Abstract
Electrodes are, in combination with electrolytes and the active, reacting materials the function-giving materials in electrochemical energy storage devices. They are responsible for the transfer of electrons and provide the surface at which the electrochemical reactions take place. Those electrochemical reactions span the potential difference which drives the battery. We present a crystallographically inspired systematisation of all electrodes found in electrochemical storages that comprise inert and reactive electrodes, subdivided in active and passive electrodes, and solvation, mixed crystal, and phase transition electrodes, respectively. After the description of all electrode types we present a concise summary of battery chemistries and the applied electrode types.
Funding statement: Financial support of the Federal Ministry of Education and Research (CryPhysConcept (03EK3029A) and R2RBattery (03SF0542A)) is gratefully acknowledged. DM acknowledges the EC for a H2020 MSCA-IF grant (contract number 743439).
References
[1] Wiberg N. Lehrbuch der Anorganischen Chemie, 102. stark umgearbeitete und verbesserte Auflage. Berlin: Walter de Gruyter & Co, 2007.10.1515/9783110177701Suche in Google Scholar
[2] Takahashi Y, Shevchuk AI, Novak P, Babakinejad B, Macpherson J, Unwin PR, et al. Topographical and electrochemical nanoscale imaging of living cells using voltage-switching mode scanning electrochemical microscopy. Proc Nat Acad. 2012;109:11540–5. DOI: 10.1073/pnas.1203570109.Suche in Google Scholar PubMed PubMed Central
[3] Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2001;414:359–67.10.1038/35104644Suche in Google Scholar PubMed
[4] Leuthardt EC, Schalk G, Wolpaw JR, Ojemann JG, Moran DW. A brain-computer interface using electrocorticographic signals in humans. J Neural Eng. 2004;1:63–71.10.1088/1741-2560/1/2/001Suche in Google Scholar PubMed
[5] Sutton SJ, Lewin PL, Swingler SG. Review of global HVDC subsea cable projects and the application of sea electrodes. Int J Electr Power Energy Syst. 2017;87:121–35.10.1016/j.ijepes.2016.11.009Suche in Google Scholar
[6] Obrovac MN, Chevrier VL. Alloy negative electrodes for Li-Ion batteries. Chem Rev. 2014;114:11444–502.10.1021/cr500207gSuche in Google Scholar PubMed
[7] Reddy TD, editor(s). Linden’s handbook of batteries, 4th ed. McGraw Hill, 2011.Suche in Google Scholar
[8] Daniel C, Besenhard J. Handbook of battery materials, 2nd ed, vol. 1. Weihnheim: Wiley-VCH, 2011.10.1002/9783527637188Suche in Google Scholar
[9] Daniel C, Mohanty D, Li J, Wood DL. Cathode materials review. AIP Conf Proc. 2014;26–43 1597.10.1063/1.4878478Suche in Google Scholar
[10] Dresselhaus MS, Dresselhaus G. Intercalation compounds of graphite. Adv Phys. 2002;51:1–186.10.1080/00018730110113644Suche in Google Scholar
[11] Whittingham MS. Lithium batteries and cathode materials. Chem Rev. 2004;104:4271–301.10.1021/cr020731cSuche in Google Scholar PubMed
[12] Meyer DC, Leisegang T. Electrochemical storage materials: from crystallography to engineering. DE GRUYTER OLDENBOURG Publishing House, 2018.10.1515/9783110493986Suche in Google Scholar
[13] Faraday M. Experimental researches in electricity. Philos Trans Royal Soc London. 1832;122:125–62.10.1098/rstl.1832.0006Suche in Google Scholar
[14] Verma P, Maire P, Novák P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim Acta. 2010;55:6332–41.10.1016/j.electacta.2010.05.072Suche in Google Scholar
[15] Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM. Li-O2 and Li-S batteries with high energy storage. Nat Mater. 2012;11:19–29.10.1038/nmat3191Suche in Google Scholar
[16] Ponce de Leon C, Frías-Ferrer A, González-García J, Szánto DA, Walsh FC. Redox flow cells for energy conversion. J Power Sources. 2006;160:716–32.10.1016/j.jpowsour.2006.02.095Suche in Google Scholar
[17] Skyllas-Kazacos M, Chakrabarti MH, Hajimolana SA, Mjalli FS, Saleem M. Progress in flow battery research and development. J Electrochem Soc. 2011;158:R55–79.10.1149/1.3599565Suche in Google Scholar
[18] Remick RJ, Ang PGP. Electrically rechargeable anionically active reduction – oxidation electrical storage-supply system. U.S. Patent No. 4,485,154 1984 27Nov.Suche in Google Scholar
[19] Lu X, Xia G, Lemmon JP, Yang Z. Advanced materials for sodium-beta alumina batteries: status, challenges and perspectives. J Power Sources. 2010;195:2431–42.10.1016/j.jpowsour.2009.11.120Suche in Google Scholar
[20] Cheng F, Chen J. Metal–air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem Soc Rev. 2012;41:2172–92.10.1039/c1cs15228aSuche in Google Scholar PubMed
[21] Sun B, Skyllas-Kazakos M. Chemical modification and electrochemical behaviour of graphite fibre in acidic vanadium solution. Electrochim Acta. 1991;36:513–17.10.1016/0013-4686(91)85135-TSuche in Google Scholar
[22] Sun B, Skyllas-Kazacos M. Modification of graphite electrode materials for vanadium redox flow battery application – I. Thermal treatment. Electrochim Acta. 1992;37:1253–60.10.1016/0013-4686(92)85064-RSuche in Google Scholar
[23] Sun B, Skyllas-Kazacos M. Chemical modification of graphite electrode materials for vanadium redox flow battery application – part II. Acid treatments. Electrochim Acta. 1992;37:2459–65.10.1016/0013-4686(92)87084-DSuche in Google Scholar
[24] Holze R. Anodes – materials for negative electrodes in electrochemical energy technology. AIP Conf Proc. 2014;1597:44–65.10.1063/1.4878479Suche in Google Scholar
[25] Powers RW, Breiter MW. The anodic dissolution and passivation of zinc in concentrated potassium hydroxide solutions. J Electrochem Soc. 1969;116:719–29.10.1149/1.2412040Suche in Google Scholar
[26] Zendejas MA, Thomas JO. Conduction mechanisms in solid electrolytes: Na+ beta-alumina. Phys Scr. 1990;1990:235–44.10.1088/0031-8949/1990/T33/045Suche in Google Scholar
[27] Diggle JW, Despic AR, Bockris JM. The mechanism of the dendritic electrocrystallization of zinc. J Electrochem Soc. 1969;116:1503–14.10.1149/1.2411588Suche in Google Scholar
[28] Palacin MR. Recent advances in rechargeable battery materials: a chemist’s perspective. Chem Soc Rev. 2009;38:2565–75.10.1039/b820555hSuche in Google Scholar PubMed
[29] Galloway RC. A sodium/beta-alumina/nickel chloride secondary cell. J Electrochem Soc. 1987;134:256–7.10.1149/1.2100421Suche in Google Scholar
[30] Bones RJ, Teagle DA, Brooker SD, Cullen FL. Development of a Ni, NiCl2 positive electrode for a liquid sodium (ZEBRA) battery cell. J Electrochem Soc. 1989;136:1274–7.10.1149/1.2096905Suche in Google Scholar
[31] Hill RJ. The crystal structure of lead dioxides from the positive plate of the lead/acid battery. Mat Res Bull. 1982;17:769–84.10.1016/0025-5408(82)90028-9Suche in Google Scholar
[32] D’Antonio P, Santoro A. Powder neutron diffraction study of chemically prepared β-lead dioxide. Acta Cryst B. 1980;36:2394–7.10.1107/S0567740880008813Suche in Google Scholar
[33] James RW, Wood WA. The crystal structure of barytes, celestine and anglesite. Proc Roy Soc A. 1925;109:598–20.10.1098/rspa.1925.0148Suche in Google Scholar
[34] Cherkouk C, Nestler T. Cathodes – technological review. AIP Conf Proc. 2014;1597:134–45.10.1063/1.4878484Suche in Google Scholar
[35] Parker JF, Chervin CN, Pala IR, Machler M, Burz MF, Long JW, et al. Rechargeable nickel–3D zinc batteries: an energy-dense, safer alternative to lithium-ion. Science. 2017;356:415–8.10.1126/science.aak9991Suche in Google Scholar PubMed
[36] Mulder FM, Weninger BMH, Middelkoop J, Ooms FGB, Schreuders H. Efficient electricity storage with a battolyser, an integrated Ni–fe battery and electrolyser. Energy Environ Sci. 2017;10:756–64.10.1039/C6EE02923JSuche in Google Scholar
[37] Bradwell DJ, Kim H, Sirk AHC, Sadoway DR. Magnesium–antimony liquid metal battery for stationary energy storage. J Am Chem Soc. 2012;134:1895–7.10.1021/ja209759sSuche in Google Scholar PubMed
[38] Guidotti RA. Thermal batteries: a technology review and future directions. Proc 27th Int SAMPE Tech Conf Abuquerque 1995;27:807–18.Suche in Google Scholar
[39] Egan DR, Ponce De León C, Wood RJK, Jones RL, Stokes KR, Walsh FC. Developments in electrode materials and electrolytes for aluminium–air batteries. J Power Sources. 2013;236:293–310.10.1016/j.jpowsour.2013.01.141Suche in Google Scholar
[40] Narayanan SR, Surya Prakash GK, Manohar A, Yang B, Malkhandi S, Kindler A. Materials challenges and technical approaches for realizing inexpensive and robust iron–air batteries for large-scale energy storage. Solid State Ionics. 2012;216:105–9.10.1016/j.ssi.2011.12.002Suche in Google Scholar
[41] Winter M, Besenhard JO, Spahr ME, Novák P. Insertion electrode materials for rechargeable lithium batteries. Adv Mater. 1998;10:725–63.10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-ZSuche in Google Scholar
[42] Kirubakaran A, Jain S, Nema RK. A review on fuel cell technologies and power electronic interface. Renew Sustainable Energy Rev. 2009;13:2430–40.10.1016/j.rser.2009.04.004Suche in Google Scholar
[43] Reddy AM, Fichtner M. Batteries based on fluoride shuttle. J Mater Chem. 2011;21:17059–62.10.1039/c1jm13535jSuche in Google Scholar
© 2018 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Electrodes: definitions and systematisation – a crystallographers view
- Synthesis of metallic nanoparticles by microplasma
- X-ray photoelectron spectroscopy study of the interaction of lithium with graphene
- Neutron methods for tracking lithium in operating electrodes and interfaces
- Synthesis and characterization of size-controlled atomically precise gold clusters
- Magnetic resonance spectroscopy approaches for electrochemical research
- Metastability of the boron-vacancy complex in silicon: Insights from hybrid functional calculations
- Homogeneously catalyzed hydrogenation and dehydrogenation reactions – From a mechanistic point of view
- Size and Shape Controlled Synthesis of Pd Nanocrystals
Artikel in diesem Heft
- Electrodes: definitions and systematisation – a crystallographers view
- Synthesis of metallic nanoparticles by microplasma
- X-ray photoelectron spectroscopy study of the interaction of lithium with graphene
- Neutron methods for tracking lithium in operating electrodes and interfaces
- Synthesis and characterization of size-controlled atomically precise gold clusters
- Magnetic resonance spectroscopy approaches for electrochemical research
- Metastability of the boron-vacancy complex in silicon: Insights from hybrid functional calculations
- Homogeneously catalyzed hydrogenation and dehydrogenation reactions – From a mechanistic point of view
- Size and Shape Controlled Synthesis of Pd Nanocrystals