Home Synthesis and characterization of size-controlled atomically precise gold clusters
Article
Licensed
Unlicensed Requires Authentication

Synthesis and characterization of size-controlled atomically precise gold clusters

  • Jiangwei Zhang

    Professor Jiangwei Zhang received his BSc from Beijing University of Chemical Technology (2011) and PhD from Tsinghua University in 2016. He joined State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS) as an assisstant professor in 2016. His research interests is synthesis of cluster-based organic-inorganic hybrids materials.

    , Zhimin Li

    Zhimin Li received her BSc in chemistry from Lanzhou University in 2014. She is currently a PhD candidate under the supervision of professor Gao Li from State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, CAS. Her research interests is synthesis of oxide-supported Au/Pt cluster catalysts and their catalytic applications.

    , Kai Zheng

    Kai Zheng received his BSc in applied chemistry from China University Geosciences, Wuhan in 2011. He is currently a PhD candidate under the supervision of Prof. Gao Li from State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, CAS. His research focused on the synthesis of ligand-protected Au clusters and their applications.

    and Gao Li

    Professor Gao Li received his BSc (2004) from Hunan Normal University, and PhD (2016) from Shanghai Jiaotong University. After his postdoctoral research in Carnegie Mellon University (United States, 2011-2014), he joined State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, CAS as a professor in 2014. His current research interests focused on the preparation and application of metal clusters.

    EMAIL logo
Published/Copyright: August 10, 2018
Become an author with De Gruyter Brill

Abstract

In this article, synthetic strategies and characterization methodologies of atomically precise gold clusters have been summarized. The typical and effective synthetic strategies including a systematic “size-focusing” methodology has been developed for attaining atomically precise gold clusters with size control. Another universal synthetic methodology is ligand exchange-induced size/structure transformation (LEIST) based on from one stable size to another. These two methodologies have largely expanded the “universe” of atomically precise gold clusters. Elite of typical synthetic case studies of ligand protected gold clusters are presented. Important characterization techniques of these atomically precise gold clusters also are included. The identification and characterization of gold clusters have been achieved in terms of nuclearity (size), molecular formulation, and geometrical structures by the combination of these techniques. The determination of gold cluster structure based on single crystals is of paramount importance in understanding the relationship of structure–property. The criterion and selection of these typical gold clusters are all “strictly” atomically precise that all have been determined ubiquitously by single crystal diffraction. These related crystallographic data are retrieved from Cambridge Crystallographic Data Centre (CCDC) up to 30th November 2017. Meanwhile, the cutting edge and other important characterization methodologies including electron diffraction (ED), extended X-ray absorption fine structure (EXFAS), and synchrotron sources are briefly reviewed. The new techniques hold the promise of pushing the limits of crystallization of gold clusters. This article is not just an exhaustive and up to date review, generally summarized synthetic strategies, but also a practical guide regarding gold cluster synthesis. We called it a “Cookbook” of ligand protected gold clusters, including synthetic recipes and characterization details.

Graphical Abstract:

Funding statement: This work was financial supported by the Program of Shanxi Province Hundred Talent Project, the National Natural Science Foundation of China (No. 21701168) and Liaoning Natural Science Foundation (No. 20170540897). and open project Foundation of State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University (No.201709).

About the authors

Jiangwei Zhang

Professor Jiangwei Zhang received his BSc from Beijing University of Chemical Technology (2011) and PhD from Tsinghua University in 2016. He joined State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS) as an assisstant professor in 2016. His research interests is synthesis of cluster-based organic-inorganic hybrids materials.

Zhimin Li

Zhimin Li received her BSc in chemistry from Lanzhou University in 2014. She is currently a PhD candidate under the supervision of professor Gao Li from State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, CAS. Her research interests is synthesis of oxide-supported Au/Pt cluster catalysts and their catalytic applications.

Kai Zheng

Kai Zheng received his BSc in applied chemistry from China University Geosciences, Wuhan in 2011. He is currently a PhD candidate under the supervision of Prof. Gao Li from State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, CAS. His research focused on the synthesis of ligand-protected Au clusters and their applications.

Gao Li

Professor Gao Li received his BSc (2004) from Hunan Normal University, and PhD (2016) from Shanghai Jiaotong University. After his postdoctoral research in Carnegie Mellon University (United States, 2011-2014), he joined State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, CAS as a professor in 2014. His current research interests focused on the preparation and application of metal clusters.

Appendix

Table 1:

A summary of typical synthetic protocols of ligand protected atomically-precise gold clusters determined by single crystal diffraction so far.

CoreLigating modeChemical CompositionUV (characteristic peak)/nmOther CharacterizationRef.
Au4PAu4(μ-I)2(PPh3)4Nonenone84
Au5P[Au5(dppmH)3(dppm)](NO3)2nonenone85
Au6P[Au6(PPh3)6]NO3319, 331, 453,476none16
Au7P[Au7(PPh3)7]+noneNMR, Mossbauer109
Au8p[Au8(PPh3)6I]PF6noneNMR, Mossbauer109
Au8C P[Au8(C2But)6(PPh2C6H4PPh2)2] (PF6)2573NMR, ESI-MS, PXRD, EXAFS13
Au9P[Au9(P(C6H4-p-Me)3)8][PF6]3nonenone110
Au10P[Au10Cl3(PCy2Ph)6]NO3nonenone20
Au11PAu11(PPh3)7Cl3318, 406NMR13–14
Au13P[Au13(PMe2Ph)10Cl2](PF6)3360,490ESI-MS11
Au13P[Au13(Dppm)6](BPh4)3450,800ESI-MS,TGA111
Au14P[Au14(PPh3)8(NO3)4]noneNMR22
Au18S[Au18(SC6H11)14]520, 590ESI-MS, IR,SEC, NMR112
Au19C P[Au19(PhC ≡ C)9(Hdppa)3](SbF6)2277, 388,548, 934NMR, ESI-MS, IR66
Au20S[Au20(TBBT)16]nonenone113
Au20P[Au20(PPh3)4]Cl4486, 360ESI-MS, NMR26
Au21S[Au21(S-Adm)15]noneESI-TOF-MS114
Au22CAu22(C32H36P2)6456ESI-MS, NMR28
Au23S[Au23(SC6H11)16]570ESI-MS,TGA115
Au23C P[Au23(PhC ≡ C)9(PPh3)6](SbF6)2273,380,525, 600ESI-MS, XPS67
Au24P S[Au24(PPh3)10(PET)5X2]+383,560ESI-MS, CV116
Au24Se[Au24(SePh)20]380, 530, 620none55
Au24S[Au24(SAdm)16]580, 690ESI-MS117
Au25S[Au25(PET)18]400, 450, 670NMR65
Au25P S[Au25(PPh3)10(SCnH2n+1)5Cl2]2+670ESI-MS61
Au25Se[Au25(SePh)18]430,620, 1050NMR, MALDI-MS,CV54
Au28P[Au28(TBBT)20]365,480, 580CD, ESI-MS41
Au30S[Au30S(S-t-Bu)18]630CD, ESI-MS75
Au36S[Au36(TBBT)24]375, 570ESI-MS40
Au36C[Au36(PhC ≡ C)24]640ESI51
Au36SAu36(SCH2Ph-tBu)8Cl20365, 420, 502XPS118
Au38S[Au38(PET)24]1050, 750, 620, 560, 520, 490none119
Au38S[Au38S2(S-Adm)20]650,750none120
Au40S[Au40(o-MBT)24]nonenone121
Au44S[Au44(2,4-DMBT)26]331, 389, 442, 543, 670ESI-MS,TGA,XPS122
Au44C[Au44(PhC ≡ C)28]558ESI51
Au52S[Au52(TBBT)32]nonenone121
Au60Se[Au60Se2(PPh3)10(SePh)15]+353, 435, 510, 600, 835ESI, CV,TGA77
Au60S[Au60S6(SCH2Ph)36]345,600ESI123
Au92S[Au92(TBBT)44]440, 660, 850ESI124
Au102S[Au102(p-MBA)44]nonenone12
Au103S[Au103S2(SNap)41]noneSAXS, TEM, ESI,NMR125
Au108S[Au108S24(PPh3)16]noneEDX, DLS,NMR74
Au130S[Au130(p-MBT)50]noneNMR,126
Au133S[Au133(TBBT)52]noneTEM, ESI,NMR42
Au246S[Au246(p-MBT)80]470MALDI127
Au279S[Au279(TBBT)84]510MALDI128
Table 2:

Terms and Abbreviations.

TermAbbreviations
Ligand exchange-induced size/structure transformationLEIST
Cambridge Crystallographic Data CentreCCDC
Electron diffractionED
Extended X-ray absorption fine structureEXFAS
Scanning transmission electron microscopySTEM
1,8-bis(diphenylphosphino)octanedppo
1,3-propanediylbis(diphenylphosphine)dppp
1,3-bis(diethylphosphino)propanedepp
1,5-bis(diphenylphosphino)pentanedpppe
1,6-bis(diphenylphosphino)hexanedpph
1,2-bis(diphenylphosphino)ethanedppp
Self-assembled monolayersSAMs
Tetraoctylammonium bromideTOABr
TetrahydrofuranTHF
PhenylethanethiolatePET
4-tert-butylbenzenethiolateTBBT
High performance liquid chromatographyHPLC
Polyacrylamide gel electrophoresisPAGE
PhenylacetylenePA
Highest occupied molecular orbitalHOMO
Lowest unoccupied molecular orbitalLUMO
1,1ʹ-bis(diphenylphosphino)ferrocenedppf
Electrospray ionizationESI
Matrix-assisted laser desorption ionizationMALDI
Nuclear magnetic resonanceNMR
trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene]malononitrileDCTB
Laser desorption ionizationLDI
Ion mobility–mass spectrometryIM-MS
Energy collision-induced dissociationCID
penta(ethylene glycol) thiolateSPEG
Time-dependent density functional theoryTD-DFT
Face-centred cubicfcc
Single-crystal X-ray crystallographySXRD
Aberration-corrected electron microscopyAC-TEM
Diffusion-ordered NMR spectroscopyDOSY
X-Ray photoelectron spectroscopyXPS
X-ray absorption spectroscopyXAS
X-ray absorption near-edge structureXANES
Powder X-ray diffraction spectroscopyPXRD
bis(dipheny1-phosphino) methanedppmH
bis-(diphenylphosphino)methaneDppm
Bis(diphenylphosphino)amineHdppa
AdamantanethiolateS-Adm
2-Methylbenzenethiolateo-MBT
2,4‐DimethylbenzenethiolDMBT
p-Mercaptobenzoic acidp-MBA
p-Methylbenzenethiolatep-MBT

References

[1] Jin R, Zeng C, Zhou M, Chen Y. Atomically precise colloidal metal nanoclusters and nanoparticles: fundamentals and opportunities. Chem Rev. 2016;116(18):10346–413.10.1021/acs.chemrev.5b00703Search in Google Scholar PubMed

[2] Chakraborty I, Pradeep T. Atomically precise clusters of noble metals: emerging link between atoms and nanoparticles. Chem Rev. 2017;117(12):8208–71.10.1021/acs.chemrev.6b00769Search in Google Scholar PubMed

[3] Jin R. Atomically precise metal nanoclusters: stable sizes and optical properties. Nanoscale. 2015;7(5):1549–65.10.1039/C4NR05794ESearch in Google Scholar PubMed

[4] Fang J, Zhang B, Yao Q, Yang Y, Xie J, Yan N. Recent advances in the synthesis and catalytic applications of ligand-protected, atomically precise metal nanoclusters. Coord Chem Rev. 2016;322:1–29.10.1016/j.ccr.2016.05.003Search in Google Scholar

[5] Li G, Jin R. Atomically precise gold nanoclusters as new model catalysts. Acc Chem Res. 2013;46(8):1749–58.10.1021/ar300213zSearch in Google Scholar PubMed

[6] Pensa E, Cortes E, Corthey G, Carro P, Vericat C, Fonticelli MH, et al. The chemistry of the sulfur-gold interface: in search of a unified model. Acc Chem Res. 2012;45(8):1183–92.10.1021/ar200260pSearch in Google Scholar PubMed

[7] Yu Y, Luo Z, Chevrier DM, Leong DT, Zhang P, Jiang D-E, et al. Identification of a highly luminescent Au22(SG)18 nanocluster. J Am Chem Soc. 2014;136(4):1246–49.10.1021/ja411643uSearch in Google Scholar PubMed

[8] Liu P, Qin R, Fu G, Zheng N. Surface coordination chemistry of metal nanomaterials. J Am Chem Soc. 2017;139(6):2122–31.10.1021/jacs.6b10978Search in Google Scholar PubMed

[9] Li G, Abroshan H, Liu C, Zhuo S, Li Z, Xie Y, et al. Tailoring the electronic and catalytic properties of Au25 nanoclusters via ligand engineering. ACS Nano. 2016;10(8):7998–8005.10.1021/acsnano.6b03964Search in Google Scholar PubMed

[10] Mingos DMP, Broda J. Gold clusters, colloids and nanoparticles I, vol. 161. Cham: Springer, 2014.10.1007/978-3-319-07845-8Search in Google Scholar

[11] Briant CE, Theobald BRC, White JW, Bell LK, Mingos DMP, Welch AJ. Synthesis and X-Ray structural characterization of the centered icosahedral gold cluster compound Au13(PMe2Ph)10Cl2(PF6)3- the realization of a theoretical prediction. Chem Commun. 1981;5:201–02.10.1039/c39810000201Search in Google Scholar

[12] Jadzinsky PD, Calero G, Ackerson CJ, Bushnell DA, Kornberg RD. Structure of a thiol monolayer-protected gold nanoparticle at 1.1 Å resolution. Science. 2007;318(5849):430–33.10.1126/science.1148624Search in Google Scholar PubMed

[13] Koshevoy IO, Lin C-L, Karttunen AJ, Haukka M, Shih C-W, Chou P-T, et al. Octanuclear gold(I) alkynyl-diphosphine clusters showing thermochromic luminescence. Chem Commun. 2011;47(19):5533–35.10.1039/c1cc11352fSearch in Google Scholar

[14] McPartlin M, Mason R, Malatesta L. Novel cluster complexes of gold(0)–gold(I). J Chem Soc D: Chem Commun. 1969;7:334–334.10.1039/C29690000334Search in Google Scholar

[15] Albano VG, Bellon PL, Manassero M, Sansoni M. Intermetallic pattern in metal-atom clusters-structural studies on Au11X3(PR3)7 species. Chem Commun. 1970;18:1210–11.10.1039/c29700001210Search in Google Scholar

[16] Briant CE, Hall KP, Mingos DMP. Synthesis and structural characterisation of [Au6(PPh3)6]-(NO3)2·3CH2Cl2; an edge-shared bitetrahedral gold cluster. J Organomet Chem. 1983;254(1):C18–C20.10.1016/0022-328X(83)85130-4Search in Google Scholar

[17] Briant CE, Hall KP, Mingos DMP, Wheeler AC. Synthesis and structural characterisation of hexakis (triphenyl phosphine) hexagold (2+) nitrate, [Au6(PPh3)6][NO3]2, and related clusters with edgesharing bitetrahedral geometries. J Chem Soc Dalton Trans. 1986;3:687–92.10.1039/dt9860000687Search in Google Scholar

[18] Hall KP, Theoblad BR, Gilmour DI, Mingos DMP, Welch AJ. Synthesis and structural characterization of [Au9{P(p-C6H4OMe)3}8](BF4)3; a cluster with a centred crown of gold atoms. J Chem Soc Chem Commun. 1982;10:528–30.10.1039/c39820000528Search in Google Scholar

[19] Wen F, Englert U, Gutrath B, Simon U. Crystal structure, electrochemical and optical properties of Au9(PPh3)8(NO3)3. Eur J Inorg Chem. 2008;1:106–11.10.1002/ejic.200700534Search in Google Scholar

[20] Briant CE, Hall KP, Wheeler AC, Mingos DMP. Structural characterization of Au10Cl3(PCy2Ph)6(NO3) (Cy = Cyclohexyl) and the development of a structural principle for high nuclearity gold clusters. J Chem Soc Chem Commun. 1984;4:248–50.10.1039/c39840000248Search in Google Scholar

[21] Van Der Velden J, Vollenbroek F, Bour J, Beurskens P, Smits J, Bosnian W. Gold clusters containing bidentate phosphine ligands. Preparation and X-Ray structure investigation of [Au5(dppmH)3(dppm)](NO3)2 and [Au13(dppmH)6](NO3)n. Recueil Des Travaux Chimiques Des Pays-Bas. 1981;100(4):148–52.10.1002/recl.19811000404Search in Google Scholar

[22] Gutrath BS, Oppel IM, Presly O, Beljakov I, Meded V, Wenzel W, et al. Au14(PPh3)8(NO3)4: an example of a new class of Au(NO3)-Ligated superatom complexes. Angewandte Chemie-Int Edition. 2013;52(12):3529–32.10.1002/anie.201208681Search in Google Scholar PubMed

[23] Teo BK, Shi XB, Zhang H. Pure gold cluster of 1-9-9-1-9-9-1 layered structure – A novel 39-Metal-Atom cluster (Ph3P)14Au39Cl6Cl2 with an interstitial gold atom in a hexagonal antiprismatic cage. J Am Chem Soc. 1992;114(7):2743–45.10.1021/ja00033a073Search in Google Scholar

[24] Maoz R, Cohen SR, Sagiv J. Nanoelectrochemical patterning of monolayer surfaces. Toward Spatially Defined Self-Assembly Nanostructures, Advanced Materials. 1999;11(1):55–61.Search in Google Scholar

[25] Jian N, Stapelfeldt C, Hu K-J, Fröba M, Palmer RE. Hybrid atomic structure of the Schmid cluster Au55(PPh3)12Cl6 resolved by aberration-corrected STEM. Nanoscale. 2015;7(3):885–88.10.1039/C4NR06059HSearch in Google Scholar PubMed

[26] Chen J, Zhang Q-F, Williard PG, Wang L-S. Synthesis and structure determination of a new Au20 nanocluster protected by tripodal tetraphosphine ligands. Inorg Chem. 2014;53(8):3932–34.10.1021/ic500562rSearch in Google Scholar PubMed

[27] Wan X-K, Yuan S-F, Lin Z-W, Wang Q-M. A chiral gold nanocluster Au20 protected by tetradentate phosphine ligands. Angewandte Chemie. 2014;126(11):2967–70.10.1002/ange.201308599Search in Google Scholar

[28] Chen J, Zhang Q-F, Bonaccorso TA, Williard PG, Wang L-S. Controlling gold nanoclusters by diphospine ligands. J Am Chem Soc. 2014;136(1):92–95.10.1021/ja411061eSearch in Google Scholar PubMed

[29] Pettibone JM, Hudgens JW. Synthetic approach for tunable, size-selective formation of monodisperse, diphosphine-protected gold nanoclusters. J Phys Chem Lett. 2010;1(17):2536–40.10.1021/jz1009339Search in Google Scholar

[30] Hudgens JW, Pettibone JM, Senftle TP, Bratton RN. Reaction mechanism governing formation of 1,3-bis (diphenylphosphino)propane-protected gold nanoclusters. Inorg Chem. 2011;50(20):10178–89.10.1021/ic2018506Search in Google Scholar PubMed

[31] Pettibone JM, Hudgens JW. Gold cluster formation with phosphine ligands: etching as a size-selective synthetic pathway for small clusters?. ACS Nano. 2011;5(4):2989–3002.10.1021/nn200053bSearch in Google Scholar PubMed

[32] Bertino MF, Sun Z-M, Zhang R, Wang L-S. Facile syntheses of monodisperse ultrasmall Au clusters. J Phys Chem B. 2006;110(43):21416–18.10.1021/jp065227gSearch in Google Scholar PubMed

[33] Golightly JS, Gao L, Castleman AW, Bergeron DE, Hudgens JW, Magyar RJ, et al. Impact of swapping ethyl for phenyl groups on diphosphine-protected undecagold. J Phys Chem C. 2007;111(40):14625–27.10.1021/jp076375pSearch in Google Scholar

[34] Bain CD, Troughton EB, Tao YT, Evall J, Whitesides GM, Nuzzo RG. Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. J Am Chem Soc. 1989;111(1):321–35.10.1021/ja00183a049Search in Google Scholar

[35] Jin R. Quantum sized, thiolate-protected gold nanoclusters. Nanoscale. 2010;2(3):343–62.10.1039/B9NR00160CSearch in Google Scholar PubMed

[36] Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R. Synthesis of thiol-derivatized gold nanoparticles in a 2-Phase liquid-liquid system. J Chem Soc Chem Commun. 1994;7:801–02.10.1039/C39940000801Search in Google Scholar

[37] Jin R, Qian H, Wu Z, Zhu Y, Zhu M, Mohanty A, et al. Size focusing: a methodology for synthesizing atomically precise gold nanoclusters. J Phys Chem Lett. 2010;1(19):2903–10.10.1021/jz100944kSearch in Google Scholar

[38] Wu Z, MacDonald MA, Chen J, Zhang P, Jin R. Kinetic control and thermodynamic selection in the synthesis of atomically precise gold nanoclusters. J Am Chem Soc. 2011;133(25):9670–73.10.1021/ja2028102Search in Google Scholar PubMed

[39] Zeng C, Qian H, Li T, Li G, Rosi NL, Yoon B, et al. Total structure and electronic properties of the gold nanocrystal Au36(SR)24. Angewandte Chemie-Int Ed. 2012;51(52):13114–18.10.1002/anie.201207098Search in Google Scholar PubMed

[40] Zeng C, Li T, Das A, Rosi NL, Jin R. Chiral structure of thiolate-protected 28-Gold-Atom nanocluster determined by X-ray crystallography. J Am Chem Soc. 2013;135(27):10011–13.10.1021/ja404058qSearch in Google Scholar PubMed

[41] Zeng C, Chen Y, Kirschbaum K, Appavoo K, Sfeir MY, Jin R. Structural patterns at all scales in a nonmetallic chiral Au133(SR)52 nanoparticle. Sci Adv. 2015;1(2):e1500045–e1500045.10.1126/sciadv.1500045Search in Google Scholar PubMed PubMed Central

[42] Negishi Y, Nobusada K, Tsukuda T. Glutathione-protected gold clusters revisited: bridging the gap between gold(I)-thiolate complexes and thiolate-protected gold nanocrystals. J Am Chem Soc. 2005;127(14):5261–70.10.1021/ja042218hSearch in Google Scholar PubMed

[43] Tsunoyama H, Negishi Y, Tsukuda T. Chromatographic isolation of “missing” Au55 clusters protected by alkanethiolates. J Am Chem Soc. 2006;128(18):6036–37.10.1021/ja061659tSearch in Google Scholar PubMed

[44] Qian H, Zhu Y, Jin R. Isolation of ubiquitous Au40(SR)24 clusters from the 8 kDa gold clusters. J Am Chem Soc. 2010;132(13):4583–85.10.1021/ja1006383Search in Google Scholar PubMed

[45] Knoppe S, Boudon J, Dolamic I, Dass A, Buergi T. Size exclusion chromatography for semipreparative scale separation of Au38(SR)24 and Au40(SR)24 and larger clusters. Anal Chem. 2011;83(13):5056–61.10.1021/ac200789vSearch in Google Scholar PubMed

[46] Qian H, Jin R. Synthesis and electrospray mass spectrometry determination of thiolate-protected Au55(SR)31 nanoclusters. Chem Commun. 2011;47(41):11462–64.10.1039/c1cc15099eSearch in Google Scholar PubMed

[47] Nimmala PR, Yoon B, Whetten RL, Landman U, Dass A. Au67(SR)35 nanomolecules: characteristic size-specific optical, electrochemical, structural properties and first-principles theoretical analysis. J Phys Chem. 2013;117(2):504–17.10.1021/jp311491vSearch in Google Scholar PubMed

[48] Maity P, Tsunoyama H, Yamauchi M, Xie S, Tsukuda T. Organogold clusters protected by phenylacetylene. J Am Chem Soc. 2011;133(50):20123–25.10.1021/ja209236nSearch in Google Scholar PubMed

[49] Maity P, Wakabayashi T, Ichikuni N, Tsunoyama H, Xie S, Yamauchi M, et al. Selective synthesis of organogold magic clusters Au54(C ≡ CPh)26. Chem Commun. 2012;48(49):6085–87.10.1039/c2cc18153cSearch in Google Scholar PubMed

[50] Wan X-K, Guan Z-J, Wang Q-M. Homoleptic Alkynyl-Protected gold nanoclusters: au44(PhC ≡ C)28 and Au36(PhC ≡ C)24. Angewandte Chemie-Int Ed. 2017;56(38):11494–97.10.1002/anie.201706021Search in Google Scholar PubMed

[51] Negishi Y, Kurashige W, Kamimura U. Isolation and structural characterization of an octaneselenolate-protected Au25 cluster. Langmuir. 2011;27(20):12289–92.10.1021/la203301pSearch in Google Scholar PubMed

[52] Xu Q, Wang S, Liu Z, Xu G, Meng X, Zhu M. Synthesis of selenolate-protected Au18(SeC6H5)14 nanoclusters. Nanoscale. 2013;5(3):1176–82.10.1039/c2nr33466fSearch in Google Scholar PubMed

[53] Song Y, Zhong J, Yang S, Wang S, Cao T, Zhang J, et al. Crystal structure of Au25(SePh)18 nanoclusters and insights into their electronic, optical and catalytic properties. Nanoscale. 2014;6(22):13977–85.10.1039/C4NR04631ESearch in Google Scholar PubMed

[54] Song Y, Wang S, Zhang J, Kang X, Chen S, Li P, et al. Crystal structure of selenolate-protected Au24(SeR)20 nanocluster. J Am Chem Soc. 2014;136(8):2963–65.10.1021/ja4131142Search in Google Scholar PubMed

[55] Takagi N, Ishimura K, Matsui M, Fukuda R, Matsui T, Nakajima T, et al. How can we understand au8 cores and entangled ligands of selenolate- and thiolate-protected gold nanoclusters Au24(ER)20 and Au20(ER)16 (E = Se, S; R = Ph, Me)? A theoretical study. J Am Chem Soc. 2015;137(26):8593–602.10.1021/jacs.5b04337Search in Google Scholar PubMed

[56] Kurashige W, Yamazoe S, Kanehira K, Tsukuda T, Negishi Y. Selenolate-Protected Au38 nanoclusters: isolation and structural characterization. J Phys Chem Lett. 2013;4(18):3181–85.10.1021/jz401770ySearch in Google Scholar

[57] Kurashige W, Yamaguchi M, Nobusada K, Negishi Y. Ligand-Induced stability of gold nanoclusters: thiolate versus Selenolate. J Phys Chem Lett. 2012;3(18):2649–52.10.1021/jz301191tSearch in Google Scholar PubMed

[58] Das A, Li T, Nobusada K, Zeng Q, Rosi NL, Jin R. Total structure and optical properties of a phosphine/thiolate-protected Au24 nanocluster. J Am Chem Soc. 2012;134(50):20286–89.10.1021/ja3101566Search in Google Scholar PubMed

[59] Nunokawa K, Onaka S, Ito M, Horibe M, Yonezawa T, Nishihara H, et al. Synthesis, single crystal X-ray analysis, and TEM for a single-sized Au11 cluster stabilized by SR ligands: the interface between molecules and particles. J Organomet Chem. 2006;691(4):638–42.10.1016/j.jorganchem.2005.09.043Search in Google Scholar

[60] Shichibu Y, Negishi Y, Watanabe T, Chaki NK, Kawaguchi H, Tsukuda T. Biicosahedral gold clusters Au25(PPh3)10(SCnH2n+1)5Cl22+ (n=2-18): A stepping stone to cluster-assembled materials. J Phys Chem C. 2007;111(22):7845–47.10.1021/jp073101tSearch in Google Scholar

[61] Qian H, Eckenhoff WT, Bier ME, Pintauer T, Jin R. Crystal structures of Au2 complex and Au25 nanocluster and mechanistic insight into the conversion of polydisperse nanoparticles into monodisperse Au25 nanoclusters. Inorg Chem. 2011;50(21):10735–39.10.1021/ic2012292Search in Google Scholar PubMed

[62] Jin R, Liu C, Zhao S, Das A, Xing H, Gayathri C, et al. Tri-icosahedral gold nanocluster Au37(PPh3)10(SC2H4Ph)10X2+: linear assembly of icosahedral building blocks. ACS Nano. 2015;9(8):8530–36.10.1021/acsnano.5b03524Search in Google Scholar

[63] Teo BK, Zhang H. Synthesis and structure of a neutral trimetallic biicosahedral cluster, (Ph3P)10Au11Ag12Pt2Cl7. A comparative study of molecular and crystal structures of vertex-sharing biicosahedral mixed-metal nanoclusters. J Cluster Sci. 2001;12(1):349–83.10.1023/A:1016603903142Search in Google Scholar

[64] Kang X, Song Y, Deng H, Zhang J, Liu B, Pan C, et al. Ligand-induced change of the crystal structure and enhanced stability of the Au11 nanocluster. RSC Adv. 2015;5(82):66879–85.10.1039/C5RA11674KSearch in Google Scholar

[65] Wan X-K, Tang Q, Yuan S-F, Jiang D-E, Wang Q-M. Au19 nanocluster featuring a V-shaped Alkynyl-Gold motif. J Am Chem Soc. 2015;137(2):652–55.10.1021/ja512133aSearch in Google Scholar PubMed

[66] Wan X-K, Yuan S-F, Tang Q Jiang D-E, Wang Q-M. Alkynyl-protected Au23 nanocluster: A 12-electron system. Angewandte Chemie-Int Ed. 2015;54(20):5977–80.10.1002/anie.201500590Search in Google Scholar

[67] Wan X-K, Xu WW, Yuan S-F, Gao Y, Zeng X-C, Wang Q-M. A near-infrared-emissive Alkynyl-protected Au24 nanocluster. Angewandte Chemie-Int Ed. 2015;54(33):9683–86.10.1002/anie.201503893Search in Google Scholar

[68] Canales F, Gimeno MC, Laguna A, Jones PG. Aurophilicity at sulfur centers. Synthesis and reactivity of the complex S(Au2dppf); Formation of polynuclear sulfur-centered complexes. Crystal structures of S(Au2dppf) center dot 2CHCl3, (mu-Au2dppf){S(Au2dppf)}2(OTf)2 center dot 8CHCl3, and S(AuPPh2Me)2(Au2dppf)(ClO4)2 center dot 3CH2Cl2. J Am Chem Soc. 1996;118(20):4839–45.10.1021/ja9517678Search in Google Scholar

[69] Canales F, Gimeno C, Laguna A, Villacampa MD. Aurophilicity at sulfur centers. Synthesis of the polyaurated species S(AuPR3)n(n−2)+ (n=2–6). Inorganica Chim Acta. 1996;244(1):95–103.10.1016/0020-1693(95)04759-XSearch in Google Scholar

[70] Yam VWW, Cheng ECC, Zhu NY. A novel polynuclear gold-sulfur cube with an unusually large Stokes shift. Angewandte Chemie-Int Ed. 2001;40(9):1763–65.10.1002/1521-3773(20010504)40:9<1763::AID-ANIE17630>3.0.CO;2-OSearch in Google Scholar

[71] Lee TK-M, Zhu N, Yam V-W-W. An unprecedented luminescent polynuclear gold(I) mu(3)-Sulfido cluster with a thiacrown-like architecture. J Am Chem Soc. 2010;132(50):17646–48.10.1021/ja1055017Search in Google Scholar

[72] Hau FK-W, Lee TK-M, Cheng E-C-C, Au VK-M, Yam V-W-W. Luminescence color switching of supramolecular assemblies of discrete molecular decanuclear gold(I) sulfido complexes. Proc Natl Acad Sci U S A. 2014;111(45):15900–05.10.1073/pnas.1418824111Search in Google Scholar PubMed PubMed Central

[73] Kenzler S, Schrenk C, Schnepf A. Au108S24(PPh3)16: a highly symmetric nanoscale gold cluster confirms the general concept of metalloid clusters. Angewandte Chemie-Int Ed. 2017;56(1):393–96.10.1002/anie.201609000Search in Google Scholar PubMed

[74] Crasto D, Malola S, Brosofsky G, Dass A, Hakkinen H. Single crystal XRD structure and theoretical analysis of the chiral Au30S(S-t-Bu)18 cluster. J Am Chem Soc. 2014;136(13):5000–05.10.1021/ja412141jSearch in Google Scholar PubMed

[75] Kenzler S, Schrenk C, Frojd AR, Hakkinen H, Clayborne AZ, Schnepf A. Au70S20(PPh3)12: an intermediate sized metalloid gold cluster stabilized by the Au4S4 ring motif and Au-PPh3 groups. Chem Commun. 2018;54:248–51.10.1039/C7CC08014JSearch in Google Scholar PubMed

[76] Song Y, Fu F, Zhang J, Chai J, Kang X, Li P, et al. The magic Au60 nanocluster: a new cluster-assembled material with five Au13 building blocks. Angewandte Chemie-Int Ed. 2015;54(29):8430–34.10.1002/anie.201501830Search in Google Scholar PubMed

[77] Dass A, Holt K, Parker JF, Feldberg SW, Murray RW. Mass spectrometrically detected statistical aspects of ligand populations in mixed monolayer Au25L18 nanoparticles. J Phys Chem C. 2008;112(51):20276–83.10.1021/jp8076722Search in Google Scholar

[78] Dass A, Stevenson A, Dubay GR, Tracy JB, Murray RW. Nanoparticle MALDI-TOF mass spectrometry without fragmentation: au25(SCH2CH2Ph)18 and mixed monolayer Au25(SCH2CH2Ph)18-x(L)x. J Am Chem Soc. 2008;130(18):5940–46.10.1021/ja710323tSearch in Google Scholar PubMed

[79] Tracy JB, Crowe MC, Parker JF, Hampe O, Fields-Zinna CA, Dass A, et al. Electrospray ionization mass spectrometry of uniform and mixed monolayer nanoparticles: au25(S(CH2)2Ph)18 and Au25(S(CH2)2Ph)18-x(SR)x. J Am Chem Soc. 2007;129(51):16209–15.10.1021/ja076621aSearch in Google Scholar PubMed

[80] Negishi Y, Chaki NK, Shichibu Y, Whetten RL, Tsukuda T. Origin of magic stability of thiolated gold clusters: A case study on Au25(SC6H13)18. J Am Chem Soc. 2007;129(37):11322–23.10.1021/ja073580+Search in Google Scholar PubMed

[81] Harkness KM, Cliffel DE, McLean JA. Characterization of thiolate-protected gold nanoparticles by mass spectrometry. Analyst. 2010;135(5):868–74.10.1039/b922291jSearch in Google Scholar PubMed PubMed Central

[82] Fields-Zinna CA, Sampson JS, Crowe MC, Tracy JB, Parker JF, deNey AM, et al. Tandem mass spectrometry of thiolate-protected Au nanoparticles NaxAu25(SC2H4Ph)18-y(S(C2H4O)5CH3)y. J Am Chem Soc. 2009;131(38):13844–51.10.1021/ja905787ySearch in Google Scholar PubMed

[83] Chaki NK, Negishi Y, Tsunoyama H, Shichibu Y, Tsukuda T. Ubiquitous 8 and 29 kDa gold: alkanethiolate cluster compounds: mass-spectrometric determination of molecular formulas and structural implications. J Am Chem Soc. 2008;130(27):8608–09.10.1021/ja8005379Search in Google Scholar PubMed

[84] Zhu M, Lanni E, Garg N, Bier ME, Jin R. Kinetically controlled, high-yield synthesis of Au25 clusters. J Am Chem Soc. 2008;130(4):1138–39.10.1021/ja0782448Search in Google Scholar PubMed

[85] Tracy JB, Kalyuzhny G, Crowe MC, Balasubramanian R, Choi J-P, Murray RW. Poly(ethyleneglycol) ligands for high-resolution nanoparticle mass spectrometry. J Am Chem Soc. 2007;129(21):6706–07.10.1021/ja071042rSearch in Google Scholar PubMed

[86] Zhu M, Aikens CM, Hollander FJ, Schatz GC, Jin R. Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. J Am Chem Soc. 2008;130(18):5883–85.10.1021/ja801173rSearch in Google Scholar PubMed

[87] Devadas MS, Bairu S, Qian H, Sinn E, Jin R, Ramakrishna G. Temperature-dependent optical absorption properties of monolayer-protected Au25 and Au38 clusters. J Phys Chem Lett. 2011;2(21):2752–58.10.1021/jz2012897Search in Google Scholar

[88] Li ZY, Young NP, Di Vece M, Palomba S, Palmer RE, Bleloch AL, et al. Three-dimensional atomic-scale structure of size-selected gold nanoclusters. Nature. 2008;451(7174):46–U2.10.1038/nature06470Search in Google Scholar PubMed

[89] Salorinne K, Lahtinen T, Koivisto J, Kalenius E, Nissinen M, Pettersson M, et al. Nondestructive size determination of thiol-stabilized gold nanoclusters in solution by diffusion ordered NMR spectroscopy. Anal Chem. 2013;85(7):3489–92.10.1021/ac303665bSearch in Google Scholar PubMed

[90] Terrill RH, Postlethwaite TA, Chen C-H, Poon C-D, Terzis A, Chen A, et al. Monolayers in three dimensions: NMR, SAXS, thermal, and electron hopping studies of alkanethiol stabilized gold clusters. J Am Chem Soc. 1995;117(50):12537–48.10.1021/ja00155a017Search in Google Scholar

[91] Parker JF, Choi J-P, Wang W, Murray RW. Electron self-exchange dynamics of the nanoparticle couple Au25(SC2Ph)180/1- by nuclear magnetic resonance line-broadening. J Phys Chem C. 2008;112(36):13976–81.10.1021/jp805638xSearch in Google Scholar

[92] Qian H, Zhu M, Gayathri C, Gil RR, Jin R. Chirality in gold nanoclusters probed by NMR spectroscopy. ACS Nano. 2011;5(11):8935–42.10.1021/nn203113jSearch in Google Scholar PubMed

[93] Goulet PJG, Lennox RB. New insights into Brust-Schiffrin metal nanoparticle synthesis. J Am Chem Soc. 2010;132(28):9582–84.10.1021/ja104011bSearch in Google Scholar PubMed

[94] Li Y, Zaluzhna O, Xu B, Gao Y, Modest JM, Tong YJ. Mechanistic insights into the Brust-Shiffrin two-phase synthesis of organo-chalcogenate-protected metal nanoparticles. J Am Chem Soc. 2011;133(7):2092–95.10.1021/ja1105078Search in Google Scholar PubMed

[95] Wu Z, Jin R. Stability of the two Au− S binding modes in Au25(SG)18 nanoclusters probed by NMR and optical spectroscopy. ACS Nano. 2009;3(7):2036–42.10.1021/nn9004999Search in Google Scholar PubMed

[96] Wu Z, Gayathri C, Gil RR, Jin R. Probing the structure and charge state of glutathione-capped Au25(SG)18 clusters by NMR and mass spectrometry. J Am Chem Soc. 2009;131(18):6535–42.10.1021/ja900386sSearch in Google Scholar PubMed

[97] Venzo A, Antonello S, Gascon JA, Guryanov I, Leapman RD, Perera NV, et al. Effect of the charge state (z =-1, 0, +1) on the nuclear magnetic resonance of monodisperse Au25(S(CH2)2Ph18)z clusters. Anal Chem. 2011;83(16):6355–62.10.1021/ac2012653Search in Google Scholar PubMed

[98] Clayden NJ, Dobson CM, Hall KP, Mingos DMP, Smith DJ. Studies of gold cluster compounds using high-resolution 31P solid-state nuclear magnetic resonance spectroscopy. J Chem Soc Dalton Trans. 1985;9:1811–14.10.1039/dt9850001811Search in Google Scholar

[99] Tanaka A, Takeda Y, Imamura M, Sato S. Dynamic final-state effect on the Au4f core-level photoemission of dodecanethiolate-passivated Au nanoparticles on graphite substrates. Phys Rev B. 2003;68(19):195415.10.1103/PhysRevB.68.195415Search in Google Scholar

[100] Yao T, Sun Z, Li Y, Pan Z, Wei H, Xie Y, et al. Insights into initial kinetic nucleation of gold nanocrystals. J Am Chem Soc. 2010;132(22):7696–701.10.1021/ja101101dSearch in Google Scholar PubMed

[101] Yamazoe S, Takano S, Kurashige W, Yokoyama T, Nitta K, Negishi Y, et al. Hierarchy of bond stiffnesses within icosahedral-based gold clusters protected by thiolates. Nat Commun. 2016;7:10414.10.1038/ncomms10414Search in Google Scholar PubMed PubMed Central

[102] Zhang P. X-ray spectroscopy of gold-thiolate nanoclusters. J Phys Chem C. 2014;118(44):25291–99.10.1021/jp507739uSearch in Google Scholar

[103] Li Y, Cheng H, Yao T, Sun Z, Yan W, Jiang Y, et al. Hexane-driven icosahedral to cuboctahedral structure transformation of gold nanoclusters. J Am Chem Soc. 2012;134(43):17997–8003.10.1021/ja306923aSearch in Google Scholar PubMed

[104] Jiang Y, Huang Y, Cheng H, Liu Q, Xie Z, Yao T, et al. Solvent influence on the role of thiols in growth of thiols-capped Au nanocrystals. J Phys Chem C. 2014;118(1):714–19.10.1021/jp408926nSearch in Google Scholar

[105] Wu Z, Chen J, Jin R. One-pot synthesis of Au25(SG)18, 2- and 4-nm gold nanoparticles and comparison of their size-dependent properties. Adv Funct Mater. 2011;21(1):177–83.10.1002/adfm.201001120Search in Google Scholar

[106] Demartin F, Manassero M, Naldini L, Ruggeri R, Sansoni M. Synthesis and X-Ray characterization of an iodine-bridged tetranuclear gold cluster, Di-Mu-Iodo-Tetrakis(Triphenylphosphine)-Tetrahedro-Tetragold. J Chem Soc Chem Commun. 1981;5:222–23.10.1039/C39810000222Search in Google Scholar

[107] Vandervelden JWA, Bour JJ, Vollenbroek FA, Beurskens PT, Smits JMM. Synthesis of a new pentanuclear gold cluster by metal evaporation. Preparation and X-ray structure determination of [tris{bis(diphenylphosphino) methane}][bis(diphenylphosphino)methanido]pentagold dinitrate. J Chem Soc Chem Commun. 1979;24:1162–63.10.1039/c39790001162Search in Google Scholar

[108] Vandervelden JWA, Beurskens PT, Bour JJ, Bosman WP, Noordik JH, Kolenbrander M, et al. Intermediates in the formation of gold clusters – Preparation and X-Ray-analysis of Au7(PPh3)7+ and synthesis and characterization of Au8(PPh3)6IPf6. Inorg Chem. 1984;23(2):146–51.10.1021/ic00170a007Search in Google Scholar

[109] Bellon PL, Cariati F, Manassero M, Naldini L, Sansoni M. Novel gold clusters – Preparation, properties, and X-Ray structure determination of salts of Octakis(Triarylphosphine) enneagold, Au9L8X3. Chem Commun. 1971;22:1423–24.10.1039/c29710001423Search in Google Scholar

[110] Jin S, Du W, Wan S, Kang X, Chen M, Hu D, et al. Thiol-induced synthesis of phosphine-protected gold nanoclusters with atomic precision and controlling the structure by ligand/metal engineering. Inorg Chem. 2017;56(18):11151–59.10.1021/acs.inorgchem.7b01458Search in Google Scholar PubMed

[111] Chen S, Wang S, Zhong J, Song Y, Zhang J, Sheng H, et al. The structure and optical properties of the Au18(SR)14 nanocluster. Angewandte Chemie-Int Ed. 2015;54(10):3145–49.10.1002/anie.201410295Search in Google Scholar PubMed

[112] Zeng C, Liu C, Chen Y, Rosi NL, Jin R. Gold-Thiolate ring as a protecting motif in the Au20(SR)16 nanocluster and implications. J Am Chem Soc. 2014;136(34):11922–25.10.1021/ja506802nSearch in Google Scholar PubMed

[113] Chen S, Xiong L, Wang S, Ma Z, Jin S, Sheng H, et al. Total structure determination of Au21(S-Adm)15 and geometrical/electronic structure evolution of thiolated gold nanoclusters. J Am Chem Soc. 2016;138(34):10754–57.10.1021/jacs.6b06004Search in Google Scholar PubMed

[114] Das A, Li T, Nobusada K, Zeng C, Rosi NL, Jin R. Nonsuperatomic Au23(SC6H11)16- nanocluster featuring bipyramidal Au15 kernel and trimeric Au3(SR)4 motif. J Am Chem Soc. 2013;135(49):18264–67.10.1021/ja409177sSearch in Google Scholar PubMed

[115] Crasto D, Barcaro G, Stener M, Sementa L, Fortunelli A, Dass A. Au24(SAdm)16 nanomolecules: X-ray crystal structure, theoretical analysis, adaptability of adamantane ligands to form Au23(SAdm)16 and Au25(SAdm)16, and its relation to Au25(SR)18. J Am Chem Soc. 2014;136(42):14933–40.10.1021/ja507738eSearch in Google Scholar PubMed

[116] Yang S, Chai J, Song Y, Kang X, Sheng H, Chong H, et al. A new crystal structure of Au36 with a Au14 kernel cocapped by Thiolate and Chloride. J Am Chem Soc. 2015;137(32):10033–35.10.1021/jacs.5b06235Search in Google Scholar PubMed

[117] Qian H, Eckenhoff WT, Zhu Y, Pintauer T, Jin R. Total structure determination of thiolate-protected Au38 nanoparticles. J Am Chem Soc. 2010;132(24):8280–81.10.1021/ja103592zSearch in Google Scholar PubMed

[118] Liu C, Li T, Li G, Nobusada K, Zeng C, Pang G, et al. Observation of body-centered cubic gold nanocluster. Angewandte Chemie-Int Ed. 2015;54(34):9826–29.10.1002/anie.201502667Search in Google Scholar PubMed

[119] Zeng C, Chen Y, Liu C, Nobusada K, Rosi NL, Jin R. Gold tetrahedra coil up: kekule-like and double helical superstructures. Sci Adv. 2015;1(9):e1500425.10.1126/sciadv.1500425Search in Google Scholar PubMed PubMed Central

[120] Liao L, Zhuang S, Yao C, Yan N, Chen J, Wang C, et al. Structure of chiral Au44(2,4-DMBT)26 nanocluster with an 18-Electron shell closure. J Am Chem Soc. 2016;138(33):10425–28.10.1021/jacs.6b07178Search in Google Scholar PubMed

[121] Gan Z, Chen J, Wang J, Wang C, Li M-B, Yao C, et al. The fourth crystallographic closest packing unveiled in the gold nanocluster crystal. Nat Commun. 2017;8:14739–44.10.1038/ncomms14739Search in Google Scholar PubMed PubMed Central

[122] Zeng C, Liu C, Chen Y, Rosi NL, Jin R. Atomic structure of self-assembled monolayer of thiolates on a tetragonal Au92 nanocrystal. J Am Chem Soc. 2016;138(28):8710–13.10.1021/jacs.6b04835Search in Google Scholar PubMed

[123] Higaki T, Liu C, Zhou M, Luo T-Y, Rosi NL, Jin R. Tailoring the structure of 58-Electron gold nanoclusters: au103S2(S-Nap)41 and its implications. J Am Chem Soc. 2017;139(29):9994–10001.10.1021/jacs.7b04678Search in Google Scholar PubMed

[124] Chen Y, Zeng C, Liu C, Kirschbaum K, Gayathri C, Gil RR, et al. Crystal structure of barrel-shaped chiral Au130(p-MBT)50 nanocluster. J Am Chem Soc. 2015;137(32):10076–79.10.1021/jacs.5b05378Search in Google Scholar PubMed

[125] Zeng C, Chen Y, Kirschbaum K, Lambright KJ, Jin R. Emergence of hierarchical structural complexities in nanoparticles and their assembly. Science. 2016;354(6319):1580–84.10.1126/science.aak9750Search in Google Scholar PubMed

[126] Sakthivel NA, Theivendran S, Ganeshraj V, Oliver AG, Dass A. Crystal structure of faradaurate-279: au279(SPh-tBu)84 plasmonic nanocrystal molecules. J Am Chem Soc. 2017;139(43):15450–59.10.1021/jacs.7b08651Search in Google Scholar PubMed

Published Online: 2018-08-10

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 7.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/psr-2017-0083/html
Scroll to top button