Startseite Computational analysis and identification of battery materials
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Computational analysis and identification of battery materials

  • F. Meutzner EMAIL logo , T. Nestler , M. Zschornak , P. Canepa , G. S. Gautam , S. Leoni , S. Adams , T. Leisegang , V. A. Blatov und D. C. Meyer
Veröffentlicht/Copyright: 2. Oktober 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Crystallography is a powerful descriptor of the atomic structure of solid-state matter and can be applied to analyse the phenomena present in functional materials. Especially for ion diffusion – one of the main processes found in electrochemical energy storage materials – crystallography can describe and evaluate the elementary steps for the hopping of mobile species from one crystallographic site to another. By translating this knowledge into parameters and search for similar numbers in other materials, promising compounds for future energy storage materials can be identified. Large crystal structure databases like the ICSD, CSD, and PCD have accumulated millions of measured crystal structures and thus represent valuable sources for future data mining and big-data approaches. In this work we want to present, on the one hand, crystallographic approaches based on geometric and crystal-chemical descriptors that can be easily applied to very large databases. On the other hand, we want to show methodologies based on ab initio and electronic modelling which can simulate the structure features more realistically, incorporating also dynamic processes. Their theoretical background, applicability, and selected examples are presented.

Acknowledgements

FM, TN, MZ, TL, and DCM are grateful for financial support of the Federal Ministry of Education and Research (CryPhysConcept (03EK3029A) and R2RBattery (03SF0542A)). PC is grateful to the Ramsey Memorial Trust for the provision of his Ramsey Fellowship. SL acknowledges support from the UK Research Council for using work in the paper that was undertaken by a student under Project No. EP/M50631X/. SL also thanks ARCCA Cardiff for computational resources. SA would like to thank National Research Foundation, Prime Minister’s Office, Singapore for support under its Competitive Research Programme (NRF-CRP 10-2012-6) and NUS for support under the “NUS Centre for Energy Research” grant. VAB is grateful for financial support of the Russian Megagrant (14.B25.31.0005), and the Russian Science Foundation (16-13-10158).

References

[1] Ceder G, Persson K. The Stuff of Dreams. Sci Am. 2013;309:36–4010.1038/scientificamerican1213-36Suche in Google Scholar PubMed

[2] Strategische weiterentwicklung des hoch- und höchstleistungsrechnens in Deutschland. Germany: Deutscher Wissenschaftsrat, 2012Suche in Google Scholar

[3] Fueling discovery by sharing. Nat Mater. 2013;12:173. DOI: 10.1038/nmat3594.10.1038/nmat3594Suche in Google Scholar PubMed

[4] Material’s Project, https://materialsproject.org, cited 04.05.2017.Suche in Google Scholar

[5] ‘Partnership for Advanced Computing in Europe’, http://www.prace-ri.eu (cited 09. March 2017).Suche in Google Scholar

[6] Boosting materials modelling. Nat Mater. 2016;15:365. DOI: 10.1038/nmat4619.10.1038/nmat4619Suche in Google Scholar PubMed

[7] Jahan A, Ismail MY, Sapuan SM, Mustapha F. Material screening and choosing methods – a review. Mater Des. 2010;31:696–705.10.1016/j.matdes.2009.08.013Suche in Google Scholar

[8] Mayr LM, Bojanic D. Novel trends in high-throughput screening. Curr Opin Pharmacol. 2009;9:580–588.10.1016/j.coph.2009.08.004Suche in Google Scholar PubMed

[9] Green ML, Choi CL, Hattrick-Simpers JR, Joshi AM, Takeuchi I, Barron SC, et al. Fulfilling the promise of the materials genome initiative with high-throughput experimental methodologies. Appl Phys Rev. 2017;4:011105.10.1063/1.4977487Suche in Google Scholar

[10] Levi E, Levi MD, Chasid O, Aurbach D. A review on the problems of the solid state ions diffusion in cathodes for rechargeable Mg batteries. J Electroceram. 2009;22:13–9.10.1007/s10832-007-9370-5Suche in Google Scholar

[11] Elia GA, Marquardt K, Hoeppner K, Fantini S, Lin R, Knipping E, et al. An overview and future perspectives of aluminum batteries. Adv Mater. 2016;28:7564–79.10.1002/adma.201601357Suche in Google Scholar PubMed

[12] Van Noorden R. The rechargeable revolution: a better battery. Nature. 2014;507:26–8.10.1038/507026aSuche in Google Scholar PubMed

[13] ‘Company overview of Pellion Technologies Inc.’, Bloomberg. Available at:http://www.bloomberg.com/research/stocks/private/snapshot. asp?privcapId=114339859. Accessed: 04 May 2017.Suche in Google Scholar

[14] Anurova NA, Blatov VA, Ilyushin GD, Blatova OA, Ivanov-Schitz AK, Dem’yanets LN. Migration maps of Li+ cations in oxygen-containing compounds. Solid State Ionics. 2008;179:2248–54.10.1016/j.ssi.2008.08.001Suche in Google Scholar

[15] Hautier G, Fischer C, Ehrlacher V, Jain A, Ceder G. Data mined ionic substitutions for the discovery of new compounds. Inorg Chem. 2011;50:656–63.10.1021/ic102031hSuche in Google Scholar PubMed

[16] Avdeev M, Sale M, Adams S, Rao RP. Screening of the alkali-metal ion containing materials from the Inorganic Crystal Structure Database (ICSD) for high ionic conductivity pathways using the bond valence method. Solid State Ionics. 2012;225:43–6.10.1016/j.ssi.2012.02.014Suche in Google Scholar

[17] Gao J, Chu G, He M, Zhang S, Xiao R, Li H, Chen L. Screening possible solid electrolytes by calculating the conduction pathways using bond valence method. Sci China Phys Mech Astron. 2014;57:1526–36.10.1007/s11433-014-5511-4Suche in Google Scholar

[18] Xiao R, Li H, Chen L. High-throughput design and optimization of fast lithium ion conductors by the combination of bond-valence method and density functional theory. Sci Rep. 2015;5:14227.10.1038/srep14227Suche in Google Scholar PubMed PubMed Central

[19] Meutzner F, Münchgesang W, Leisegang T, Schmid R, Zschornak M, Ureña De Vivanco M, Shevchenko AP, Blatov VA, Meyer DC. Identification of solid oxygen-containing Na-electrolytes: an assessment based on crystallographic and economic parameters. Crystal Res Technol. 2017;52:1600223.10.1002/crat.201600223Suche in Google Scholar

[20] Wang Y, Richards WD, Ong SP, Miara LJ, Kim JC, Mo Y, Ceder G. Design principles for solid-state lithium superionic conductors. Nat Mater. 2015;14:1026–31.10.1038/nmat4369Suche in Google Scholar PubMed

[21] Wong LL, Chen H, Adams S. Design of fast ion conducting cathode materials for grid-scale sodium-ion batteries. Phys Chem Chem Phys. 2017;19:7506–23.10.1039/C7CP00037ESuche in Google Scholar

[22] Data mining, Merriam Webster: https://www.merriam-webster.com/dictionary/data%20mining (cited 04.05.2017).Suche in Google Scholar

[23] Larose DT. Discovering knowledge in data: an introduction to data mining. Hoboken, NJ: Wiley & Sons Inc., 2014.10.1002/9781118874059Suche in Google Scholar

[24] Sendek AD, Yang Q, Cubuk ED, Duerloo K-A, Cui Y, Reed EJ. Holistic computational structure screening of more than 12000 candidates for solid lithium-ion conductor materials. Energy Environ Sci. 2017;10:306–20.10.1039/C6EE02697DSuche in Google Scholar

[25] Manyika J, Chui M, Brown B, Bughin J, Dobbs R, Roxburgh C, et al. Big data: the next frontier for innovation, competition, and productivity. Brussels, San Francisco: McKinsey Global Institute, McKinsey & Company, 2011.Suche in Google Scholar

[26] Qu X, Jain A, Rajput NN, Cheng L, Zhang Y, Ong SP, et al. The electrolyte genome project: a big data approach in battery materials discovery. Comput Mater Sci. 2015;103:56–67.10.1016/j.commatsci.2015.02.050Suche in Google Scholar

[27] Meutzner F, Münchgesang W, Kabanova NA, Zschornak M, Leisegang T, Blatov VA, Meyer DC. On the way to new possible Na-ion conductors: the Voronoi–Dirichlet approach, data mining and symmetry considerations in ternary Na oxides. Chem – Eur J. 2015;21:16601–8.10.1002/chem.201501975Suche in Google Scholar PubMed

[28] Ghadbeigi L, Sparks TD, Harada JK, Lettiere BR. Data-mining approach for battery materials. 2015 IEEE Conference on Technologies for Sustainability (SusTech), 2015:239–44.10.1109/SusTech.2015.7314353Suche in Google Scholar

[29] Hachmann J, Olivares-Amaya R, Atahan-Evrenk S, Amador-Bedolla C, Sánchez-Carrera RS, Gold-Parker A, Vogt L, Brockway AM, Aspuru-Guzik A. The Harvard clean energy project: large-scale computational screening and design of organic photovoltaics on the world community grid. J Phys Chem Lett. 2011;2:2241–51.10.1021/jz200866sSuche in Google Scholar

[30] Curtarolo S, Setyawan W, Wang S, Xue J, Yang K, Taylor RH, et al. AFLOWLIB. ORG: a distributed materials properties repository from high-throughput ab initio calculations. Comput Mater Sci. 2012;58:227–35.10.1016/j.commatsci.2012.02.002Suche in Google Scholar

[31] Saal JE, Kirklin S, Aykol M, Meredig B, Wolverton C. Materials design and discovery with high-throughput density functional theory: the open quantum materials database (OQMD). Jom. 2013;65:1501–9.10.1007/s11837-013-0755-4Suche in Google Scholar

[32] Jónsson H, Mills G, Jacobsen KW. Nudged elastic band method for finding minimum energy paths of transitions. In: Berne BJ, Ciccotti G,, Coker DF, editor(s). Classical and quantum dynamics in condensed phase simulations. Singapore, New Jersey, London, Hong Kong: World Scientific, 1998:385–404.10.1142/9789812839664_0016Suche in Google Scholar

[33] Adams S, Swenson J. Predictability of ion transport properties from the structure of solid electrolytes. Ionics. 2004;10:317–26.10.1007/BF02377990Suche in Google Scholar

[34] Adams S. Modelling ion conduction pathways by bond valence pseudopotential maps. Solid State Ionics. 2000;136:1351–61.10.1016/S0167-2738(00)00576-2Suche in Google Scholar

[35] Ling S-G, Gao J, Xiao R-J, Chen L-Q. High-throughput theoretical design of lithium battery materials. Chin Phys B. 2016;25:018208.10.1088/1674-1056/25/1/018208Suche in Google Scholar

[36] Xiao R, Li H, Chen L. Candidate structures for inorganic lithium solid-state electrolytes identified by high-throughput bond-valence calculations. J Materiomics. 2015;1:325–32.10.1016/j.jmat.2015.08.001Suche in Google Scholar

[37] Adams S, Prasada Rao R. Transport pathways for mobile ions in disordered solids from the analysis of energy-scaled bond-valence mismatch landscapes. Phys Chem Chem Phys. 2009;11:3210–6.10.1039/b901753dSuche in Google Scholar PubMed

[38] Adams S, Prasada Rao R. Understanding ionic conduction and energy storage materials with bond-valence-based methods. In: Brown ID, Poeppelmeier KR, editor(s). Bond Valences. Berlin Heidelberg: Springer , 2014:129–59.10.1007/430_2013_137Suche in Google Scholar

[39] Sale M, Avdeev M. 3DBVSMAPPER: a program for automatically generating bond-valence sum landscapes. J Appl Crystallogr. 2012;45:1054–6.10.1107/S0021889812032906Suche in Google Scholar

[40] Filsø MØ, Turner MJ, Gibbs GV, Adams S, Spackman MA, Iversen BB. Visualizing lithium-ion migration pathways in battery materials. Chem – Eur J. 2013;19:15535–44.10.1002/chem.201301504Suche in Google Scholar PubMed

[41] Filsø MØ, Eikeland E, Iversen BB. Procrystal analysis as a tool for the visualization of ion migration pathways. AIP Conference Proceedings 2016;1765:020010.10.1063/1.4961902Suche in Google Scholar

[42] Adams S, Swenson J. Determining ionic conductivity from structural models of fast ionic conductors. Phys Rev Lett. 2000;84:4144.10.1103/PhysRevLett.84.4144Suche in Google Scholar PubMed

[43] Adams S, Swenson J. Bond valence analysis of transport pathways in RMC models of fast ion conducting glasses. Phys Chem Chem Phys. 2002;4:3179–84.10.1039/b111310kSuche in Google Scholar

[44] Adams S, Swenson J. Bond valence analysis of reverse Monte Carlo produced structural models; a way to understand ion conduction in glasses. J Phys Condens Matter. 2005;17:S87–101.10.1088/0953-8984/17/5/010Suche in Google Scholar

[45] Müller C, Zienicke E, Adams S, Habasaki J, Maass P. Comparison of ion sites and diffusion paths in glasses obtained by molecular dynamics simulations and bond valence analysis. Phys Rev B. 2007;75:014203.10.1103/PhysRevB.75.014203Suche in Google Scholar

[46] Cai L, White RE. Mathematical modeling of a lithium ion battery with thermal effects in COMSOL Inc. Multiphysics (MP) software. J Power Sources. 2011;196:5985–9.10.1016/j.jpowsour.2011.03.017Suche in Google Scholar

[47] COMSOL Multiphysics® 3.5a USER’S Guide. 2008a. COMSOL Inc.Suche in Google Scholar

[48] COMSOL Multiphysics® 3.5a Reference Guide. 2008b. COMSOL Inc.Suche in Google Scholar

[49] Takada K, Ohno T. Experimental and computational approaches to interfacial resistance in solid-state batteries. Front Energy Res. 2016;4:10.10.3389/fenrg.2016.00010Suche in Google Scholar

[50] In: Meyer DC, Leisegang T, editor(s). Electrochemical storage materials: from crystallography to manufacturing technology. OLDENBOURG: DE GRUYTER Publishing House, 201810.1515/9783110493986Suche in Google Scholar

[51] Nishijima M, Ootani T, Kamimura Y, Sueki T, Esaki S, Murai S, et al. Accelerated discovery of cathode materials with prolonged cycle life for lithium-ion battery. Nat Commun. 2014;5:4553.10.1038/ncomms5553Suche in Google Scholar PubMed

[52] Fuess H, Hahn T, Wondratschek H, Müller U, Shmueli U, Prince E, et al., editors. International tables for crystallography. Berlin: Springer, 2004.Suche in Google Scholar

[53] Batten SR, Robson R. Interpenetrating nets: ordered, periodic entanglement. Angew Chemie Int Ed. 1998;37:1460–94.10.1002/(SICI)1521-3773(19980619)37:11<1460::AID-ANIE1460>3.0.CO;2-ZSuche in Google Scholar

[54] Blatov VA, Shevchenko AP, Proserpio DM. Applied topological analysis of crystal structures with the program package ToposPro. Cryst Growth Des. 2014;14:3576–86.10.1021/cg500498kSuche in Google Scholar

[55] Blatov VA, Proserpio DM. Periodic-graph approaches in crystal structure prediction. In: Oganov AR, editor(s). Modern methods of crystal structure prediction. Weinheim: Wiley VCH, 2011:1–28.10.1002/9783527632831.ch1Suche in Google Scholar

[56] Frank FT, Kasper J. Complex alloy structures regarded as sphere packings. I. Definitions and basic principles. Acta Crystallogr. 1958;11:184–90.10.1107/S0365110X58000487Suche in Google Scholar

[57] Frank FT, Kasper J. Complex alloy structures regarded as sphere packings. II. Analysis and classification of representative structures. Acta Crystallogr. 1959;12:483–99.10.1107/S0365110X59001499Suche in Google Scholar

[58] O’Keeffe M, Hyde BG. Crystal structures I. Patterns and symmetry. Washington, DC: Mineralogical Society of America, 1996.Suche in Google Scholar

[59] Steurer W, Dshemuchadse J. Intermetallics: structures, properties, and statistics. Oxford: Oxford University Press, International Union of Crystallography Monographs on Crystallography, 201610.1093/acprof:oso/9780198714552.001.0001Suche in Google Scholar

[60] Aurenhammer F. Voronoi diagrams – a survey of a fundamental geometric data structure. ACM Comput Surv. 1991;23:345–405.10.1145/116873.116880Suche in Google Scholar

[61] Voronoi GF. Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. J Reine Angew Math. 1908;134:198–287.10.1515/crll.1908.134.198Suche in Google Scholar

[62] Dirichlet GL. Über die Reduktion der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen. J Reine Angew Math. 1850;40:209–27.10.1515/crll.1850.40.209Suche in Google Scholar

[63] Niggli P. Die topologische Strukutranalyse. I. Z. Kristallogr Cryst Mater. 1927;65:391–415.10.1524/zkri.1927.65.1.391Suche in Google Scholar

[64] Blatov VA, Shevchenko AP, Serenzhkin VN. Crystal space analysis by means of Voronoi–Dirichlet polyhedra. Acta Crystallogr A. 1995;51:909–16.10.1107/S0108767395006799Suche in Google Scholar

[65] Blatov VA. Voronoi–Dirichlet polyhedra in crystal chemistry: theory and applications. Crystallogr Rev. 2004;10:249–318.10.1080/08893110412331323170Suche in Google Scholar

[66] Descartes R. Principia philosophiae. Amsterdam: Apud Ludovicum Elzevirum, 1644.Suche in Google Scholar

[67] Liebling TM, Pournin L. Voronoi diagrams and Delauney triangulations: ubiquitous Siamese twins. Doc Math Extra Volume Optim Stories. 2012;2012:419–31.Suche in Google Scholar

[68] Blatov VA, Serezhkin VN. Stereoatomic model of the structure of inorganic and coordination compounds. Russ J Inorg Chem. 2000;45:S105–22.Suche in Google Scholar

[69] Voroglide. Fernuni Hagen. http://www.pi6.fernuni-hagen.de/GeomLab/VoroGlide. Accessed 01 Mar 2017.Suche in Google Scholar

[70] Blatov VA, Ilyushin GD, Blatova OA, Anurova NA, Ivanov-Schits AK, Dem’yanets LN. Analysis of migration paths in fast-ion conductors with Voronoi–Dirichlet partition. Acta Crystallogr B. 2006;62:1010–8.10.1107/S0108768106039425Suche in Google Scholar

[71] Blatov VA, Shevchenko AP. Registration of the computer program ‘ToposPro’, Russian certificate No. 2013619016, 2013.Suche in Google Scholar

[72] Global materials market for alternative energy storage mechanisms. Frost & Sullivan, 2011:9833–9.Suche in Google Scholar

[73] Buss K, Wrobel P, Doetsch C. Global distribution of grid connected electrical energy storage systems. Int J Sustainable Energy Plann Manag. 2016;9:31–56.Suche in Google Scholar

[74] Kummer JT, Neill W. Battery having a molten alkali metal anode and a molten sulfur cathode. Publication date: 26. November 1968, US Patent US3413150 A.Suche in Google Scholar

[75] Yao Y-F, Kummer JT. Ion exchange properties of and rates of ionic diffusion in beta-alumina. J Inorg Nucl Chem. 1967;29:2453–75.10.1016/0022-1902(67)80301-4Suche in Google Scholar

[76] Hueso KB, Armand M, Rojo T. High temperature sodium batteries: status, challenges and future trends. Energy Environ Sci. 2013;6:734–49.10.1039/c3ee24086jSuche in Google Scholar

[77] Daniel C, Besenhard J. Handbook of battery materials, vol. 1, 2nd ed. Weihnheim: Wiley-VCH; 2011.10.1002/9783527637188Suche in Google Scholar

[78] Dunn B, Kamath H, Tarascon J-M. Electrical energy storage for the grid: a battery of choices. Sci. 2011;334:928–35.10.1126/science.1212741Suche in Google Scholar PubMed

[79] Belsky A, Hellenbrandt M, Karen VL, Luksch P. New developments in the inorganic crystal structure database (ICSD): accessibility in support of materials research and design. Acta Crystallogr B. 2002;58:364–9.10.1107/S0108768102006948Suche in Google Scholar

[80] Whittingham MS, Huggins RA. Measurement of sodium ion transport in beta alumina using reversible solid electrodes. J Chem Phys. 1971;54:414–6.10.1063/1.1674623Suche in Google Scholar

[81] Song S, Duong HM, Korsunsky AM, Hu N, Lu L. A Na+ superionic conductor for room-temperature sodium batteries. Sci Rep. 2016;6:32330.10.1038/srep32330Suche in Google Scholar PubMed PubMed Central

[82] Beyeler HU, Shannon RD, Chen HY. Ionic conductivity of single-crystal Na5YSi4O12ʹ. Appl Phys Lett. 1980;37:934–5.10.1063/1.91765Suche in Google Scholar

[83] Glöser S, Espinoza LT, Gandenberger C, Faulstich M. Raw material criticality in the context of classical risk assessment. Resour Policy. 2015;44:35–46.10.1016/j.resourpol.2014.12.003Suche in Google Scholar

[84] Brown ID, Poeppelmeier KR, editors. Bond valences. Berlin Heidelberg: Springer, 2014.10.1007/978-3-642-54968-7Suche in Google Scholar

[85] Pauling L. The principles determining the structure of complex ionic crystals. J Am Chem Soc. 1926;51:1010–26.10.1021/ja01379a006Suche in Google Scholar

[86] Brown ID. Recent developments in the methods and applications of the bond valence model. Chem Rev. 2009;109:6858–919.10.1021/cr900053kSuche in Google Scholar

[87] Baur WH. Bond length variation and distorted coordination polyhedra in inorganic crystals. Trans Am Crystallogr Assoc. 1970;6:125–55.Suche in Google Scholar

[88] Donnay G, Allmann R. How to recognize O2−, OH, and H2O in crystal structures determined by X-rays. Am Mineral. 1970;55:1003–15.Suche in Google Scholar

[89] Brown ID, Altermatt D. Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallogr B. 1970;41:244–7.10.1107/S0108768185002063Suche in Google Scholar

[90] Adams S. From bond valence maps to energy landscapes for mobile ions in ion-conducting solids. Solid State Ionics. 2006;177:1625–30.10.1016/j.ssi.2006.03.054Suche in Google Scholar

[91] Preiser C, Loesel J, Brown ID, Kunz M, Skowron A. Long-range Coulomb forces and localized bonds. Acta Crystallogr B. 1999;55:698–711.10.1107/S0108768199003961Suche in Google Scholar

[92] Brown ID. The chemical bond in inorganic chemistry: the bond valence model. Oxford: Oxford University Press, 2002:27Suche in Google Scholar

[93] Garrett JD, Greedan JE, Faggiani R, Carbotte S, Brown ID. Single-crystal growth and structure determination of Ag16I12P2O. J Solid State Chem. 1982;42:183–90.10.1016/0022-4596(82)90266-3Suche in Google Scholar

[94] Zhou Y, Adams S, Rao RP, Edwards DD, Neiman A, Pestereva N. Charge transport by polyatomic anion diffusion in Sc2(WO4). Chem Mater. 2008;20:6335–45.10.1021/cm800466ySuche in Google Scholar

[95] Yashima M, Sekikawa T, Sato D, Nakano H, Omoto K. Crystal structure and oxide-ion diffusion of nanocrystalline, compositionally homogeneous ceria–zirconia Ce0.5Zr0.5O2 up to 1176K. Cryst Growth Des. 2013;13:829–37.10.1021/cg301530tSuche in Google Scholar

[96] Cabana J, Ling CD, Oró-Solé J, Gautier D, Tobias G, Adams S, Canadell E, Palacin MR. Antifluorite-type lithium chromium oxide nitrides: synthesis, structure, order, and electrochemical properties. Inorg Chem. 2004;43:7050–60.10.1021/ic049138zSuche in Google Scholar PubMed

[97] Mazza D. Modeling ionic conductivity in Nasicon structures. J Solid State Chem. 2001;156:154–60.10.1006/jssc.2000.8975Suche in Google Scholar

[98] Fedotov SS, Kabanov AA, Kabanova NA, Blatov VA, Zhugayevych A, Abakumov AM, Khasanova NR, Antipov EV. Crystal structure and Li-ion transport in Li2CoPO4F high-voltage cathode material for Li-ion batteries. J Phys Chem C. 2017;121:3194–202.10.1021/acs.jpcc.6b11027Suche in Google Scholar

[99] Ouerfelli N, Guesmi A, Mazza D, Madani A, Zid MF, Driss A. Synthesis, crystal structure and mono-dimensional thallium ion conduction of TlFe0.22Al0.78As2O. J Solid State Chem. 2007;180:1224–9.10.1016/j.jssc.2007.01.018Suche in Google Scholar

[100] Safanama D, Sharma N, Rao RP, Brand HE, Adams S. Structural evolution of NASICON-type Li1+xAlxGe2-x(PO4)3 using in situ synchrotron X-ray powder diffraction. J Mater Chem A. 2006;4:7718–26.10.1039/C6TA00402DSuche in Google Scholar

[101] Kan WH, Huq A, Manthiram A. Exploration of a metastable normal spinel phase diagram for the quaternary Li–Ni–Mn–Co–O system. Chem Mater. 2016;28:1832–7.10.1021/acs.chemmater.5b04994Suche in Google Scholar

[102] Adams S. Relationship between bond valence and bond softness of alkali halides and chalcogenides. Acta Crystallogr B. 2001;57:278–87.10.1107/S0108768101003068Suche in Google Scholar

[103] Chen H, Adams S. Bond softness sensitive bond-valence parameters for crystal structure plausibility tests. IUCrJ. 2017;4:614–25.10.1107/S2052252517010211Suche in Google Scholar PubMed PubMed Central

[104] Swenson J, Adams S. Application of the bond valence method to reverse Monte Carlo produced structural models of superionic glasses. Phys Rev B. 2001;64:024204.10.1103/PhysRevB.64.024204Suche in Google Scholar

[105] Swenson J, Adams S. Mixed alkali effect in glasses. Phys Rev Lett. 2003;90:155507.10.1103/PhysRevLett.90.155507Suche in Google Scholar PubMed

[106] Hall A, Swenson J, Adams S, Meneghini C. Mixed mobile ion effect and cooperative motions in silver-sodium phosphate glasses. Phys Rev Lett. 2008;101:195901.10.1103/PhysRevLett.101.195901Suche in Google Scholar PubMed

[107] Adams S, Rao RP. High power lithium ion battery materials by computational design. Phys Status Solidi A. 2011;208:1746–53.10.1002/pssa.201001116Suche in Google Scholar

[108] Adams S, Rao RP. Structural requirements for fast lithium ion migration in Li10GeP2S12ʹ. J Mater Chem. 2012;22:7687–91.10.1039/c2jm16688gSuche in Google Scholar

[109] Wong LL, Chen HM, Adams S. Sodium-ion diffusion mechanisms in the low cost high voltage cathode material Na2+δFe2−δ/2(SO4). Phys Chem Chem Phys. 2015;17:9186–93.10.1039/C5CP00380FSuche in Google Scholar

[110] Nishitani Y, Adams S, Ichikawa K, Tsujita T. Evaluation of magnesium ion migration in inorganic oxides by the bond valence site energy method. Solid State Ionics. 2018;315:111–115.10.1016/j.ssi.2017.11.031.Suche in Google Scholar

[111] Wong LL, Chen H, Adams S. Design of fast ion conducting cathode materials for grid-scale sodium-ion batteries. Physical Chemistry Chemical Physics. 2017;19:7506–7523.10.1039/C7CP00037E.Suche in Google Scholar

[112] Pearson WH, Lomax JF. X-ray crystal diffraction study of Zr,Na-betaʺ-alumina. Mate Res Soc Symp Proc. 1993;293:315–21.10.1557/PROC-293-315Suche in Google Scholar

[113] Boilot JP, Collin G, Colomban P. Relation structure-fast ion conduction in the NASICON solid solution. J Solid State Chem. 1988;73:160–71.10.1016/0022-4596(88)90065-5Suche in Google Scholar

[114] Collin G, Comes R, Boilot JB, Colomban P. Disorder of tetrahedra in Nasicon-type structure – Part I. Na3Sc2(PO4)3: structures and ion-ion correlations. J Phys Chem. 1986;47:843–54.10.1016/0022-3697(86)90055-7Suche in Google Scholar

[115] Susman S, Delbecq CJ, Brun TO, Prince E. Fast ion transport in the Nasicon analog Na3Sc2(PO4)3: structure and conductivity. Solid State Ionics. 1983;9:839–44.10.1016/0167-2738(83)90099-1Suche in Google Scholar

[116] Chamkir M, El Jazouli A, De Waal D. Synthesis, crystal structure and spectroscopy properties of Na3AZr(PO4)3 (A = Mg, Ni) and Li2.6Na0.4NiZr(PO4)3 phosphates. J Solid State Chem. 2006;179:1883–91.10.1016/j.jssc.2006.03.003Suche in Google Scholar

[117] Zatrovsky IV. NASICON-type Na3V2(PO4). Acta Crystallogr E. 2010;66:pi12–12.10.1107/S1600536810002801Suche in Google Scholar PubMed PubMed Central

[118] Maksimov BA, Belov NV. The high temperature X-ray analysis of the monocrystals Na5YSi4O12ʹ. Dokl Akad Nauk SSSR. 1981;261:623–7.Suche in Google Scholar

[119] Rüscher CH, Gesing TM, Buhl J-C. Anomalous thermal expansion behaviour of Na8[AlSiO4]6(NO3)2-sodalite: P4̅3n to Pm3̅n phase transition by untilting and contraction of TO4 units. Z Kristallogr Cryst Mater. 2003;218:332–44.10.1524/zkri.218.5.332.20731Suche in Google Scholar

[120] Barth TF, Posnjak E. Silicate structures of the cristobalite type: III. Structural relationship of high-cristobalite, alpha-carnegieite, and Na2SiO. Z Kristallogr. 1932;81:376–85.10.1524/zkri.1932.81.1.376Suche in Google Scholar

[121] Baur WH, Joswig W. The phases of natrolite occurring during dehydration and rehydration studied by single crystal X-ray diffraction methods between room temperature and 923 K. Neues Jahrb Mineral Abh Monatsh. 1996;1996:171–87.Suche in Google Scholar

[122] Kahlenberg V, Böhm H. Crystal structure of hexagonal trinepheline – a new synthetic NaAlSiO4 modification. Am Mineral. 1998;83:631–7.10.2138/am-1998-5-623Suche in Google Scholar

[123] Isasi J, Daidouh A. Synthesis, structure and conductivity study of new monovalent phosphates with the langbeinite structure. Solid State Ionics. 2000;133:303–13.10.1016/S0167-2738(00)00677-9Suche in Google Scholar

[124] Williams JJ, Smith CW, Evans KE, Lethbridge ZA, Walton RI. Off-axis elastic properties and the effect of extraframework species on structural flexibility of the NAT-type zeolites: simulations of structure and elastic properties. Chem Mater. 2007;19:2423–34.10.1021/cm062473wSuche in Google Scholar

[125] Saniz R, Freeman AJ. Pressure effects on the electronic properties and superconductivity of the beta-pyrochlore oxides: AOs2O6 (A = Na, K, Rb, Cs). Phys Rev B. 2007;72:024522.10.1103/PhysRevB.72.024522Suche in Google Scholar

[126] Nishi F, Takéuchi Y. Cubic structure of sodium calcium germanate Na3.7Ca1.15Ge3O. Acta Crystallogr C. 1988;44:1867–9.10.1107/S0108270188007139Suche in Google Scholar

[127] Michiue Y, Watanabe M. NaxCrxTi8-xO16, priderite with sodium ions in the tunnel structural study for stability and Na ion transport. J Solid State Chem. 1995;116:269–99.10.1006/jssc.1995.1217Suche in Google Scholar

[128] Vuli P, Kahlenberg V. On the high temperature behaviour of monoclinic trinepheline. Neues Jahrb Mineral Geol Palaeontol A. 2012;189:197–206.10.1127/0077-7757/2012/0219Suche in Google Scholar

[129] Serras P, Palomares V, Rojo T, Brand HE, Sharma N. Structural evolution of high energy density V(3+)/V(4+) mixed valent Na3V2O2 x (PO4)2F3-2x (x = 0.8) sodium vanadium fluorophosphate using in situ synchrotron X-ray powder diffraction. J Mater Chem A. 2014;2:7766–79.10.1039/C4TA00773ESuche in Google Scholar

[130] Brachtel G, Bukovec N, Hoppe R. Das erste Oxomanganat(III) mit Inselstruktur: zur Kenntnis von Na5(MnO4). Z Anorg Allg Chem. 1984;515:101–13.10.1002/zaac.19845150812Suche in Google Scholar

[131] Wang H-W, Bish DL. A P(H2O)-dependent structural phase transition in zeolite natrolite. Am Miner. 2008;93:1191–4.10.2138/am.2008.2949Suche in Google Scholar

[132] Peacor DR, Bürger MJ. The determination and refinement of the structure of narsarsukite, Na2TiOSi4O10ʹ. Am Mineral. 1962;47:539–56.Suche in Google Scholar

[133] Wohlfahrt A. Kristallchemie von verbindungen und mischkristallen mit millarit-struktur. Heidelb Geowiss Abh. 1998;92:1–91.Suche in Google Scholar

[134] Zschornak M. 2015. dissertation, TU Bergakademie Freiberg. http://nbn-resolving.de/urn:nbn:de:bsz:105-qucosa-169703.Suche in Google Scholar

[135] Thomas LH. The calculation of atomic fields. Math Proc Cambridge Philos Soc. 1927;23:542–8.10.1016/B978-0-08-017819-6.50029-0Suche in Google Scholar

[136] Fermi E. Eine statistische methode zur bestimmung einiger eigenschaften des atoms und ihre anwendung auf die theorie des periodischen systems der elemente. Z Phys. 1928;48:73–9.10.1007/BF01351576Suche in Google Scholar

[137] Slater JC. A simplification of the Hartree-Fock method. Phys Rev. 1951;81:385.10.1016/B978-0-08-017819-6.50031-9Suche in Google Scholar

[138] Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev. 1964;136:B864.10.1103/PhysRev.136.B864Suche in Google Scholar

[139] Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Phys Rev. 1965;140:A1133.10.1103/PhysRev.140.A1133Suche in Google Scholar

[140] Johannes MD, Love CT, Swider-Lyons K. Calculations in Li-ion battery materials. In: Breitkopf C, Swider-Lyons K, editors. Springer Handbook of Electrochemical Energy. Berlin Heidelberg: Springer, 2016:313–28.10.1007/978-3-662-46657-5_11Suche in Google Scholar

[141] Jain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S, et al. Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater. 2013;1:011002.10.1063/1.4812323Suche in Google Scholar

[142] Jain A, Shin Y, Persson KA. Computational predictions of energy materials using density functional theory. Nat Rev Mater. 2016;1:15004.10.1038/natrevmats.2015.4Suche in Google Scholar

[143] Urban A, Seo D-H, Ceder G. Computational understanding of Li-ion batteries. NPJ Comput Mater. 2016;2:16002.10.1038/npjcompumats.2016.2Suche in Google Scholar

[144] Nørskov JK, Bligaard T, Rossmeisl J, Christensen CH. Towards the computational design of solid catalysts. Nat Chem. 2009;1:37–46.10.1038/nchem.121Suche in Google Scholar PubMed

[145] Sokolov AN, Atahan-Evrenk S, Mondal R, Akkerman HB, Sánchez-Carrera RS, Granados-Focil S, et al. From computational discovery to experimental characterization of a high hole mobility organic crystal. Nat Commun. 2011;2:437.10.1038/ncomms1451Suche in Google Scholar PubMed PubMed Central

[146] Pyzer-Knapp EO, Suh C, Gómez-Bombarelli R, Aguilera-Iparraguirre J, Aspuru-Guzik A. What is high-throughput virtual screening? A perspective from organic materials discovery. Annu Rev Mater Res. 2015;45:195–216.10.1146/annurev-matsci-070214-020823Suche in Google Scholar

[147] Sanvito S, Oses C, Xue J, Tiwari A, Zic M, et al. Accelerated discovery of new magnets in the Heusler alloy family. Sci Adv. 2017;14:e1602241.10.1126/sciadv.1602241Suche in Google Scholar PubMed PubMed Central

[148] Ong SP, Richards WD, Jain A, Hautier G, Kocher M, Cholia S, et al. Python materials genomics (pymatgen): a robust, open-source python library for materials analysis. Comput Mater Sci. 2013;68:314–9.10.1016/j.commatsci.2012.10.028Suche in Google Scholar

[149] Larsen AH, Mortensen JJ, Blomqvist J, Castelli IE, Christensen R, Dułak M, et al. The atomic simulation environment – a Python library for working with atoms. J Phys Condens Matter. 2017;29:273002.10.1088/1361-648X/aa680eSuche in Google Scholar PubMed

[150] Curtarolo S, Setyawan W, Hart GL, Jahnatek M, Chepulskii RV, Taylor RH, et al. AFLOW: an automatic framework for high-throughput materials discovery. Comput Mater Sci. 2012;58:218–226.10.1016/j.commatsci.2012.02.005Suche in Google Scholar

[151] Tarascon J-M, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2001;414:359–67.10.1142/9789814317665_0024Suche in Google Scholar

[152] Armand M, Tarascon J-M. Building better batteries. Nature. 2008;451:652–7.10.1038/451652aSuche in Google Scholar PubMed

[153] Bruce PG, Freunberger SA, Hardwick LJ, Tarascon J-M. Li-O2 and Li-S batteries with high energy storage. Nat Mater. 2012;11:19–29.10.1038/nmat3191Suche in Google Scholar PubMed

[154] Larcher D, Tarascon J-M. Towards greener and more sustainable batteries for electrical energy storage. Nat Chem. 2015;7:19–29.10.1038/nchem.2085Suche in Google Scholar PubMed

[155] Kim S-W, Seo D-H, Ma X, Ceder G, Kang K. Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv Energy Mat. 2012;2:710–21.10.1002/aenm.201200026Suche in Google Scholar

[156] Hautier G, Jain A, Ong SP, Kang B, Moore C, Doe R, Ceder G. Phosphates as lithium-ion battery cathodes: an evaluation based on high-throughput ab initio calculations. Chem Mater. 2011;23:3495–508.10.1021/cm200949vSuche in Google Scholar

[157] Aydinol MK, Kohan AF, Ceder G, Cho K, Joannopoulos J. Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides. Phys Rev B. 1997;56:1354.10.1103/PhysRevB.56.1354Suche in Google Scholar

[158] Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1997;77:3865.10.1103/PhysRevLett.77.3865Suche in Google Scholar PubMed

[159] Heyd J, Scuseria GE. Hybrid functionals based on a screened Coulomb potential. J Chem Phys. 2003;118:8207.10.1063/1.1564060Suche in Google Scholar

[160] Anisimov VI, Zaanen J, Andersen OK. Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys Rev B. 1991;44:943.10.1103/PhysRevB.44.943Suche in Google Scholar PubMed

[161] Kulik HJ, Cococcioni M, Scherlis DA, Marzari N. Density functional theory in transition-metal chemistry: a self-consistent Hubbard U approach. Phys Rev Lett. 2006;97:103001.10.1103/PhysRevLett.97.103001Suche in Google Scholar PubMed

[162] Ong SP, Chevrier VL, Ceder G. Comparison of small polaron migration and phase separation in olivine LiMnPO4 and LiFePO4 using hybrid density functional theory. Phys Rev B. 2011;83:075112.10.1103/PhysRevB.83.075112Suche in Google Scholar

[163] Becke AD. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A. 1988;38:3098.10.1103/PhysRevA.38.3098Suche in Google Scholar

[164] Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B. 1988;37:785.10.1103/PhysRevB.37.785Suche in Google Scholar

[165] Becke AD. Density‐functional thermochemistry. III. The role of exact exchange. J Chem Phys. 1993;98:5648.10.1063/1.464913Suche in Google Scholar

[166] Adamo C, Barone V. Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys. 1999;110:6158.10.1063/1.478522Suche in Google Scholar

[167] Toumar AJ, Ong SP, Richards WD, Dacek S, Ceder G. Vacancy ordering in O3-type layered metal oxide sodium-ion battery cathodes. Phys Rev Appl. 2015;4:064002.10.1103/PhysRevApplied.4.064002Suche in Google Scholar

[168] Simon P, Gogotsi Y, Dunn B. Where do batteries end and supercapacitors begin? Science. 2014;343:1210–1.10.1126/science.1249625Suche in Google Scholar PubMed

[169] Kang K, Meng YS, Bréger J, Grey CP, Ceder G. Electrodes with high power and high capacity for rechargeable lithium batteries. Sci. 2006;311:977–80.10.1126/science.1122152Suche in Google Scholar PubMed

[170] Whittingham MS. Ultimate limits to intercalation reactions for lithium batteries. Chem Rev. 2014;114:11414–43.10.1021/cr5003003Suche in Google Scholar PubMed

[171] Yabuuchi N, Kubota K, Dahbi M, Komaba S. Research development on sodium-ion batteries. Chem Rev. 2014;114:11636–82.10.1021/cr500192fSuche in Google Scholar PubMed

[172] Canepa P, Gautam GS, Hannah DC, Malik R, Liu M, Gallagher KG, Persson KA, Ceder G. Odyssey of multivalent cathode materials: open questions and future challenges. Chem Rev. 2017;117:4287–341.10.1021/acs.chemrev.6b00614Suche in Google Scholar PubMed

[173] Yoo HD, Shterenberg I, Gofer Y, Gershinsky G, Pour N, Aurbach D. Mg rechargeable batteries: an on-going challenge. Energy Environ Sci. 2013;6:2265–79.10.1039/c3ee40871jSuche in Google Scholar

[174] Rong Z, Malik R, Canepa P, Gautam GS, Liu M, Jain A, Persson K, Ceder G. Materials design rules for multivalent ion mobility in intercalation structures. Chem Mater. 2015;27:6016–21.10.1021/acs.chemmater.5b02342Suche in Google Scholar

[175] Canepa P, Bo S-H, Gautam GS, Key B, Richards WD, Shi T, et al. High magnesium mobility in ternary spinel chalcogenides. Nat Commun. 2017;8:1759.10.1038/s41467-017-01772-1Suche in Google Scholar PubMed PubMed Central

[176] Pechukas P. Transition State Theory. Annu Rev Phys Chem. 1981;32:159–77.10.1146/annurev.pc.32.100181.001111Suche in Google Scholar

[177] Cabrera N, Mott NF. Theory of the oxidation of metals. Reports on Progress in Physics 1949;12:163–84.10.1142/9789812794086_0016Suche in Google Scholar

[178] Yashima M, Itoh M, Inaguma Y, Morii Y. Crystal Structure and Diffusion Path in the Fast Lithium-Ion Conductor La0.62Li0.16TiO3. J Am Chem Soc. 2005;127:3491–3495.10.1021/ja0449224.Suche in Google Scholar PubMed

[179] Sheppard D, Terrel R, Henkelman G. Optimization methods for finding minimum energy paths. J Chem Phys. 2008;128:134106.10.1063/1.2841941Suche in Google Scholar PubMed

[180] Miara LJ, Suzuki N, Richards WD, Wang Y, Kim JC, Ceder G. Li-ion conductivity in Li9S3N. J Mater Chem A. 2015;3:20338–44.10.1039/C5TA05432JSuche in Google Scholar

[181] Ong SP, Mo Y, Richards WD, Miara L, Lee HS, Ceder G. Phase stability, electrochemical stability and ionic conductivity of the Li10±1MP2X12 (M = Ge, Si, Sn, Al or P, and X = O, S or Se) family of superionic conductors. Energy Environ Sci. 2013;6:148–56.10.1039/C2EE23355JSuche in Google Scholar

[182] Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, et al. A lithium superionic conductor. Nat Mater. 2011;10:682–686.10.1038/nmat3066Suche in Google Scholar PubMed

[183] Bron P, Johansson S, Zick K, Schmedt Auf Der Günne J, Dehnen S, Roling B. Li10SnP2S12: an affordable lithium superionic conductor. J Am Chem Soc. 2013;135:15694–7.10.1021/ja407393ySuche in Google Scholar PubMed

[184] Richards WD, Tsujimura T, Miara LJ, Wang Y, Kim JC, Ong SP, Uechi I, Suzuki N, Ceder G. Design and synthesis of the superionic conductor Na10SnP2S12ʹ. Nat Commun. 2016;7:11009.10.1038/ncomms11009Suche in Google Scholar PubMed PubMed Central

[185] Miara LJ, Ong SP, Mo Y, Richards WD, Park Y, Lee J-M, Lee HS, Ceder G. Effect of Rb and Ta doping on the ionic conductivity and stability of the garnet Li7+2x–Y(La3–XRbx)(Zr2–YTay)O12 (0 ≤ x ≤ 0.375, 0 ≤ y ≤ 1) superionic conductor: a first principles investigation. Chem Mater. 2013;25:3048–55.10.1021/cm401232rSuche in Google Scholar

[186] Kuhn A, Gerbig O, Zhu C, Falkenberg F, Maier J, Lotsch BV. A new ultrafast superionic Li-conductor: ion dynamics in Li11Si2PS12 and comparison with other tetragonal LGPS-type electrolytes. Phys Chem Chem Phys. 2014;16:14669–74.10.1039/C4CP02046DSuche in Google Scholar PubMed

[187] Malik R, Abdellahi A, Ceder G. A critical review of the Li insertion mechanisms in LiFePO4 electrodes. J Electrochem Soc. 2013;160:A3179–97.10.1149/2.029305jesSuche in Google Scholar

[188] Liu M, Rong Z, Malik R, Canepa P, Jain A, Ceder G, Persson KA. Spinel compounds as multivalent battery cathodes: a systematic evaluation based on ab initio calculations. Energy Environ Sci. 2015;8:964–74.10.1039/C4EE03389BSuche in Google Scholar

[189] Gautam GS, Canepa P, Abdellahi A, Urban A, Malik R, Ceder G. The intercalation phase diagram of Mg in V2O5 from first-principles. Chem Mater. 2015;27:3733–42.10.1021/acs.chemmater.5b00957Suche in Google Scholar

[190] Gautam GS, Canepa P, Malik R, Liu M, Persson K, Ceder G. First-principles evaluation of multi-valent cation insertion into orthorhombic V2O. Chem Commun. 2015;51:13619–22.10.1039/C5CC04947DSuche in Google Scholar

[191] Maxisch T, Zhou F, Ceder G. Ab initio study of the migration of small polarons in olivine LixFePO4 and their association with lithium ions and vacancies. Phys Rev B. 2006;73:104301.10.1103/PhysRevB.73.104301Suche in Google Scholar

[192] Xu B, Meng S. Factors affecting Li mobility in spinel LiMn2O4 – a first-principles study by GGA and GGA + U methods. J Power Sources. 2010;195:4971–6.10.1016/j.jpowsour.2010.02.060Suche in Google Scholar

[193] Hannah DC, Gautam GS, Canepa P, Rong Z, Ceder G. Magnesium ion mobility in post-spinels accessible at ambient pressure. Chem Commun. 2017;53:5171–4.10.1039/C7CC01092CSuche in Google Scholar

[194] Sun X, Blanc L, Nolis GM, Bonnick P, Cabana J, Nazar LF. NaV1.25Ti0.75O4: a potential post spinel cathode material for Mg batteries. Chem Mater. 2018;30:121–8.10.1021/acs.chemmater.7b03383Suche in Google Scholar

[195] Mukherjee A, Sa N, Phillips PJ, Burrell A, Vaughey J, Klie RF. Direct Investigation of Mg intercalation into the orthorhombic V2O5 cathode using atomic-resolution transmission electron microscopy. Chem Mater. 2017;29:2218–26.10.1021/acs.chemmater.6b05089Suche in Google Scholar

[196] Rong Z, Kichaev D, Canepa P, Huang W, Ceder G. An efficient algorithm for finding the minimum energy path for cation migration in ionic materials. J Chem Phys. 2016;145:074112.10.1063/1.4960790Suche in Google Scholar PubMed

[197] Rong Z, Xiao P, Liu M, Huang W, Hannah DC, Scullin W, Persson KA, Ceder G. Fast Mg2+ diffusion in Mo3(PO4)3O for Mg batteries. Chem Commun. 2017;53:7998–8001.10.1039/C7CC02903ASuche in Google Scholar PubMed

[198] Freysoldt C, Grabowski B, Hickel T, Neugebauer J, Kresse G, Janotti A, Van De Walle CG. First-principles calculations for point defects in solids. Rev Mod Phys. 2014;86:253.10.1103/RevModPhys.86.253Suche in Google Scholar

[199] Islam M, Driscoll D, Fisher C, Slater P. Atomic-scale investigation of defects, dopants, and lithium transport in the LiFePO4 olivine-type battery material. Chem Mater. 2005;17:5085–92.10.1021/cm050999vSuche in Google Scholar

[200] Morgan D, Van Der Ven A, Ceder G. Li conductivity in LixMPO4 (M = Mn, Fe, Co, Ni) olivine materials. Electrochem Solid-State Lett. 2004;7:A30–2.10.1149/1.1633511Suche in Google Scholar

[201] Maragliano L, Vanden-Eijnden E. A temperature accelerated method for sampling free energy and determining reaction pathways in rare events simulations. Chem Phys Lett. 2006;426:168–75.10.1016/j.cplett.2006.05.062Suche in Google Scholar

[202] Laio A, Parrinello M. Escaping free-energy minima. PNAS. 2002;99:12562–6.10.1073/pnas.202427399Suche in Google Scholar PubMed PubMed Central

[203] Abrams C, Bussi G. Enhanced sampling in molecular dynamics using metadynamics, replica-exchange, and temperature-acceleration. Entropy. 2014;16:163–99.10.3390/e16010163Suche in Google Scholar

[204] Boulfelfel SE, Seifert G, Leoni S. Atomistic investigation of Li+ diffusion pathways in the olivine LiFePO4 cathode material. J Mater Chem. 2011;21:16365–72.10.1039/c1jm10725aSuche in Google Scholar

[205] Johnston W, Heikes R, Sestrich D. The preparation, crystallography, and magnetic properties of the LixCo(1-x)O system. J Phys Chem Solids. 1958;7:1–13.10.1016/0022-3697(58)90175-6Suche in Google Scholar

[206] Mizushima K, Jones P, Wiseman P, Goodenough JB. LixCoO2 (0 < x < 1): a new cathode material for batteries of high energy density. Mater Res Bull. 1980;15:783–9.10.1016/0025-5408(80)90012-4Suche in Google Scholar

[207] Padhi AK, Nanjundaswamy K, Goodenough JB. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc. 1997;144:1188–94.10.1149/1.1837571Suche in Google Scholar

[208] Fuchs JN. Über ein neues mineral (triphylin). Adv Synth Catal. 1834;3:98–104.10.1002/prac.18340030120Suche in Google Scholar

[209] Fuchs JN. Vermischte Notizen. J Prakt Chem. 1835;5:316–24.10.1002/prac.18350050138Suche in Google Scholar

[210] Björling CO, Westgren A. Minerals of the varuträsk pegmatite: IX. X-ray Studies on triphylite, varulito, and their oxidation products. Geol Foeren Stockholm Foerh. 1938;60:67–72.10.1080/11035893809443985Suche in Google Scholar

[211] Yakubovich OV, Simonov MA, Belov NV. The crystal structure of a synthetic triphylite LiFe[PO4]. Sov Phys Dokl. 1977;22:347.Suche in Google Scholar

Published Online: 2018-10-02

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/psr-2018-0044/html?lang=de
Button zum nach oben scrollen