Google Scholar
[3] (a) Song CE, Oh CR, Roh EJ, Choo DJ. Cr(salen) catalysed asymmetric ring opening reactions of epoxides in room temperature ionic liquids. Chem Commun. 2000;1743–4; (b) Wirth T. Organoselenium chemistry in stereoselective reactions. Angew Chem Int Ed. 2000;39:3740–9; (c) Yang M, Zhu C, Yuan F, Huang Y, Pan Y. Enantioselective ring-opening reaction of meso-epoxides with ArSeH catalyzed by heterometallic Ti−Ga−Salen system. Org Lett. 2005;7:1927–30; (c) Browne DM, Wirth T. New developments with chiral electrophilic selenium reagents. Curr Org Chem. 2006;10:1893–903. (d) Santi C, Santoro S, Testaferri L, Tiecco M. A simple zinc-mediated preparation of selenols. Synlett. 2008:1471–4; (e) Freudendahl DM, Shahzad SA, Wirth T. Recent advances in organoselenium chemistry. Eur J Org Chem. 2009;1649–64; (f) Shahzad SA, Wirth T. Fast synthesis of benzofluorenes by selenium-mediated carbocyclizations. Angew Chem Int Ed. 2009;48:2588–91; (g) Rodrigues OED, Souza D, Soares LC, Dornelles L, Burrow RA, Appelt HR, et al. Stereoselective synthesis of selenosteroids. Tetrahedron Lett. 2010;51:2237–40; (h) Waskow B, Mano RA, Giacomini RX, Oliveira DH, Schumacher RF, Wilhelm EA, et al. Synthesis and beckmann rearrangement of novel (Z)-2-organylselanyl ketoximes: promising agents against grapevine anthracnose infection. Tetrahedron Lett. 2016;57:5575–80; (i) Wilkins LC, Günther BAR, Walther M, Lawson JR, Wirth T, Melen RL, et al. Contrasting frustrated Lewis pair reactivity with selenium- and boron-based Lewis acids. Angew Chem Int Ed. 2016;55:11292–5.10.1039/b004645kSearch in Google Scholar
[4] (a) Braga AL, Ludtke DS, Vargas F, Braga RC. Catalytic applications of organoselenium compounds in asymmetric synthesis. Synlett. 2006;1453–66. (b) Santi C, Santaro S, Battistelli B. Organoselenium compounds as catalysts in nature and laboratory. Curr Org Chem. 2010;14:2442–62; (c) Freudendahl DM, Santoro S, Shahzad SA, Santi C, Wirth T. Green chemistry with selenium reagents: development of efficient catalytic reactions. Angew Chem Int Ed. 2009;48:8409–11; (d) Singh FV, Wirth T. Selenium compounds as ligands and catalysts. In: Wirth T, editor. Organoselenium chemistry: synthesis and reactions. Ist ed. Weinheim, Germany: Wiley-VCH, 2011:321–56; (e) Santi C, Lorenzo RD, Tidei C, Bagnoli L, Wirth T. Stereoselective selenium catalysed dihydroxylation and hydroxymethoxylation of alkenes. Tetrahedron 2012;68:10530–5; (f) Curran SP, Connon SJ. Selenide ions as catalysts for homo- and crossed tishchenko reactions of expanded scope. Org Lett. 2012;14:1074–7.10.1055/s-2006-941592Search in Google Scholar
[5] (a) Nicolaou KC, Petasis NA. Selenium in natural products synthesis. Philadelphia: CIS, 1984; (b) Paulmier C. Selenium reagents and intermediates in organic synthesis. Pergamon Press: Oxford, 1986; (c) Patai S, Rappoport Z. The chemistry of organic selenium and tellurium compounds, vol. 1. 1986; (d) Patai S, Rappoport Z. The chemistry of organic selenium and tellurium compounds, vol. 2. Wiley, 1987; (e) Liotta D, Organoselenium chemistry. New York: John Wiley & Sons, 1987; (f) Krief A, Hevesi L, Organoselenium chemistry I. Berlin: Springer, 1988; (g) Back TG. Organoselenium chemistry. Oxford: Oxford University Press, 1999; (h) Wirth T. Organoselenium chemistry: modern developments in organic synthesis. Top Curr Chem. Springer: Berlin, 2000: 208; (j) Wirth T. Organoselenium chemistry: synthesis and reactions. Germany: Wiley-VCH, 2011; (k) Patai S, Rappoport Z. The chemistry of organic selenium and tellurium compounds, vol. 3, Wiley, 2012.Search in Google Scholar
[6] (a) Nishibayashi Y, Uemura S. Selenoxide elimination and [2,3]-sigmatropic rearrangement. In: Wirth T editor. Topics in current chemistry, vol. 208, 1st ed. Berlin, Germany: Springer, 2000:201–34; (b) Beaulieu PL, Déziel R. In: Back TG, editor. Organoselenium chemistry: a practical approach, Ist ed. Oxford: Oxford University Press, 1999:35–66; (c) Freudendahl DM, Wirth T. New selenium electrophiles and their reactivity. In: Woolins JD, Laitinen RS, editor. Selenium and Tellurium Chemistry, Ist ed. Berlin, Germany: Springer, 2011:41–56; (d) Bhujan BJ, Mugesh G. Biological and biochemical aspects of selenium compounds. In Wirth T, Organoselenium chemistry. Weinheim, Germany: Wiley-VCH, 2011:361–92; (e) Singh FV, Wirth T. Stereoselective reactions of organoselenium reagents including catalysis. In: Rappoport Z, editor. Patai Series: Organic Selenium and Tellurium Compounds, Vol. 3, 2nd ed. West Sussex, England: John Wiley & Sons, 2012:303–56; (f) Nogueira CW, Rocha JBT. Organoselenium and organotellurium compounds: toxicology and pharmacology. In: Rappoport Z, editor, Patai Series: Organic Selenium and Tellurium Compounds, Vol. 3, West Sussex, England: John Wiley & Sons, 2012:1277–358; (g) Bhuyan BJ, Lamani DS, Mugesh G, Wirth T. Current research on mimics and models of selenium‐containing antioxidants. In: Devillanova FA, du Mont W-W, Handbook of chalcogen chemistry: new perspectives in sulfur, selenium and tellurium, Vol 2, 2nd ed. Cambridge, UK: RSC, 2013:25–46; (h) Bhowmick D, Mugesh G. Enzyme mimetic chemistry of organoselenium compounds. In: Rappoport Z, editor. Patai Series: Organic Selenium and Tellurium Compounds, vol. 4, 3rd ed. West Sussex, England: John Wiley & Sons, 2013:1175–236; (i) Braga AL, Rafique J. Synthesis of biologically relevant small molecules containing selenium. Part C. Miscellaneous biological activities. In: Rappoport Z, editor. Patai series: organic selenium and tellurium compounds. vol. 4, 3rd ed. West Sussex, England: John Wiley & Sons, 2014:1175-236; (j) Singh FV, Wirth T. Synthesis of organoselenium compounds with potential biological activities. In: Jain VK, editor, Priyadarsini KI, editors. Organoselenium compounds in biology and medicine: synthesis, biological and therapeutic treatments. 1st ed. Cambridge, UK: RSC, 2018:77–121.Search in Google Scholar
[7] (a) Reich HJ. Functional group manipulation using organoselenium reagents. Acc Chem Res. 1979;12:22–30; (b) Tiecco M, Testaferri L, Tingoli M, Bagnoli L, Marini F, Santi C, Temperini A. Production of reactivity of new organoselenium intermediates. Formation of carbon-oxygen and carbon-nitrogen bonds. Gazz Chimi Ital. 1996;126:635-43; (c) Nishibayashi Y, Uemura S. Novel synthesis of chiral differrocenyl dichalcogenides and their application to asymmetric reactions. Heteroatom Chem. 1996;14:83–118; (d) Wessjohann LA. Benzeneselenenyl reagents in organic synthesis. J Prakt Chem. 1998;340:189–203; (e) Uemura S. Chiral diferrocenyl dichalcogenides in asymmetric synthesis. Phosphorus Sulfur. 1998;136–138:219–34; (f) Mugesh G, Singh HB. Synthetic organoselenium compounds as antioxidants: glutathione peroxidase activity. Chem Soc Rev. 2000;29:347–57; (g) Tiecco M. Electrophilic selenium, selenocyclizations. Top Curr Chem. 2000;208:7–54; (h) Ren X, Yang L, Liu J, Su D, You D, Liu C, et al. A novel glutathione peroxidase mimic with antioxidant activity. Arch Biochem Biophys. 2001;387:250–6; (i) Petragnani N, Stefani HA, Valduga CJ. Recent advances in selenocyclofunctionalization reactions. Tetrahedron. 2001;57:1411–48; (j) Mugesh G, du Mont WW, Sies H. Chemistry of biologically important synthetic organoselenium compounds. Chem Rev. 2001;101:2125–80; (k) Tiecco M, Testaferri L, Marini F, Bagnoli L, Santi C, Temperini A, et al. Asymmetric syntheses promoted by organoselenium reagent. Phosphorus Sulfur. 2005;180:729–40; (l) Guillena G, Ramon DJ. Enantioselective α-heterofunctionalization of carbonyl compounds: organocatalysis is the simplest approach. Tetrahedron: Asymmetry. 2006;17:1465–92; (m) Narajji C, Karvekar MD, Das AK. Biological importance of organoselenium compounds. Indian J Pharm Sci. 2007;69:344–51; (n) Sharma BK, Mugesh G. Thiol cofactors for selenoenzymes and their synthetic mimics. Org Biomol Chem. 2008;6:965–74; (o) Bhabak KP, Mugesh G. Functional mimics of glutathione peroxidase: Bioinspired synthetic antioxidant. Acc Chem Res. 2010;43:1408–19; (p) Alberto EE, do Nascimento V, Braga AL. Catalytic application of selenium and tellurium compounds as glutathione peroxidase enzyme mimetics. J Braz Chem Soc. 2010;21:2032–41; (q) Mukherjee AJ, Zade SS, Singh HB, Sunoj RB. Organoselenium chemistry: role of intramolecular interactions. Chem Rev. 2010;110:4357–414; (r) Rafique J, Canto RFS, Saba S, Barbosa FAR, Braga AL. Recent advances in the synthesis of biologically relevant selenium-containing 5-membered heterocycles. Curr Org Chem. 2016;20:166–88; (s) Reich HJ, Hondal RJ. Why nature chose selenium. ACS Chem Biol. 2016;11:821–41.10.1021/ar50133a004Search in Google Scholar
[8] (a) Toshimitsu A, Aoai T, Owada H, Uemura S, Okano M. Phenylselenenyl chloride in acetonitrile-water: a highly convenient reagent for hydroxyselenation of olefins and preparation of cyclic ethers from dienes. Tetrahedron. 1985;41:5301–6; (b) Toshimitsu A, Aoai T, Owada H, Uemura S, Okano M. Highly convenient method for hydroxyselenation of olefins. J Chem Soc Chem Commun. 1980:412–3.10.1016/S0040-4020(01)96781-XSearch in Google Scholar
[9] Tiecco M, Testaferri L, Tingoli M, Chianelli D, Bartoli D. The reaction of diphenyl diselenide with peroxydisulphate ions in methanol a convenient procedure to effect the methoxyselenenylation of alkenes. Tetrahedron Lett. 1989;30:1417–20.10.1016/S0040-4039(00)99480-2Search in Google Scholar
[10] Nicolaou KC, Claremon DA, Barnette WE, Seitz SP. N-Phenylselenophthalimide (N-PSP) and N-phenylselenosuccinimide (N-PSS). Two versatile carriers of the phenylseleno group. Oxyselenation of olefins and a selenium-based macrolide synthesis. J Am Chem Soc. 1979;101:3704–6.10.1021/ja00507a069Search in Google Scholar
[11] Nicolaou KC, Petasis NA, Claremon DA. N-phenylselenophthalimide (NPSP): A valuable selenenylating agent. Tetrahedron. 1985;41:4835–41.10.1016/S0040-4020(01)96722-5Search in Google Scholar
[12] Yoshshida M, Sasage S, Kawamura K, Suzuki T, Kamigata N. Oxidative cleavage of diselenide by m-nitrobenzenesulfonyl peroxide: novel method for the electrophilic benzeneselenenylations of olefins and aromatic rings. Bull Chem Soc Jpn. 1991;64:416–22.10.1246/bcsj.64.416Search in Google Scholar
[13] Tingoli M, Tiecco M, Testafem L, Temperini A. Iodosobenzene diacetate and diphenyl diselenide: an electrophilic selenenylating agent of double bonds. Synth Commun. 1998;28:1769–78.10.1080/00397919808007007Search in Google Scholar
[14] Tingoli M, Diana R, Panunz B. N-Phenylselenosaccharin (NPSSac): a new electrophilic selenium-containing reagent. Tetrahedron Lett. 2006;47:7529–31.10.1016/j.tetlet.2006.08.068Search in Google Scholar
[15] Gabriele E, Singh FV, Freudendahl DM, Wirth T. Selenenylations of alkenes with styrene nucleophiles. Tetrahedron. 2012;68:10573–6.10.1016/j.tet.2012.08.034Search in Google Scholar
[16] Shi H-W, Yu C, Yan J. Potassium bromide or sodium chloride catalyzed acetoxyselenenylation of alkenes with diselenides and m-CPBA. Chin Chem Lett. 2015;26:1117–20.10.1016/j.cclet.2015.05.029Search in Google Scholar
[17] Vieira AA, Azeredo JB, Godoi M, Santi C, Da Silva EN, Braga AL. Catalytic chalcogenylation under greener conditions: A solvent-free sulfur- and seleno-functionalization of olefins via I2/DMSO oxidant system. J Org Chem. 2015;80:2120–7.10.1021/jo502621aSearch in Google Scholar PubMed
[18] Wang X-L, Li H-J, Yan J. Iodine-mediated regioselective hydroxyselenenylation of alkenes: facile access to β-hydroxy selenides. Chin Chem Lett. 2018;29:479–81 .10.1016/j.cclet.2017.06.023Search in Google Scholar
[19] Tiecco M, Testaferri L, Marini F, Sternativo F, Santi C, Bagnoli L, et al. Conjugated additions of selenium containing enolates to enones–enantioselective synthesis of δ-oxo-α-seleno esters and their facile transformations. Eur J Org Chem. 2005;543−51.10.1002/ejoc.200400686Search in Google Scholar
[20] Murata S, Suzuki T. Stereoselective selenolactonization by superelectrophilic benzeneselenenyl triflate. Chem Lett. 1987;849−52.10.1246/cl.1987.849Search in Google Scholar
[21] Murata S, Suzuki T. Cyclization of olefinic alcohol by benzeneselenenyl triflate. Tetrahedron Lett. 1987;28:4297−8.10.1016/S0040-4039(00)96489-XSearch in Google Scholar
[22] Tiecco M, Testaferri L, Tingoli M, Bartoli D, Balducci R. Ring-closure reactions initiated by the peroxydisulfate ion oxidation of diphenyl diselenide. J Org Chem. 1990;55:429−34.10.1021/jo00289a010Search in Google Scholar
[23] Freudendahl DM, Iwaoka M, Wirth T. Synthesis of new sulfoxide-containing diselenides and unexpected cyclization reactions to 2,3-dihydro-1,4-benzoselenothiine 1-oxides. Eur J Org Chem. 2010;3934–44.10.1002/ejoc.201000514Search in Google Scholar
[24] Viglianisi C, Simone L, Menichetti S. Copper-mediated one-pot transformation of 2-n-sulfonylaminoaryl diselenides into benzo[b][1,4]selenazines. Adv Synth Catal. 2012;354:77–82.10.1002/adsc.201100587Search in Google Scholar
[25] Menichetti S, Capperucci A, Tanini D, Braga AL, Botteselle GV, Viglianisi C. A one-pot access to benzo[b][1,4]selenazines from 2-aminoaryl diselenides. Eur J Org Chem. 2016;3097–102.10.1002/ejoc.201600351Search in Google Scholar
[26] Angeli A, Tanini D, Viglianisi C, et al. Evaluation of selenide, diselenide and selenoheterocycle derivatives as carbonic anhydrase I, II, IV, VII and IX inhibitors. Bioorg Med Chem. 2017;25:2518–23.10.1016/j.bmc.2017.03.013Search in Google Scholar PubMed
[27] Wang K, Bates RW. Synthesis of Allahabadolactone A. J Org Chem. 2017;82:12624−30.10.1021/acs.joc.7b02368Search in Google Scholar PubMed
[28] Prasad CD, Sattar M, Kumar S. Transition-metal-free selective oxidative C(sp3)−S/Se coupling of oxindoles, tetralone, and arylacetamides: synthesis of unsymmetrical organochalcogenides. Org Lett. 2017;19:774−7.10.1021/acs.orglett.6b03735Search in Google Scholar PubMed
[29] Lee DH, Kim YH. Regioselective phenylselenenylation at the 5-position of pyrimidine nucleosides mediated by manganese(III) acetate. Synlett. 1995;349–50.10.1055/s-1995-4978Search in Google Scholar
[30] Shibahara F, Kanai T, Yamaguchi E, Kamei A, Yamauchi T, Murai T. Copper-catalyzed C–H bond direct chalcogenation of aromatic compounds leading to diaryl sulfides, selenides, and diselenides by using elemental sulfur and selenium as chalcogen sources under oxidative conditions. Chem Asian J. 2014;9:237–44.10.1002/asia.201300882Search in Google Scholar PubMed
[31] Zhu L, Qiu R, Cao X, Copper-mediated remote C−H bond chalcogenation of quinolines on the C5 position. Org Lett. 2015;17:5528–31.10.1021/acs.orglett.5b02511Search in Google Scholar PubMed
[32] Mandal A, Sahoo H, Baidya M. Copper-catalyzed 8‑aminoquinoline-directed selenylation of arene and heteroarene C−H bonds. Org Lett. 2016;18:3202−5.10.1021/acs.orglett.6b01420Search in Google Scholar PubMed
[33] Jin W, Zheng P, Wong W-T, Law W-L. Efficient palladium-catalyzed direct C–H phenylselenylation of (hetero)arenes in water. Asian J Org Chem. 2015;4:875–8.10.1002/ajoc.201500192Search in Google Scholar
[34] Jin W, Zheng P, Law G-L, Wong W-T. Palladium(II)-catalyzed switchable mono-/diselenylation of arenes controlled by solvent effects. J Organomet Chem. 2016;812:66–73.10.1016/j.jorganchem.2015.09.040Search in Google Scholar
[35] Zhang Q-B, Ban Y-L, Yuan P-F, et al. Visible-light-mediated aerobic selenation of (hetero)arenes with diselenides. Green Chem. 2017;19:5557–63.10.1039/C7GC90119DSearch in Google Scholar
[36] Rafique J, Saba S, Rosrio AR, Braga AL. Regioselective, solvent- and metal-free chalcogenation of imidazo[1,2-a]pyridines by employing I2/DMSO as the catalytic oxidation system. Chem Eur J. 2016;22:11854–62.10.1002/chem.201600800Search in Google Scholar PubMed
[37] Guo T. Ammonium iodide-mediated regioselective chalcogenation of chromones with diaryl disulfides and diselenides. Synth Commun. 2017;47:2053–61.10.1080/00397911.2017.1364766Search in Google Scholar
[38] Amosova SV, Penzik MV, Albanov AI, Potapov VA. The reaction of selenium dichloride with divinyl sulfide. J Organomet Chem. 2009;694:3369–72.10.1016/j.jorganchem.2009.06.009Search in Google Scholar
[39] Bilheri FN, Stein AL, Zeni G. Synthesis of chalcogenophenes via cyclization of 1,3-diynes promoted by iron(III) chloride and dialkyl dichalcogenides. Adv Synth Catal. 2015;357:1221–8.10.1002/adsc.201401159Search in Google Scholar
[40] Neto JSS, Back DF, Zeni G. Nucleophilic cyclization of o-alkynylbenzamides promoted by iron(III) chloride and diorganyl dichalcogenides: synthesis of 4-organochalcogenyl-1H-isochromen-1-imines. Eur J Org Chem. 2015;1583–90.10.1002/chin.201527244Search in Google Scholar
[41] Stein AL, Rosário AR, Zeni G. Synthesis of 3-organoseleno-substituted quinolines through cyclization of 2-aminophenylprop-1-yn-3-ols promoted by iron(III) chloride with diorganyl diselenides. Eur J Org Chem. 2015;5640–8.10.1002/chin.201601157Search in Google Scholar
[42] Recchi AMS, Back DF, Zeni G. Sequential carbon–carbon/carbon–selenium bond formation mediated by iron(III) chloride and diorganyl diselenides: synthesis and reactivity of 2‑organoselenyl-naphthalenes. J Org Chem. 2017;82:2713−23.10.1021/acs.joc.7b00050Search in Google Scholar PubMed
[43] Neto JSS, Iglesias BA, Back DF, Zeni G. Iron-promoted tandem cyclization of 1,3-diynyl chalcogen derivatives with diorganyl dichalcogenides for the synthesis of benzo[b]furan-fused selenophenes. Adv Synth Catal. 2016;358:3572–85.10.1002/adsc.201600759Search in Google Scholar
[44] Casola KK, Back DF, Zeni G. Iron-Catalyzed cyclization of alkynols with diorganyl diselenides: synthesis of 2,5-dihydrofuran, 3,6-dihydro‑2H‑pyran, and 2,5-dihydro‑1H‑pyrrole organoselanyl derivatives. J Org Chem. 2015;80:7702–12.10.1021/acs.joc.5b01448Search in Google Scholar PubMed
[45] Goulart TAC, Back DF, Zeni G. Copper-catalyzed carbon-nitrogen/carbon-selenium bonds formation: synthesis of 2-(organochalcogenyl)-indolizines. Adv Synth Catal. 2017;359:1901–11.10.1002/adsc.201700166Search in Google Scholar
[46] Shahzad SA, Wirth T. Fast synthesis of benzofluorenes by selenium-mediated carbocyclizations. Angew Chem Int Ed. 2009;48:2588–91.10.1002/anie.200806148Search in Google Scholar PubMed
[47] Taniguchi N. Convenient synthesis of unsymmetrical organochalcogenides using organoboronic acids with dichalcogenides via cleavage of the S-S, Se-Se, or Te-Te bond by a copper catalyst. J Org Chem. 2007;72:1241–5.10.1021/jo062131+Search in Google Scholar PubMed
[48] Alves D, Santos CG, Paixãod MW, et al. CuO nanoparticles: an efficient and recyclable catalyst for cross-coupling reactions of organic diselenides with aryl boronic acids. Tetrahedron Lett. 2009;50:6635–8.10.1016/j.tetlet.2009.09.052Search in Google Scholar
[49] Ricordi VG, Freitas CS, Perin G, et al. Glycerol as a recyclable solvent for copper-catalyzed cross-coupling reactions of diaryl diselenides with aryl boronic acids. Green Chem. 2012;14:1030–4.10.1039/c2gc16427bSearch in Google Scholar
[50] Zheng B, Gong Y, Xu H-J. Copper-catalyzed Ce–se coupling of diphenyl diselenide with arylboronic acids at room temperature. Tetrahedron. 2013;69:5342–7.10.1016/j.tet.2013.04.124Search in Google Scholar
[51] Wang M, Ren K, Wang L. Iron-catalyzed ligand-free carbon-selenium (or tellurium) coupling of arylboronic acids with diselenides and ditellurides. Adv Synth Catal. 2009;351:1586–94.10.1002/adsc.200900095Search in Google Scholar
[52] Ren K, Wang M, Wang L. Lewis acid InBr3-catalyzed arylation of diorgano diselenides and ditellurides with arylboronic acids. Org Biomol Chem. 2009;7:4858–61.10.1039/b914533hSearch in Google Scholar PubMed
[53] Goldani B, Ricordi VG, Seus N, Lenardao EJ, Schumacher RF, Alves D. Silver-catalyzed synthesis of diaryl selenides by reaction of diaryl diselenides with aryl boronic acids. J Org Chem. 2016;81:11472–6.10.1021/acs.joc.6b02108Search in Google Scholar PubMed
[54] Freitas CS, Barcellos AM, Ricordi VG, et al. Synthesis of diaryl selenides using electrophilic selenium species and nucleophilic boron reagents in ionic liquids. Green Chem. 2011;13:2931–8.10.1039/c1gc15725fSearch in Google Scholar
[55] Arunprasatha D, Sekar G. A transition-metal-free and base-mediated carbene insertion into sulfur-sulfur and selenium-selenium bonds: an easy access to thio- and selenoacetals. Adv Synth Catal. 2016;358:1–12.10.1002/adsc.201600855Search in Google Scholar
[56] Shahzad SA, Vivant C, Wirth T. Selenium-mediated synthesis of biaryls through rearrangement. Org Lett. 2010;12:1364–7.10.1021/ol100274eSearch in Google Scholar PubMed
[57] Tancock J, Wirth T. Selenium-mediated synthesis of tetrasubstituted naphthalenes through rearrangement. Molecules. 2015;20:10866–72.10.3390/molecules200610866Search in Google Scholar PubMed PubMed Central
[58] Hori T, Sharpless KB. Selenium-catalyzed nonradical chlorination of olefins with N-chlorosuccinimide. J Org Chem. 1979;44:4204–8.10.1021/jo01337a046Search in Google Scholar
[59] Tunge JA, Mellegaard SR Selective selenocatalytic allylic chlorination. Org Lett. 2004;6:1205–7.10.1021/ol036525oSearch in Google Scholar PubMed
[60] Barrero AF, del Moral Jfq, Herrador MM, et al. Solid-phase selenium-catalyzed selective allylic chlorination of polyprenoids: facile syntheses of biologically active terpenoids. J Org Chem. 2006;71:5811–4.10.1021/jo060760dSearch in Google Scholar PubMed
[61] Mellegaard SR, Tunge JA. Selenium-catalyzed halolactonization: nucleophilic activation of electrophilic halogenating reagents. J Org Chem. 2004;69:8979–81.10.1021/jo048460oSearch in Google Scholar PubMed
[62] Carrera I, Brovetto MC, Seoane GA. Selenium-catalyzed iodohydrin formation from alkenes. Tetrahedron Lett. 2006;47:7849–52.10.1016/j.tetlet.2006.09.024Search in Google Scholar
[63] Ehara H, Noguchi M, Sayama S, Onami T. Bis[2-(2-pyridyl)phenyl] diselenide, a more effective catalyst for oxidation of alcohols to carbonyl compounds. J Chem Soc Perkin Trans. 2000;1:1429–31.10.1039/a909819dSearch in Google Scholar
[64] Browne DM, Niyomura O, Wirth T. Catalytic use of selenium electrophiles in cyclizations. Org Lett. 2007;9:3169–71.10.1021/ol071223ySearch in Google Scholar PubMed
[65] Singh FV, Wirth T. Selenium-catalyzed regioselective cyclization of unsaturated carboxylic acids using hypervalent iodine oxidants. Org Lett. 2011;13:6504–7.10.1021/ol202800kSearch in Google Scholar PubMed
[66] Shahzad SA, Venin C, Wirth T. Diselenide- and disulfide-mediated synthesis of isocoumarins. Eur J Org Chem. 2010;465–72.10.1002/ejoc.201000308Search in Google Scholar
[67] Balkrishna SJ, Prasad CD, Panini P, Detty MR, Chopra D, Kumar S, et al. Isoselenazolones as catalysts for the activation of bromine: bromolactonizationof alkenoic acids and oxidation of alcohols. J Org Chem. 2012;77:9541–52.10.1021/jo301486cSearch in Google Scholar PubMed
[68] Ortgies S, Breder A. Selenium-catalyzed oxidative C(sp2)−H amination of alkenes exemplified in the expedient synthesis of (aza-)indoles. Org Lett. 2015;17:2748–51.10.1021/acs.orglett.5b01156Search in Google Scholar PubMed
[69] Zhang X, Guo R, Zhao X. Organoselenium-catalyzed synthesis of indoles through intramolecular C–H amination. Org Chem Front. 2015;2:1334–7.10.1039/C5QO00179JSearch in Google Scholar
[70] Deng Z, Wei J, Liao L, Huang H, Zhao X. Organoselenium-catalyzed, hydroxy-controlled regio- and stereoselective amination of terminal alkenes: efficient synthesis of 3‑amino allylic alcohols. Org Lett. 2015;17:1834–7.10.1021/acs.orglett.5b00213Search in Google Scholar PubMed
[71] Ortgies S, Depken C, Breder A. Oxidative allylic esterification of alkenes by cooperative selenium-catalysis using air as the sole oxidant. Org Lett. 2016;18:2856−9.10.1021/acs.orglett.6b01130Search in Google Scholar PubMed
[72] Tomoda S, Iwaoka M, Yakushi K, Kawamoto A, Tanaka J. Synthesis of optically active 2,2′-diselenocyanato-1,1′-binaphthyl and its molecular structure. Hypervalent nature of divalent selenium atom in crystal state. J Phys Org Chem. 1988;1:179−84.10.1002/poc.610010308Search in Google Scholar
[73] Tomoda S, Iwaoka M. Synthesis of selenium-containing binaphthyls and their application to the asymmetric ring-opening of cyclohexene oxide. J Chem Soc Chem Commun. 1988;1283−4.10.1039/c39880001283Search in Google Scholar
[74] Tomoda S, Iwaoka M. Asymmetric trans-addition reactions of a chiral selenobinaphthyl with prochiral olefins. The case of methoxyselenenylation. Chem Lett. 1988;17:1895−8.10.1246/cl.1988.1895Search in Google Scholar
[75] Tomoda S, Fujita K, Iwaoka M. Asymmetric oxyselenenylation of olefins using optically active selenobinaphthyls and d-menthol as a nucleophile. Chem Lett. 1990;19:1123−4.10.1246/cl.1992.1123Search in Google Scholar
[76] Tomoda S, Fujita K, Iwaoka M. Double differentiation in asymmetric methoxyselenenylation of trans-β-methylstyrene. J Chem Soc Chem Commun. 1990;129−31.10.1039/C39900000129Search in Google Scholar
[77] Tomoda S, Fujita K, Iwaoka M. Asymmetric trans-addition reactions using chiral selenobinaphthyls. Phosphorus, Sulfur Silicon Relat Elem. 1992;67:247−52.10.1080/10426509208045843Search in Google Scholar
[78] Déziel R, Goulet S, Grenier L, Bordeleau J, Bernier J. Asymmetric selenomethoxylation of olefins involving a chiral C2 symmetrical electrophilic organoselenium reagent. J Org Chem. 1993;58:3619−21.10.1021/jo00066a010Search in Google Scholar
[79] Déziel R, Malenfant E. Asymmetric Ring Closure Reactions Mediated by a Chiral C2 Symmetrical Organoselenium Reagent. J Org Chem. 1995;60:4660−2.10.1021/jo00119a055Search in Google Scholar
[80] Déziel R, Malenfant E, Bélanger G. Practical synthesis of (R,R)- and (S,S)-bis[2,6-bis(1-ethoxyethyl)phenyl] diselenide. J Org Chem. 1996;61:1875−6.10.1021/jo951919hSearch in Google Scholar PubMed
[81] Déziel R, Malenfant E, Thibault C, Frechette S, Gravel M. 2,6-Bis[(2S)-tetrahydrofuran-2-yl]phenyl diselenide: an effective reagent for asymmetric electrophilic addition reactions to olefins. Tetrahedron Lett. 1997;38:4753–6.10.1016/S0040-4039(97)01030-7Search in Google Scholar
[82] Nishibayashi Y, Jd S, Uemura S, Fukuzawa S. Synthesis of chiral diferrocenyl diselenides and their application to asymmetric reactions. Tetrahedron Lett. 1994;35:3115−8.10.1016/S0040-4039(00)76844-4Search in Google Scholar
[83] Fukuzawa S, Kasugahara Y, Uemura S. A highly selective asymmetric methoxyselenylation of alkenes with a chiral ferrocenylselenium reagent. Tetrahedron Lett. 1994;35:9403−6.10.1016/S0040-4039(00)78554-6Search in Google Scholar
[84] Nishibayashi Y, Singh JD, Fukuzawa S, Uemura S. Synthesis of [R,S;R,S]- and [S,R;S,R]-bis[2-[1-(dimethylamino)ethyl]ferrocenyl] diselenides and their application to asymmetric selenoxide elimination and [2,3]-sigmatropic rearrangement. J Org Chem. 1995;60:4114−20.10.1021/jo00118a031Search in Google Scholar
[85] Nishibayashi Y, Srivastava SK, Takada H, Fukuzawa S, Uemura S. Highly selective asymmetric intramolecular selenocyclisation. J Chem Soc Chem Commun. 1995;2321−2.10.1039/c39950002321Search in Google Scholar
[86] Uemura S. Chiral diferrocenyl dichalcogenides in asymmetric synthesis. Phosphorus Sulfur Silicon Relat Elem. 1998;136-138:219−34.10.1080/10426509808545947Search in Google Scholar
[87] Fukuzawa S, Takahashi K, Kato H, Yamazaki H. Asymmetric methoxyselenenylation of alkenes with chiral ferrocenylselenium reagents. J Org Chem. 1997;62:7711−6.10.1021/jo970982zSearch in Google Scholar
[88] Bolm C, Kesselgruber M, Grenz A, Hermanns N, Hildebrand JP. A novel ferrocenyl diselenide for the catalytic asymmetric aryl transfer to aldehydes. New J Chem. 2001;25:13−5.10.1039/b003237iSearch in Google Scholar
[89] Back TG, Dyck BP, Parvez M. Unexpected formation of 1,3-diselenetanes from the reaction of camphor enolate with selenium. J Chem Soc Chem Commun. 1994;515−6.10.1039/c39940000515Search in Google Scholar
[90] Back TG, Dyck BP, Parvez M. 1,3-Diselenetanes and 1,3-dithietanes derived from camphor. Formation, structure, stereochemistry, and oxidation to selenoxide and sulfoxide products. J Org Chem. 1995;60:703−10.10.1021/jo00108a038Search in Google Scholar
[91] Back TG, Dyck BP. Asymmetric cyclization of unsaturated alcohols and carboxylic acids with camphor-based selenium electrophiles. Chem Commun. 1996;2567−8.10.1039/cc9960002567Search in Google Scholar
[92] Back TG, Nan S. Asymmetric methoxyselenenylations with camphor-based selenium electrophiles. J Chem Soc Perkin Trans. 1998;1:3123−4.10.1039/a806707dSearch in Google Scholar
[93] Tiecco M, Testaferri L, Santi C, Marini F, Bagnoli L, Temperini A, et al. Asymmetric selenohydroxylation of alkenes with camphorselenenyl sulfate. Eur J Org Chem. 1998;2275−7.10.1002/(SICI)1099-0690(199811)1998:11<2275::AID-EJOC2275>3.0.CO;2-OSearch in Google Scholar
[94] Tiecco M, Testaferri L, Santi C, Marini F, Bagnoli L, Temperini A. Asymmetric selenomethoxylation of alkenes with camphorselenenyl sulfate. Tetrahedron Lett. 1998;39:2809−12.10.1016/S0040-4039(98)00252-4Search in Google Scholar
[95] Back TG, Dyck BP, Nan S. Asymmetric electrophilic methoxyselenenylations and cyclizations with 3-camphorseleno derivatives. Tetrahedron. 1999;55:3191−208.10.1016/S0040-4020(98)01133-8Search in Google Scholar
[96] Back TG, Moussa Z. New chiral auxiliaries for highly stereoselective asymmetric methoxyselenenylations. Org Lett. 2000;2:3007−9.10.1021/ol000187zSearch in Google Scholar PubMed
[97] Back TG, Moussa Z, Parvez M. Asymmetric methoxyselenenylations and cyclizations with 3-camphorseleno electrophiles containing oxime substituents at C-2: formation of an unusual oxaselenazole from an oxime-substituted selenenyl bromide. J Org Chem. 2002;67:499−509.10.1021/jo016061cSearch in Google Scholar PubMed
[98] Fujita K, Murata K, Iwaoka M, Tomoda S. Asymmetric intramolecular selenoetherification and selenolactonization using an optically active diaryl diselenide derived from D-mannitol. J Chem Soc Chem Commun. 1995;1641−2.10.1039/c39950001641Search in Google Scholar
[99] Fujita K, Iwaoka M, Tomoda S. Synthesis of diaryl diselenides having chiral pyrrolidine rings with c2 symmetry. Their application to the asymmetric methoxyselenenylation of trans-β-methylstyrenes. Chem Lett. 1994;923−6.10.1002/chin.199441039Search in Google Scholar
[100] Fujita K, Murata K, Iwaoka M, Tomoda S. Asymmetric methoxyselenenylation of olefins using an optically active diaryl diselenide derived from d-mannitol. Tetrahedron Lett. 1995;36:5219−22.10.1016/0040-4039(95)00976-JSearch in Google Scholar
[101] Fujita K, Murata K, Iwaoka M, Tomoda S. Design of optically active selenium reagents having a chiral tertiary amino group and their application to asymmetric inter- and intramolecular oxyselenenylations. Tetrahedron. 1997;53:2029−48.10.1016/S0040-4020(96)01166-0Search in Google Scholar
[102] Wirth T. Asymmetric reaction of arylalkenes with diselenides. Angew Chem Int Ed Engl. 1995;34:1726−8.10.1002/anie.199517261Search in Google Scholar
[103] Wirth T. A new stereoselective synthesis of chiral tetrahydrothiopyrans and their corresponding sulfoxides. Tetrahedron Lett. 1995;36:1849−52.10.1016/0040-4039(95)00139-4Search in Google Scholar
[104] Wirth T, Kulicke KJ, Fragale G. Chiral diselenides from benzylamines: catalysts in the diethylzinc addition to aldehydes. Helv Chim Acta. 1996;79:1957−66.10.1002/hlca.19960790718Search in Google Scholar
[105] Wirth T, Fragale G. Asymmetric addition reactions with optimized selenium electrophiles. Chem Eur J. 1997;3:1894−902.10.1002/chem.19970031123Search in Google Scholar
[106] Santi C, Fragale G, Wirth T. Synthesis of a new chiral nitrogen containing diselenide as a precursor for selenium electrophiles. Tetrahedron: Asymmetry. 1998;9:3625−8.10.1016/S0957-4166(98)00380-2Search in Google Scholar
[107] Tiecco M, Testaferri L, Santi C, Tomassini C, Marini F, Bagnoli L, et al. New nitrogen containing chiral diselenides: synthesis and asymmetric addition reactions to olefins. Tetrahedron: Asymmetry. 2000;11:4645−50.10.1016/S0957-4166(00)00469-9Search in Google Scholar
[108] (a) Uehlin L, Fragale G, Wirth T. New and efficient chiral selenium electrophiles. Chem Eur J. 2002;8:1125−33; (b) Santi C, Lorenzo RD, Tidei C, Bagnoli L, Wirth T. Stereoselective selenium catalyzed dihydroxylation and hydroxymethoxylation of alkenes. Tetrahedron. 2012;68:10530−5.10.1002/1521-3765(20020301)8:5<1125::AID-CHEM1125>3.0.CO;2-ISearch in Google Scholar
[109] (a) Tiecco M, Testaferri L, Bagnoli L, Marini F, Temperini A, Tomassini C, et al. Efficient asymmetric selenomethoxylation and selenohydroxylation of alkenes with a new sulfur containing chiral diselenide. Tetrahedron Lett. 2000;41:3241−5; (b) Tiecco M, Testaferri L, Santi C, Tomassini C, Marini F, Bagnoli L, et al. Preparation of a new chiral non-racemic sulfur-containing diselenide and applications in asymmetric synthesis. Chem Eur J. 2002;8:1118−24.10.1016/S0040-4039(00)00358-0Search in Google Scholar
[110] Cox M, Wirth T. Synthesis of a selenium-substituted diselenide. Phosphorus Sulfur Silicon Relat Elem. 2005;180:659−66.10.1080/10426500590907282Search in Google Scholar
[111] (a) Scianowski J, Rafinski Z, Wojtczak A. Syntheses and reactions of new optically active terpene dialkyl diselenides. Eur J Org Chem. 2006;3216−25. (b) Rafinski Z, Scianowski J. Synthesis and reactions of enantiomerically pure dialkyl diselenides from the p-menthane group. Tetrahedron: Asymmetry. 2008;19:1237−44.10.1002/ejoc.200600044Search in Google Scholar
[112] (a) Scianowski J. Convenient route to dialkyl diselenides from alkyl tosylates. Synthesis of di(cis-myrtanyl) diselenide. Tetrahedron Lett. 2005;46:3331−4; (b) Rafinski Z, Scianowski J, Wojtczak A. Asymmetric selenocyclization with the use of dialkyl monoterpene diselenides. Tetrahedron: Asymmetry. 2008;19:223−30; (c) Scianowski J, Rafinski Z, Szuniewicz A, Wojtczak A, New chiral selenium electrophiles derived from functionalized terpenes. Tetrahedron. 2009;65:10162−74; (d) Scianowski J, Rafinski Z, Szuniewicz A, Burczynski K, Syntheses and reactions of terpene β-hydroxyselenides and β-hydroxydiselenides. Tetrahedron: Asymmetry. 2009;20:2871−9.10.1016/j.tetlet.2005.03.073Search in Google Scholar
[113] Uehlin L, Wirth T. Synthesis of chiral acetals by asymmetric selenenylations. Phosphorus Sulfur Silicon Relat Elem. 2009;184:1374−85.10.1080/10426500902930167Search in Google Scholar
[114] Incipini L, Rongoni E, Bagnoli L, Marini F, Santi C. New chiral electrophilic selenium reagents: synthesis and structural investigation. 16th International Electronic Conference on Synthetic Organic Chemistry 2012, 1−6.Search in Google Scholar
[115] Scianowski J, Pacuła AJ, Zielinska-Błajetb M, Wojtczakc A. New diphenyl diselenides O-substituted by an O(S,Se)-caranyl skeleton-synthesis and application in asymmetric reactions. New J Chem. 2016;40:6697−705.10.1039/C6NJ00487CSearch in Google Scholar
[116] Ścianowski J, Szumera J, Pacuła AJ, Rafiński Z. Reactivity of dipinanyl diselenides functionalized at the C-10-position with -CH2O(Se)Ph, -OH and -OCPh3 substituents. Arkivoc. 2017;ii:272−84.10.3998/ark.5550190.p009.756Search in Google Scholar
[117] (a) Deziel R, Malenfant E. Asymmetric ring closure reactions mediated by a chiral c2 symmetrical organoselenium reagent. J Org Chem. 1995;60:4660−2; (b) Wirth, T, Kulicke KJ, Fragale G. Chiral diselenides in the total synthesis of (+)-Samin. J Org Chem. 1996;61:2686−9; (c) Fragale G, Wirth T, Fragale G, Neuburger M. New and efficient selenium reagents for stereoselective selenenylation reactions. Chem Commun. 1998:1867−8; (d) Tiecco M, Testaferri L, Bagnoli L, Purgatorio V, Temperini A, Marini F, et al. Efficient asymmetric selenocyclizations of alkenyl oximes into cyclic nitrones and 1,2-oxazines promoted by sulfur containing diselenides. Tetrahedron: Asymmetry. 2001;12:3297−304; (e) Tiecco M, Testaferri L, Santi C, Tomassini C, Marini F, Bagnoli L, et al. Asymmetric synthesis of thioamido selenides. A simple synthetic route to enantiopure thiazolines. Tetrahedron: Asymmetry. 2002;13:429−35; (f) Tiecco M, Testaferri L, Temperini A, Bagnoli L, Marini F, Santi C, et al. A New synthesis of α-phenylseleno γ- and δ-lactones from terminal alkynes. Synlett. 2003;655−8; (g) Aprile C, Gruttadauria M, Amato ME, Anna FD, Meo PL, Riela S, et al. Studies on the stereoselective selenolactonization, hydroxy and methoxy selenenylation of α- and β-hydroxy acids and esters. Synthesis of δ- and γ-lactones. Tetrahedron. 2003;59:2241−51; (h) Khokhar SS, Wirth T. Selenocyclizations: control by coordination and by the counterion. Angew Chem Int Ed. 2004;43:631−3 (i) Khokhar SS, Wirth T. Nucleophile-selective selenocyclizations. Eur J Org Chem. 2004:4567−81; (j) Tiecco M, Testaferri L, Santi C, Tomassini C, Marini F, Bagnoli L, et al. Synthesis of enantiomerically pure perhydrofuro[2,3-b]furans. Tetrahedron: Asymmetry. 2005;16:2429−35; (j) Tiecco M, Testaferri L, Bagnoli L, Scarponi C, Temperini A, Marini F, et al. Organoselenium mediated asymmetric cyclizations. Synthesis of enantiomerically pure 1,6-dioxaspiro[4.4]nonanes. Tetrahedron: Asymmetry. 2006;17:2768−74.10.1021/jo00119a055Search in Google Scholar
[118] (a) Wirth T, Fragale G. Stereoselective isoquinoline alkaloid synthesis with new diselenides. Synthesis. 1998;162−6; (b) Tiecco M, Testaferri L, Santi C, Tomassini C, Marini F, Bagnoli L, et al. Asymmetric amidoselenenylation of alkenes promoted by camphorselenenyl sulfate: a useful synthetic route to enantiopure oxazolines. Eur J Org Chem. 2000:3451−7; (c) Tiecco M, Testaferri L, Marini F, Sternativo S, Santi C, Bagnoli L, et al. Optically active isoxazolidines and 1,3-amino alcohols by asymmetric selenocyclization reactions of O-allyl oximes. Tetrahedron: Asymmetry. 2001;12:3053−9; (d) Tiecco M, Testaferri L, Santi C, Tomassini C, Marini F, Bagnoli L, et al. Asymmetric azidoselenenylation of alkenes: a key step for the synthesis of enantiomerically enriched nitrogen-containing compounds. Angew Chem Int Ed. 2003;42:3131−3; (e) Tiecco M, Testaferri L, Santi C, Tomassini C, Santoro S, Marini F, et al. Synthesis of enantiomerically pure β-azidoselenides starting from natural terpenes. Tetrahedron. 2007;63:12373−8.10.1055/s-1998-2011Search in Google Scholar
[119] (a) Déziel R, Malenfant E, Thibault C. Asymmetric arene-alkene cyclizations mediated by a chiral organoselenium reagent. Tetrahedron Lett. 1998;39:5493−6; (b) Okamoto K, Nishibayashi Y, Uemura S, Toshimitsu A. Stereospecific carbon–carbon bond formation by the reaction of a chiral episelenonium ion with aromatic compounds. Tetrahedron Lett. 2004;45:6137−9; (c) Toshimitsu A. stereo- and site-selectivity in the reaction of chiral episelenonium ion with carbon nucleophile. Phosphorus Sulfur Silicon Relat Elem. 2005;180:935−7; (d) Okamoto K, Nishibayashi Y, Uemura S, Toshimitsu A. Asymmetric carboselenenylation reaction of alkenes with aromatic compounds. Angew Chem Int Ed. 2005;44:3588-91.10.1016/S0040-4039(98)01141-1Search in Google Scholar
[120] (a) Shirahata M, Yamazaki H, Fukuzawa S. Highly diastereoselective reduction of chiral (ferrocenylseleno)methyl aryl and alkyl ketones. Chem Lett. 1999;245–6; (b) Wang W, Wang, J, Li H. A simple and efficient l-prolinamide-catalyzed α-selenenylation reaction of aldehydes. Org Lett. 2004;6:2817−20; (c) Wang J, Li H, Mei Y, Lou B, Xu D, Xie D, et al. J Org Chem. 2005;70:5678−87; (d) Giacalone F, Gruttadauria M, Marculescu AM, Noto R, Polystyrene-supported proline and prolinamide. Versatile heterogeneous organocatalysts both for asymmetric aldol reaction in water and α-selenenylation of aldehydes. Tetrahedron Lett. 2007;48:255−9; (e) Tiecco M, Carlone A, Sternativo S, Marini F, Bartoli G, Melchiorre P, et al. Organocatalytic asymmetric α-selenenylation of aldehydes. Angew Chem Int Ed. 2007;46:6882−5; (f) Sunden H, Rios R, Cordova A. Organocatalytic highly enantioselective α-selenenylation of aldehydes. Tetrahedron Lett. 2007;48:7865−9; (g) Marini F, Sternativo S, Del Verme F, Testaferri L, Tiecco, M. Enantioselective organocatalytic Michael addition of α-substituted cyanoacetates to α,β-unsaturated selenones. Adv Synth Catal. 2009;351:103−6.10.1246/cl.1999.245Search in Google Scholar
[121] (a) Wirth T, Häuptli S, Leuenberger M. Catalytic asymmetric oxyselenenylation–elimination reactions using chiral selenium compounds. Tetrahedron: Asymmetry. 1998;9:547–50; (b) Browne DM, Niyomura O, Wirth T. Catalytic addition-elimination reactions towards butenolides. Phosphorus Sulfur Silicon Relat Elem. 2008;183:1026−35; (c) Tang E, Zhao Y, Li W, Wang W, Zhang M, Dai X, et al. Catalytic selenium-promoted intermolecular Friedel−Crafts alkylation with simple alkenes. Org Lett. 2016;18:912−5.10.1016/S0957-4166(98)00031-7Search in Google Scholar
[122] (a) Comasseto JV, Ling LW, Petragnani N, Stefani HA. Vinylic selenides and tellurides - preparation, reactivity and synthetic applications. Synthesis. 1997;373−403; (b) Zeni G, Braga, AL, Stefani, HA. Palladium-catalyzed coupling of sp2-hybridized tellurides. Acc Chem Res. 2003;36:731−8; (c) Petragnani N, Stefani HA. Advances in organic tellurium chemistry. Tetrahedron. 2005;61:1613−79; (d) Potapov VA, Musalov MV, Musalova MV, Amosova SV. Recent Advances in organochalcogen synthesis based on reactions of chalcogen halides with alkynes and alkenes. Curr Org Chem. 2016;20:136−45; (e) Singh FV, Stefani HA. Ultrasound-assisted synthesis of symmetrical biaryls by palladium-catalyzed detelluration of 1,2-diarylditellanes. Tetrahedron Lett. 2010;51:863−7.10.1055/s-1997-1210Search in Google Scholar
[123] (a) Nishibayashi Y, Cho CS, Uemura S. Palladium-catalyzed cross-coupling reactions between organic tellurides and alkenes. J Organomet Chem. 1996;507:197−200; (b) Nishibayashi Y, Cho CS, Ohe K, Uemura S. Palladium-catalyzed homocoupling reactions of organic tellurides. J Organomet Chem. 1996;526:335−9.10.1016/0022-328X(95)05763-FSearch in Google Scholar
[124] Zeni G, Comasseto JV. Coupling of Z-vinylic tellurides with alkynes catalysed by PdCl2CuI: synthesis of Z-enynes and Z-enediynes. Tetrahedron Lett. 1999;40:4619−22.10.1016/S0040-4039(99)00773-XSearch in Google Scholar
[125] Dabdoub MJ, Dabdoub VB, Marino JP. Palladium-catalyzed cross-coupling reactions of dimethyl- and diethylzinc with unsaturated organotellurium compounds. Tetrahedron Lett. 2000;41:433–6.10.1016/S0040-4039(99)02087-0Search in Google Scholar
[126] Zeni G, Perin G, Cella R, Jacob RG, Braga AL, Silveira CC, et al. Synthesis of cross-conjugated geminal enediynes via palladium catalyzed cross-coupling reaction of ketene butyltelluroacetals. Synlett. 2002;975–7.10.1055/s-2002-31922Search in Google Scholar
[127] Braga AL, Ludtke DS, Vargas F, Donato RK, Silveira CC, Stefani HA, et al. Sonogashira cross-coupling reaction of organotellurium dichlorides with terminal alkynes. Tetrahedron Lett. 2003;44:1779–81.10.1016/S0040-4039(03)00098-4Search in Google Scholar
[128] Stefani HA, Cella R, Dorr FA, Pereira CMP, Zeni G, Gomes M. Synthesis of 1,3-enynes via Suzuki-type reaction of vinylic tellurides and potassium alkynyltrifluoroborate salt. Tetrahedron Lett. 2005;46:563–7.10.1016/j.tetlet.2004.11.160Search in Google Scholar
[129] Cella R, Orfao ATG, Stefani HA. Palladium-catalyzed cross-coupling of vinylic tellurides and potassium vinyltrifluoroborate salt: synthesis of 1,3-dienes. Tetrahedron Lett. 2006;47:5075–8.10.1016/j.tetlet.2006.05.088Search in Google Scholar
[130] Cella R, Stefani HA. Ultrasound-assisted synthesis of Z and E stilbenes by Suzuki cross-coupling reactions of organotellurides with potassium organotrifluoroborate salts. Tetrahedron. 2006;62:5656–62.10.1016/j.tet.2006.03.090Search in Google Scholar
[131] Cella R, Cunha RLOR, Reis AES, Pimenta DC, Klitzke CF, Stefani HA. Suzuki-Miyaura cross-coupling reactions of aryl tellurides with potassium aryltrifluoroborate salts. J Org Chem. 2006;71:244–50.10.1021/jo052061rSearch in Google Scholar PubMed
[132] Singh FV, Weber M, Guadagnin RC, Stefani HA. Ultrasound-assisted synthesis of functionalized 1,3-enynes by palladium-catalyzed cross-coupling reaction of α-styrylbutyltelluride with alkynyltrifluoroborate salts. Synlett. 2008;1889–93.10.1002/chin.200848040Search in Google Scholar
[133] Singh FV, Milagre HMS, Eberlin MN, Stefani HA. Synthesis of benzophenones from geminal biaryl ethenes using m-chloroperbenzoic acid. Tetrahedron Lett. 2009;50:2312–6.10.1016/j.tetlet.2009.02.164Search in Google Scholar
[134] Guadagnin RC, Suganuma CA, Singh FV, Vieira AS, Cella R, Stefani HA, et al. Chemoselective cross-coupling Suzuki–miyaura reaction of (Z)-(2-chlorovinyl)tellurides and potassium aryltrifluoroborate salts. Tetrahedron Lett. 2008;49:4713–6.10.1016/j.tetlet.2008.05.129Search in Google Scholar
[135] Stefani HA, Pena JM, Manarin F, Ando RA, Petragnani N. Negishi Cross-coupling of organotellurium compounds: synthesis of biaryls, aryl-, and diaryl acetylenes. Tetrahedron Lett. 2011;52:4398–401.10.1016/j.tetlet.2011.06.025Search in Google Scholar
[136] Singh FV, Amaral MFZJ, Stefani HA. Synthesis of symmetrical 1,3-diynes via homocoupling reaction of n-butyl alkynyltellurides. Tetrahedron Lett. 2009;50:2636–9.10.1016/j.tetlet.2009.03.078Search in Google Scholar
[137] Borisov AV, Matsulevich ZV, Osmanov VK, Borisova FN, Naumov VI, Mammadova GZ, et al. Cycloaddition of 2-pyridinetellurenyl chloride to alkenes. Russ Chem Bull Int Ed. 2012;61:91–4.10.1007/s11172-012-0013-xSearch in Google Scholar
[138] Borisov AV, Matsulevich ZV, Osmanov VK, Borisova GN. Polar cycloaddition of 2-pyridinetellurium trichloride to multiple bonds. Russ Chem Bull Int Ed. 2013;62:1042–3.10.1007/s11172-013-0139-5Search in Google Scholar
© 2018 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- The environmental fate of synthetic organic chemicals
- Forensics: evidence examination via Raman spectroscopy
- Optical spectroscopy as a tool for battery research
- Selenium and Tellurium Electrophiles in Organic Synthesis
- Introduction to cheminformatics for green chemistry education
- Analyzing Raman spectroscopic data
- Green chemistry in secondary school
- Recent advances in the self-assembly of polynuclear metal–selenium and –tellurium compounds from 14–16 reagents
- Physicochemical approaches to gold and silver work, an overview: Searching for technologies, tracing routes, attempting to preserve
Articles in the same Issue
- The environmental fate of synthetic organic chemicals
- Forensics: evidence examination via Raman spectroscopy
- Optical spectroscopy as a tool for battery research
- Selenium and Tellurium Electrophiles in Organic Synthesis
- Introduction to cheminformatics for green chemistry education
- Analyzing Raman spectroscopic data
- Green chemistry in secondary school
- Recent advances in the self-assembly of polynuclear metal–selenium and –tellurium compounds from 14–16 reagents
- Physicochemical approaches to gold and silver work, an overview: Searching for technologies, tracing routes, attempting to preserve