Startseite Photocatalytic decarboxylations
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Photocatalytic decarboxylations

  • Johanna Schwarz EMAIL logo
Veröffentlicht/Copyright: 30. Mai 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

During the last years, the field of photocatalytic decarboxylations has emerged rapidly. Carboxylic acids are inexpensive, non-toxic and renewable starting materials for the synthesis of pharmaceuticals or platform chemicals. The traceless extrusion of CO2 gives radical intermediates, which react in diverse cross-coupling reactions. Merging photocatalysis with metal catalysis enables even broader substrate scopes or enantioselective reactions. An overview of photocatalytic decarboxylative reactions of different classes of carboxylic acids is given within this chapter.

References

[1] Scott E, Peter F, Sanders J. Appl Microbiol Biotechnol. 2007;75:751–62.10.1007/s00253-007-0932-xSuche in Google Scholar PubMed

[2] (a) Painer D, Lux S, Grafschafter A, Toth A, Siebenhofer M. Chem Ing Tech. 2017;89:161–71. (b) Johnson RW, Daniels RW. in Kirk-Othmer Encyclopedia of Chemical Technology. John Wiley & Sons, Inc. 2000.10.1002/cite.201600090Suche in Google Scholar

[3] (a) Kolbe H. Liebigs Ann Chem. 1848;64:339–41. (b) Kolbe H. Liebigs Ann Chem. 1849;69:257–94; (c) Vijh AK, Conway BE. Chem Rev. 1967;67:623–64.10.1002/jlac.18480640346Suche in Google Scholar

[4] (a) Fichter F, Stenzl H. Helv Chim Acta. 1939;22:970–8. (b) Wilshire J Aust J Chem. 1963;16:432–9.10.1002/hlca.193902201125Suche in Google Scholar

[5] (a) Wang H-B, Huang J-M. Adv Synth Catal. 2016;358:1975–81. (b) Adamek J, Mazurkiewicz R, Październiok-Holewa A, Grymel M, Kuźnik A, Zielińska K. J Org Chem. 2014;79;2765–70; (c) Mazurkiewicz R, Adamek J, Październiok-Holewa A, Zielińska K, Simka W, Gajos A, Szymura K. J Org Chem. 2012;77:1952–60.10.1002/adsc.201501167Suche in Google Scholar

[6] Hunsdiecker H, Hunsdiecker C. Chem Ber. 1942;75:291–7.10.1002/cber.19420750309Suche in Google Scholar

[7] (a) Naskar D, Roy S. Tetrahedron. 2000;56:1369–77. (b) Crich D, Sasaki K, in Comprehensive Organic Synthesis II (Second Edition). Elsevier: Amsterdam, 2014:818–36; (c) Wang Z, Zhu L, Yin F, Su Z, Li Z, Li C. J Am Chem Soc. 2012;134:4258–63.10.1016/S0040-4020(99)01035-2Suche in Google Scholar

[8] (a) Barton DHR, McCombie SW. J Chem Soc Perkin Trans 1. 1975;16:1574–85. (b) Barton DHR, Crich D, Motherwell WB. J Chem Soc Chem Commun. 1983;17:939–41; (c) Barton DHR, Bridon D, Fernandaz-Picot I, Zard SZ, Tetrahedron. 1987;43:2733–40; (d) Barton DHR, Pure Appl Chem. 1988;60:1549–54.10.1039/p19750001574Suche in Google Scholar

[9] Sadeghi-Khomami A, Blake AJ, Wilson C, Thomas NR. Org Lett. 2005;7:4891–4.10.1021/ol0517877Suche in Google Scholar PubMed

[10] Nilsson M. Acta Chem Scand. 1966;22:423–6.10.3891/acta.chem.scand.20-0423Suche in Google Scholar

[11] (a) Gooßen LJ, Deng G, Levy LM. Science. 2006;313:662–4. (b) Rodriguez N, Goossen LJ, Chem Soc Rev. 2011;40:5030–48; (c) Shang R, Liu L. Sci China Chem. 2011;54:1670–87; (d) Forgione P, Brochu M.-C, St-Onge M, Thesen KH, Bailey MD, Bilodeau F. ChemInform. 2007;38.10.1126/science.1128684Suche in Google Scholar PubMed

[12] (a) Fromm A, Van Wüllen C, Hackenberger D, Gooßen LJ. J Am Chem Soc. 2014;136:10007–23. (b) Dai J-J, Liu J-H, Luo D-F, Liu L, Chem Comm. 2011;47:677–9.10.1021/ja503295xSuche in Google Scholar PubMed

[13] (a) Myers AG, Tanaka D, Mannion MR J Am Chem Soc. 2002;124:11250–51. (b) Tanaka D, Romeril SP, Myers AG. J Am Chem Soc. 2005;127:10323–33.10.1021/ja027523mSuche in Google Scholar PubMed

[14] Schwarz J, König B. Decarboxylative reactions with and without light – a comparison. Green Chem. 2018;323–61.10.1039/C7GC02949GSuche in Google Scholar

[15] (a) Jin Y, Fu H. Asian J Org Chem. 2017;6:368–85. (b) Xuan J, Zhang Z-G, Xiao W-J, Angew Chem Int Ed. 2015;54:15632–41; (c) Maiti D, Patra T. Chem Eur J. 2017;23:7328–401.10.1002/ajoc.201600513Suche in Google Scholar

[16] Liu P, Zhang G, Sun P. Org Biomol Chem. 2016;14:10763–77.10.1039/C6OB02101HSuche in Google Scholar PubMed

[17] Cassani C, Bergonzini G, Wallentin C-J. Org Lett. 2014;16:4228–31.10.1021/ol5019294Suche in Google Scholar PubMed

[18] Griffin JD, Zeller MA, Nicewicz DA. J Am Chem Soc. 2015;137:11340–8.10.1021/jacs.5b07770Suche in Google Scholar PubMed PubMed Central

[19] (a) Millet A, Lefebvre Q, Rueping M. Chem Eur J. 2016;22:13464–8. (b) Chu L, Ohta C, Zuo Z, MacMillan DWC. J Am Chem Soc. 2014;136:10886–9; (c) Miyake Y, Nakajima K, Nishibayashi Y. Chem Comm. 2013;49:7854–6.10.1002/chem.201602257Suche in Google Scholar PubMed

[20] Ramirez NP, Gonzalez-Gomez JC. Eur J Org Chem. 2017;2017:2154–63.10.1002/ejoc.201601478Suche in Google Scholar

[21] (a) Pratsch G, Lackner GL, Overman LE. J Org Chem. 2015;80:6025–36. (b) Okada K, Okamoto K, Morita N, Okubo K, Oda M. J Am Chem Soc. 1991;113:9401–2.10.1021/acs.joc.5b00795Suche in Google Scholar PubMed PubMed Central

[22] Jin Y, Yang H, Fu H. Org Lett. 2016;18:6400–3.10.1021/acs.orglett.6b03300Suche in Google Scholar PubMed

[23] Schwarz J, König B. Green Chem. 2016;18:4743–9.10.1039/C6GC01101BSuche in Google Scholar

[24] Noble A, MacMillan DWC. J Am Chem Soc. 2014;136:11602–5.10.1021/ja506094dSuche in Google Scholar PubMed PubMed Central

[25] Noble A, McCarver SJ, MacMillan DWC. J Am Chem Soc. 2015;137:624–7.10.1021/ja511913hSuche in Google Scholar PubMed PubMed Central

[26] Wang G-Z, Shang R, Fu Y. Org Lett. Irradiation-induced palladium-catalyzed decarboxylative Heck reaction of aliphatic N-(acyloxy)phthalimides at room temperature. 2018;20:888–91.10.1021/acs.orglett.8b00023Suche in Google Scholar PubMed

[27] Hu C, Chen Y. Org Chem Front. 2015;2:1352–5.10.1039/C5QO00187KSuche in Google Scholar

[28] Duan Y, Zhang M, Ruzi R, Wu Z, Zhu C. Org Chem Front. 2017;4:525–8.10.1039/C6QO00711BSuche in Google Scholar

[29] Yang C, Yang J-D, Li Y-H, Li X, Cheng J-P. J Org Chem. 2016;81:12357–63.10.1021/acs.joc.6b02385Suche in Google Scholar PubMed

[30] (a) Le Vaillant F, Courant T, Waser J. Angew Chem Int Ed. 2015;54:11200–4. (b) Zhou Q-Q, Guo W, Ding W, Wu X, Chen X, Lu L-Q, Xiao W-J. Angew Chem Int Ed. 2015;54:11196–9; (c) Vaillant FL, Waser J. Chimia. 2017;71:226–30.10.1002/anie.201505111Suche in Google Scholar PubMed

[31] Schwarz J, König B. ChemPhotoChem. 2017;1:237–42.10.1002/cptc.201700034Suche in Google Scholar

[32] Yang J, Zhang J, Qi L, Hu C, Chen Y. Chem Comm. 2015;51:5275–8.10.1039/C4CC06344ASuche in Google Scholar PubMed

[33] Zhang H, Zhang P, Jiang M, Yang H, Fu H. Org Lett. 2017;19:1016–9.10.1021/acs.orglett.6b03888Suche in Google Scholar PubMed

[34] Le Vaillant F, Wodrich MD, Waser J. Chem Sci. 2017;8:1790–800.10.1039/C6SC04907ASuche in Google Scholar PubMed PubMed Central

[35] Wang D, Zhu N, Chen P, Lin Z, Liu G. J Am Chem Soc. 2017;139:15632–5.10.1021/jacs.7b09802Suche in Google Scholar PubMed

[36] Zuo Z, MacMillan DWC. J Am Chem Soc. 2014;136:5257–60.10.1021/ja501621qSuche in Google Scholar PubMed PubMed Central

[37] Zuo Z, Ahneman DT, Chu L, Terrett JA, Doyle AG, MacMillan DWC. Science. 2014;345:437–40.10.1126/science.1255525Suche in Google Scholar PubMed PubMed Central

[38] Zuo Z, Cong H, Li W, Choi J, Fu GC, MacMillan DWC. Enantioselective decarboxylative arylation of α-amino acids via the merger of photoredox and nickel catalysis. J Am Chem Soc. 2016;138:1832–5.10.1021/jacs.5b13211Suche in Google Scholar PubMed PubMed Central

[39] Fan L, Jia J, Hou H, Lefebvre Q, Rueping M. Chem Eur J. 2016;22:16437–40.10.1002/chem.201604452Suche in Google Scholar PubMed

[40] Candish L, Standley EA, Gómez-Suárez A, Mukherjee S, Glorius F. Chem Eur J. 2016;22:9971–4.10.1002/chem.201602251Suche in Google Scholar PubMed

[41] Wu X, Meng C, Yuan X, Jia X, Qian X, Ye J. Chem Commun. 2015;51:11864–7.10.1039/C5CC04527DSuche in Google Scholar PubMed

[42] Zhang M-J, Schroeder GM, He Y-H, Guan Z. RSC Adv. 2016;6:96693–9.10.1039/C6RA17524DSuche in Google Scholar

[43] Lang SB, Cartwright KC, Welter RS, Locascio TM, Tunge JA. Eur J Org Chem. 2016;2016:3331–4.10.1002/ejoc.201600620Suche in Google Scholar PubMed PubMed Central

[44] Zhao W, Wurz RP, Peters JC, Fu GC. J Am Chem Soc. 2017;139:12153–6.10.1021/jacs.7b07546Suche in Google Scholar PubMed PubMed Central

[45] Song H-T, Ding W, Zhou -Q-Q, Liu J, Lu L-Q, Xiao W-J. J Org Chem. 2016;81:7250–5.10.1021/acs.joc.6b01360Suche in Google Scholar PubMed

[46] (a) Hansch C, Leo A, Taft RW. Chem Rev. 1991;91:165–95. (b) Filler R, Kobayashi Y, Society AC, Kagakkai N, Biomedicinal aspects of fluorine chemistry. Elsevier Biomedical Press, 1982; (c) Manteau B, Pazenok S, Vors J-P, Leroux FR. J Fluorine Chem. 2010;131:140–58.10.1021/cr00002a004Suche in Google Scholar

[47] Candish L, Pitzer L, Gómez-Suárez A, Glorius F. Chem Eur J. 2016;22:4753–6.10.1002/chem.201600421Suche in Google Scholar PubMed

[48] Jin Y, Yang H, Fu H. Chem Comm. 2016;52:12909–12.10.1039/C6CC06994KSuche in Google Scholar

[49] Hu D, Wang L, Li P. Org Lett. 2017;19:2770–3.10.1021/acs.orglett.7b01181Suche in Google Scholar PubMed

[50] Fawcett A, Pradeilles J, Wang Y, Mutsuga T, Myers EL, Aggarwal VK. Science. 2017;357:283–6.10.1126/science.aan3679Suche in Google Scholar PubMed

[51] Candish L, Freitag M, Gensch T, Glorius F. Chem Sci. 2017;8:3618–22.10.1039/C6SC05533HSuche in Google Scholar PubMed PubMed Central

[52] (a) Guo L-N, Wang H, Duan X-H. Org Biomol Chem. 2016;14:7380–91. (b) Chatgilialoglu C, Crich D, Komatsu D, Ryu I. Chem Rev. 1999;99:1991–2070; (c) Liu C, Liu D, Lei A, Acc Chem Res. 2014;47:3459–70.10.1039/C6OB01113FSuche in Google Scholar PubMed

[53] Wang G-Z, Shang R, Cheng W-M, Fu Y. Org Lett. 2015;17:4830–3.10.1021/acs.orglett.5b02392Suche in Google Scholar PubMed

[54] Zhang -J-J, Cheng Y-B, Duan X-H. Chin J Chem. 2017;35:311–5.10.1002/cjoc.201600729Suche in Google Scholar

[55] Zhang M, Xi J, Ruzi R, Li N, Wu Z, Li W, et al. J Org Chem. 2017;82:9305–11.10.1021/acs.joc.7b01054Suche in Google Scholar PubMed

[56] (a) Boersch C, Merkul E, Müller TJJ. Angew Chem Int Ed. 2011;50:10448–52. (b) Snieckus V, Uccello DP, Synfacts. 2012;8:0247–55.10.1002/anie.201103296Suche in Google Scholar PubMed

[57] Huang H, Zhang G, Chen Y. Angew Chem Int Ed. 2015;54:7872–6.10.1002/anie.201502369Suche in Google Scholar PubMed

[58] Tan H, Li H, Ji W, Wang L. Angew Chem. 2015;127:8494–7.10.1002/ange.201503479Suche in Google Scholar

[59] Chu L, Lipshultz JM, MacMillan DWC. Angew Chem Int Ed. 2015;54:7929–33.10.1002/anie.201501908Suche in Google Scholar PubMed PubMed Central

[60] Cheng W-M, Shang R, Yu H-Z, Fu Y. Chem Eur J. 2015;21:13191–5.10.1002/chem.201502286Suche in Google Scholar PubMed

[61] Zhou C, Li P, Zhu X, Wang L. Org Lett. 2015;17:6198–201.10.1021/acs.orglett.5b03192Suche in Google Scholar PubMed

[62] Gu L, Jin C, Liu J, Zhang H, Yuan M, Li G. Green Chem. 2016;18:1201–5.10.1039/C5GC01931ASuche in Google Scholar

[63] Shi Q, Li P, Zhu X, Wang L. Green Chem. 2016;18:4916–23.10.1039/C6GC00516KSuche in Google Scholar

[64] Liu J, Liu Q, Yi H, Qin C, Bai R, Qi X, et al. Angew Chem Int Ed. 2014;53:502–6.10.1002/anie.201308614Suche in Google Scholar PubMed

[65] Xu W-T, Huang B, Dai J-J, Xu J, Xu H-J. Catalyst-free singlet oxygen-promoted decarboxylative amidation of α-keto acids with free amines. Org Lett. 2016;18:3114–17.10.1021/acs.orglett.6b01296Suche in Google Scholar PubMed

[66] Borah AJ, Yan G. Org Biomol Chem. 2015;13:8094–115.10.1039/C5OB00727ESuche in Google Scholar PubMed

[67] Liu Z, Wang L, Liu D, Wang Z. Synlett. 2015;26:2849–52.10.1055/s-0035-1560661Suche in Google Scholar

[68] Huang H, Jia K, Chen Y. Angew Chem Int Ed. 2015;54:1881–4.10.1002/anie.201410176Suche in Google Scholar PubMed

[69] Zhang -J-J, Yang J-C, Guo L-N, Duan X-H. Chem Eur J. 2017;23:10259–63.10.1002/chem.201702200Suche in Google Scholar PubMed

[70] Xu K, Tan Z, Zhang H, Liu J, Zhang S, Wang Z. Chem Comm. 2017;53:10719–22.10.1039/C7CC05910HSuche in Google Scholar

[71] Xu P, Abdukader A, Hu K, Cheng Y, Zhu C. Chem Comm. 2014;50:2308–10.10.1039/C3CC48598FSuche in Google Scholar

[72] Cai S, Xu Y, Chen D, Li L, Chen Q, Huang M, et al. Org Lett. 2016;18:2990–3.10.1021/acs.orglett.6b01353Suche in Google Scholar PubMed

[73] (a) Giese B, Wettstein P, Stähelin C, Barbosa F, Neuburger M, Zehnder M, et al. Angew Chem Int Ed. 1999;38:2586–7. (b) Spantulescu MD, Boudreau MA, Vederas JC. Org Lett. 2009;11:645–8; (c) Gloor CS, Dénès F, Renaud P, Free Radical Res. 2016;50:102–11; (d) Resendiz MJE, Family F, Fuller K, Campos LM, Khan SI, Lebedeva NV, Forbes MDE, Garcia-Garibay MA. J Am Chem Soc. 2009;131:8425–33; (e) Buckmelter AJ, Kim AI, Rychnovsky SD. J. Am Chem Soc. 2000;122:9386–90; (f) Jain RP, Vederas JC. Org Lett. 2003;5:4669–72.10.1002/(SICI)1521-3773(19990903)38:17<2586::AID-ANIE2586>3.0.CO;2-KSuche in Google Scholar

Published Online: 2018-05-30

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 9.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/psr-2017-0186/pdf
Button zum nach oben scrollen