Startseite Laser-induced breakdown spectroscopy in heritage science
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Laser-induced breakdown spectroscopy in heritage science

  • Demetrios Anglos ORCID logo EMAIL logo
Veröffentlicht/Copyright: 20. April 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Laser-induced breakdown spectroscopy (LIBS) is a versatile analytical technique that can be used to probe the elemental composition of materials in diverse types of heritage samples, objects or monuments. The main physical principles underlying LIBS are presented along with analytical figures of merit and technical details concerning instrumentation. In practice, LIBS analysis does not require any sample preparation and the technique is nearly non-invasive, offering close to microscopic spatial resolution and the possibility for depth profile analysis. These features are, at present, available in a number of compact or transportable instruments that offer versatility and enable the use of LIBS for the analysis of a broad variety of objects/samples at diverse locations and this can be highly valuable at several stages of archaeological investigations and conservation campaigns. Representative examples are presented indicating how LIBS has been used to obtain compositional information for materials in the context of archaeological science, art history and conservation.

Acknowledgements

The author gratefully acknowledges scientific interactions throughout these years with students, co-workers and colleagues at IESL-FORTH and the University of Crete as well as in the broader LIBS and heritage science communities. Financial support in relevance to Heritage Science activities has been provided through a number of projects: (a) EC, H2020-INFRAIA-2014-2015, IPERIOn CH project, GA 654028, (b) EC, H-2020, Marie Skłodowska-Curie Individual Fellowship, ACCELERATE project, GA 703625, (c) NSRF 2014-2020, POLITEIA-II (MIS-5002478) and HELLAS CH (MIS 5002735) projects, funded by the General Secretariat for Research and Technology, Greece and the European Regional Development Fund/European Commission (Operational Programme: Competitiveness, Entrepreneurship and Innovation, National Strategic Reference Framework, NSRF 2014-2020).

References

[1] Ciliberto E, Spoto G, Modern analytical methods in art and archaeology, chemical analysis, a series of monographs on analytical chemistry and its applications, vol. 155. Winefordner JD, editors. New York: Wiley, 2000.Suche in Google Scholar

[2] Spoto G, Torrisi A, Contino A. Probing archaeological and artistic solid materials by spatially resolved analytical techniques. Chem Soc Rev. 2000;29:429–39. DOI: 10.1039/a903358k.Suche in Google Scholar

[3] Stuart BH. Analytical techniques in materials conservation. New York West Sussex, UK: Wiley, 2007.10.1002/9780470060520Suche in Google Scholar

[4] Mantler M, Schreiner M. X-ray fluorescence spectrometry in art and archaeology. X-Ray Spectrom. 2000;29. DOI: 10.1002/(SICI)1097-4539(200001/02)29:1<3::AID-XRS398>3.0.CO;2-O.Suche in Google Scholar

[5] Dik J, Janssens K, Van Der Snickt G, van der Loeff L, Rickers K, Cotte M. Visualization of a lost painting by Vincent van Gogh using synchrotron radiation based X-ray fluorescence elemental mapping. Anal Chem. 2008;80:6436–42. DOI: 10.1021/ac800965g.Suche in Google Scholar

[6] Dran J-C, Salomon J, Calligaro T, Walter P. Ion beam analysis of art works: 14 years of use in the Louvre. Nucl Instr Meth Phys Res B. 2004;219–220:7–15. DOI: 10.1016/j.nimb.2004.01.019.Suche in Google Scholar

[7] Schreiner M, Melcher M, Uhlir K. Scanning electron microscopy and energy dispersive analysis: applications in the field of cultural heritage. Anal Bioanal Chem. 2007;387:737–47. DOI: 10.1007/s00216-006-0718-5.Suche in Google Scholar PubMed

[8] Gratuze B, Blet-Lemarquand M, Barrandon JN. Mass spectrometry with laser sampling: A new tool to characterize archaeological materials. J Radioanal Nucl Chem. 2001;247. DOI: 10.1023/A:1010623703423.Suche in Google Scholar

[9] Giussani B, Monticelli D, Rampazzi L. Role of laser ablation –inductively coupled plasma –mass spectrometry in cultural heritage research: A review. Anal Chim Acta. 2009;635:6–21. DOI: 10.1016/j.aca.2008.12.040.Suche in Google Scholar PubMed

[10] Kantarelou V, Karydas AG, Sokaras D, Mahfouz L, Qurdab A, Al-Saadi M, et al. In situ scanning micro-XRF analyses of gilded bronze figurines at the national museum of Damascus. J Anal At Spectrom. 2015;30:1787–98. DOI: 10.1039/c5ja00079c.Suche in Google Scholar

[11] Hocquet FP, Calvo Del Castillo H, Cervera Xicotencatl A, Bourgeois C, Oger C, Marchal A, et al. Elemental 2D imaging of paintings with a mobile EDXRF system. Anal Bioanal Chem. 2011;399:3109–1610.1007/s00216-010-4281-8Suche in Google Scholar PubMed

[12] Romano FP, Pappalardo L, Masini N, Pappalardo G, Rizzo F. The compositional and mineralogical analysis of fired pigments in Nasca pottery from Cahuachi (Peru) by the combined use of the portable PIXE-alpha and portable XRD techniques. Microchem J. 2011;99. DOI: 10.1016/j.microc.2011.06.020.Suche in Google Scholar

[13] Cremers DA, Radziemski LJ. Handbook of laser-induced breakdown spectroscopy. New York, USA: Wiley, 2006.10.1002/0470093013Suche in Google Scholar

[14] Musazzi S, Perini U, editors. Laser-induced breakdown spectroscopy. Theory and applications Springer Series in Optical Sciences Vol. 182. Berlin Heidelberg: Springer-Verlag, 201410.1007/978-3-642-45085-3Suche in Google Scholar

[15] Anglos D. Laser-induced breakdown spectroscopy in art and archaeology. Appl Spectrosc. 2001;55:186A-205A. DOI: 10.1366/0003702011952398.Suche in Google Scholar

[16] Giakoumaki A, Melessanaki K, Anglos D. Laser-induced breakdown spectroscopy (LIBS) in archaeological science-applications and prospects. Anal Bioanal Chem. 2007;387:749–60. DOI: 10.1007/s00216-006-0908-1.Suche in Google Scholar PubMed

[17] Spizzichino V, Fantoni R. Laser induced breakdown spectroscopy in archeometry: a review of its, application and future perspectives. Spectrochim Acta B. 2014;99:201–9. DOI: 10.1016/j.sab.2014.07.003.Suche in Google Scholar

[18] Fortes FJ, Cuñat J, Cabalín LM, Laserna JJ. In situ analytical assessment and chemical imaging of historical buildings using a man-portable laser system. Appl Spectrosc. 2007;61:558–64. DOI: 10.1366/000370207780807722.Suche in Google Scholar PubMed

[19] Agresti J, Mencaglia AA, Siano S. Development and application of a portable LIPS system for characterising copper alloy artefacts. Anal Bioanal Chem. 2009;395:2255–62. DOI: 10.1007/s00216-009-3053-9.Suche in Google Scholar PubMed

[20] Rakovsky J, Cermak P, Musset O, Veis P. A review of the development of portable laser induced breakdown spectroscopy and its applications. Spectrochim Acta B. 2014;101:269–87. DOI: 10.1016/j.sab.2014.09.015.Suche in Google Scholar

[21] https://www.nist.gov/pml/atomic-spectra-database Accessed: 18 Oct 2018.Suche in Google Scholar

[22] Ciucci A, Corsi M, Palleschi V, Rastelli S, Salvetti A, Tognoni E. New procedure for quantitative elemental analysis by laser -induced plasma spectroscopy. Appl Spectrosc. 1999;53:960–4. DOI: 10.1366/0003702991947612.Suche in Google Scholar

[23] Scaffidi J, Michael Angel S, Cremers DA. Emission enhancement mechanisms in dual-pulse LIBS. Anal Chem. 2006;78:24–32. DOI: 10.1021/ac069342z.Suche in Google Scholar PubMed

[24] Ferretti M, Cristoforetti G, Legnaioli S, Palleschi V, Salvetti A, Tognoni E, et al. In situ study of the Porticello Bronzes by portable X-ray fluorescence and laser -induced breakdown spectroscopy. Spectrochim Acta B. 2007;62:1512–18. DOI: 10.1016/j.sab.2007.09.004.Suche in Google Scholar

[25] Anglos D, Detalle V. Cultural heritage applications of LIBS, chapter 20. In: Musazzi S, Perini U, editors. Laser-induced breakdown spectroscopy, theory and applications, series in optical sciences. vol. 182. Berlin Heidelberg: Springer-Verlag; 2014:531–554.10.1007/978-3-642-45085-3_20Suche in Google Scholar

[26] Melessanaki K, Mastrogiannidou A, Chlouveraki S, Ferrence SC, Betancourt PP, Anglos D. Analysis of archaeological objects with LMNTI, a new transportable LIBS instrument. In: Κ. Dickmann, C. Fotakis, J. F. Asmus, editors. Proceedings, 5th International Conference Lasers in the Conservation of Artworks in Lasers in the Conservation of Artworks, LACONA V Proceedings, vol. 100. Osnabrueck, Germany: Springer Proceedings in Physics, Sept. 15-18, 2003: 443–51,Suche in Google Scholar

[27] Westlake P, Siozos P, Philippidis A, Apostolaki C, Derham B, Terlixi A, et al. Studying pigments on painted plaster in Minoan, Roman and early Byzantine Crete. A multi-analytical technique approach. Anal Bioanal Chem. 2012;402:1413–32. DOI: 10.1007/s00216-011-5281-z.Suche in Google Scholar PubMed

[28] Duchene S, Detalle V, Bruder R, Sirven JB. Chemometrics and laser induced breakdown spectroscopy (LIBS) analyses for identification of wall paintings pigments. Curr Anal Chem. 2010;6:60–5. DOI: 10.2174/157341110790069600.Suche in Google Scholar

[29] Bertolini A, Carelli G, Francesconi F, Francesconi M, Marchesini L, Marsili P, et al. Modi: a new mobile instrument for in situ double-pulse LIBS analysis. Anal Bioanal Chem. 2006;385:240–7. DOI: 10.1007/s00216-006-0413-6.Suche in Google Scholar PubMed

[30] Gaona I, Lucena P, Moros J, Fortes FJ, Guirado S, Serrano J, et al. Evaluating the use of standoff LIBS in architectural heritage : surveying the Cathedral of Malaga. J Anal At Spectrom. 2013;28:810–20. DOI: 10.1039/c3ja50069a.Suche in Google Scholar

[31] Senesi GS, Manzini D, De Pascale O. Application of a laser -induced breakdown spectroscopy handheld instrument to the diagnostic analysis of stone monuments. Appl Geochem. 2018;96:87–91. DOI: 10.1016/j.apgeochem.2018.06.008.Suche in Google Scholar

[32] Gronlund R, Lundqvist M, Svanberg S. Remote imaging laser -induced breakdown spectroscopy and remote cultural heritage ablative cleaning. Opt Lett. 2005;30:2882–4. DOI: 10.1364/OL.30.002882.Suche in Google Scholar PubMed

[33] Tzortzakis S, Gray D, Anglos D. Ultraviolet laser filaments for remote laser-induced breakdown spectroscopy (LIBS) analysis: applications in cultural heritage monitoring. Opt Lett. 2006;31:1139–41. DOI: 10.1364/OL.31.001139.Suche in Google Scholar PubMed

[34] López-Claros M, Fortes FJ, Laserna JJ. Subsea spectral identification of shipwreck objects using laser -induced breakdown spectroscopy and linear discriminant analysis. J Cult Heritage. 2018;29:75–81. DOI: 10.1016/j.culher.2016.12.015.Suche in Google Scholar

[35] Papliaka ZE, Philippidis A, Siozos P, Vakondiou M, Melessanaki K, Anglos D. A multi-technique approach, based on mobile/portable laser instruments, for the in situ pigment characterization of stone sculptures on the island of Crete dating from Venetian and Ottoman period. Heritage Sci. 2016;4:15. DOI: 10.1186/s40494-016-0085-2.Suche in Google Scholar

[36] Bicchieri M, Nardone M, Russo PA, Sodo A, Corsi M, Cristoforetti G, et al. Characterization of azurite and lazurite based pigments by laser induced breakdown spectroscopy and micro-Raman spectroscopy. Spectrochim Acta B. 2001;56:915–22. DOI: 10.1016/S0584-8547(01)00228-2.Suche in Google Scholar

[37] Fortes FJ, Cortes M, Simon MD, Cabalin LM, Laserna JJ. Chronocultural sorting of archaeological bronze objects using laser -induced breakdown spectrometry. Anal Chim Acta. 2005;554:136–43. DOI: 10.1016/j.aca.2005.08.081.Suche in Google Scholar

[38] Corsi M, Cristoforetti G, Giuffrida M, Hidalgo M, Legnaioli S, Masotti L, et al. Archaeometric analysis of ancient copper artefacts by laser -induced breakdown spectroscopy technique. Microchim Acta. 2005;152:105–11. DOI: 10.1007/s00604-005-0388-6.Suche in Google Scholar

[39] Melessanaki K, Mateo M, Ferrence SC, Betancourt PP, Anglos D. The application of LIBS for the analysis of archaeological ceramic and metal artifacts. Appl Surf Sci. 2002;197–198:156–63. DOI: 10.1016/S0169-4332(02)00459-2.Suche in Google Scholar

[40] Anglos D, Melessanaki K, Zafiropulos V, Gresalfi MJ, Miller JC. Laser-induced breakdown spectroscopy for the analysis of 150-year-old daguerreotypes. Appl Spectrosc. 2002;56:423–32. DOI: 10.1366/0003702021955079.Suche in Google Scholar

[41] Colao F, Fantoni R, Lazic V, Caneve L, Giardini A, Spizzichino V, et al. “LIBS” as a diagnostic tool during the laser cleaning of copper based alloys: experimental results. J Anal Atom Spectrom. 2004;19:502–4. DOI: 10.1039/b315488b.Suche in Google Scholar

[42] Müller K, Stege H. Evaluation of the analytical potential of laser -induced breakdown spectrometry (LIBS) for the analysis of historical glasses. Archaeometry. 2003;45:421–33. DOI: 10.1111/1475-4754.00119.Suche in Google Scholar

[43] Carmona N, Oujja M, Rebollar E, Romich H, Castillejo M. Analysis of corroded glasses by laser induced breakdown spectroscopy. Spectrochim Acta B. 2005;60:1155–62. DOI: 10.1016/j.sab.2005.05.016.Suche in Google Scholar

[44] Senesi GS, Nicolodelli G, Milorim DMBP, De Pascale O. Depth profile investigations of surface modifications of limestone artifacts by laser -induced breakdown spectroscopy. Environ Earth Sci. 2017;76:565. DOI: 10.1007/s12665-017-6910-4.Suche in Google Scholar

[45] Anzano JM, Villoria MA, Gornushkin IB, Smith BW, Winefordner JD. Laser-induced plasma spectroscopy for characterization of archaeological material. Can J Anal Sci Spectrosc. 2002;47:134–40.Suche in Google Scholar

[46] Maravelaki-Kalaitzaki PV, Anglos D, Kylikoglou V, Zafiropulos V. Compositional characterization of encrustation on marble with laser induced breakdown spectroscopy. Spectrochim Acta B. 2001;56:887. DOI: 10.1016/S0584-8547(01)00226-9.Suche in Google Scholar

[47] Lazic V, Fantoni R, Colao F, Santagata A, Morona A, Spizzichino V. Quantitative laser induced breakdown spectroscopy analysis of ancient marbles and corrections for the variability of plasma parameters and of ablation rate. J Anal Atom Spectrom. 2004;19:429–36. DOI: 10.1039/b315606k.Suche in Google Scholar

[48] Colao F, Fantoni R, Lazic V, Spizzichino V. Laser-induced breakdown spectroscopy for semi-quantitative and quantitative analyses of artworks - application on multi-layered ceramics and copper based alloys. Spectrochim Acta B. 2002;57:1219–34. DOI: 10.1016/S0584-8547(02)00054-X.Suche in Google Scholar

[49] Lopez AJ, Nicolas G, Mateo MP, Ramil A, Pinon V, Yanez A. LIPS and linear correlation analysis applied to the classification of Roman pottery Terra Sigillata. Appl Phys A. 2006;83:695–8. DOI: 10.1007/s00339-006-3556-6.Suche in Google Scholar

[50] Anzano J, Gutierrez J, Villoria M. Direct determination of aluminum in archaeological clays by laser -induced breakdown spectroscopy. Anal Lett. 2005;38:1957–65. DOI: 10.1080/00032710500232810.Suche in Google Scholar

[51] Erdem A, Çilingiroğlu A, Giakoumaki A, Castanys M, Kartsonaki E, Fotakis C, et al. Characterization of iron age pottery from eastern Turkey by laser -induced breakdown spectroscopy (LIBS). J Arch Sci. 2008;35:2486–94. DOI: 10.1016/j.jas.2008.03.019.Suche in Google Scholar

[52] Harmon RS, DeLucia FC, McManus CE, McMillan NJ, Jenkins TF, Walsh ME, et al. Laser-induced breakdown spectroscopy - an emerging chemical sensor technology for real-time field-portable, geochemical, mineralogical, and environmental applications. Appl Geochem. 2006;21:730–47. DOI: 10.1016/j.apgeochem.2006.02.003.Suche in Google Scholar

[53] Bassel L, Motto-Ros V, Trichard F, Pelascini F, Ammari F, Chapoulie R, et al. Laser-induced breakdown spectroscopy for elemental characterization of calcitic alterations on cave walls. Environ Sci Pollut Res. 2017;24:2197–204. DOI: 10.1007/s11356-016-7468-5.Suche in Google Scholar

[54] Samek O, Beddows DCS, Telle HH, Kaiser J, Liska M, Caseres JO, et al. Quantitative laser -induced breakdown spectroscopy analysis of calcified tissue samples. Spectrochim Acta B. 2001;56:865–75. DOI: 10.1016/S0584-8547(01)00198-7.Suche in Google Scholar

[55] Rusak DA, Marsico RM, Taroli BL. Using laser-induced breakdown spectroscopy to assess preservation quality of archaeological bones by measurement of Calcium-to-Fluorine ratios. Appl Spectrosc. 2011;65:1193. DOI: 10.1366/11-06364.Suche in Google Scholar PubMed

[56] Suliyanti MM, Sardy S, Kusnowo A, Pardede M, Hedwig R, Kurniawan KH, et al. Preliminary analysis of C and H in a “Sangiran” fossil using laser -induced plasma at reduced pressure. J Appl Phys. 2005;98:093307. DOI: 10.1063/1.2121930.Suche in Google Scholar

[57] Dolgin B, Chen Y, Bulatov V, Schechter I. Use of LIBS for rapid characterization of parchment. Anal Bioanal Chem. 2006;386:1535–41. DOI: 10.1007/s00216-006-0676-y.Suche in Google Scholar PubMed

[58] Oujja M, Sanz M, Agua F, Conde JF, García-Heras M, Dávila A, et al. Multianalytical characterization of late Roman glasses including nanosecond and femtosecond laser induced breakdown spectroscopy. J Anal At Spectrom. 2015;30:1590–9. DOI: 10.1039/c5ja00150a.Suche in Google Scholar

[59] Cáceres JO, Pelascini F, Motto-Ros V, Moncayo S, Trichard F, Panczer G, et al. Megapixel multi-elemental imaging by laser-induced breakdown spectroscopy, a technology with considerable potential for paleoclimate studies. Sci Rep. 2017;7:5080. DOI: 10.1038/s41598-017-05437-3.Suche in Google Scholar PubMed PubMed Central

[60] Hausmann N, Siozos P, Lemonis A, Colonese AC, Robson HK, Anglos D. Elemental mapping of Mg/Ca intensity ratios in marine mollusc shells using laser -induced breakdown spectroscopy. J Anal At Spectrom. 2017;32:1467–72. DOI: 10.1039/c7ja00131b.Suche in Google Scholar

[61] Moncayo S, Manzoor S, Ugidos T, Navarro-Villoslada F, Caceres JO. Discrimination of human bodies from bones and teeth remains by laser induced breakdown spectroscopy and neural networks. Spectrochim Acta B. 2014;101:21–5. DOI: 10.1016/j.sab.2014.07.008.Suche in Google Scholar

Published Online: 2019-04-20

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 10.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/psr-2018-0005/pdf?lang=de
Button zum nach oben scrollen