Startseite Optical spectroscopy as a tool for battery research
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Optical spectroscopy as a tool for battery research

  • Thomas Köhler EMAIL logo , Juliane Hanzig und Victor Koroteev
Veröffentlicht/Copyright: 18. September 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The following compendium reviews the development and establishment of optical spectroscopy as an analytical method for battery material components and electrochemical reactions. The interaction of light with matter is a sensitive and non-destructive way to characterize any sample state, i.e. solids, liquids or gases. Special attention is devoted to infrared and ultraviolet spectroscopy, covering a wavelength range from 12 μm to 200 nm, as well as Raman scattering spectroscopy, in order to excite different vibrational/rotational lattice modes and transitions of valence electrons. This allows an insight into structural properties, chemical composition, oxidation states or kinetic processes. The development of spectroelectrochemical in situ cells allows the investigation of various battery components, e.g. working and counter electrode, separator, electrolyte as well as interfaces between these components. These powerful tools allow the evaluation of the functionality, stability and safety aspects of an electrochemical storage cell.

Funding statement: We gratefully acknowledge financial support from the Federal Ministry of Education and Research (BMBF) within “R2RBattery” (03SF0542A) and Sächsische Aufbaubank (SAB) within “Nutzung von Abwärme zur Erzeugung von Wasserstoff und Elektrizität mit pyroelektrischen Oxiden” (100245339).

References

[1] Schmidt W. Optische Spektroskopie: Eine Einführung. Wiley, 2014.10.1002/9783527663323.ch6Suche in Google Scholar

[2] Schrader B. Infrared and Raman spectroscopy: methods and applications. Wiley, 2008.Suche in Google Scholar

[3] Lewis I, Edwards H. Handbook of Raman spectroscopy: from the research laboratory to the process line. Practical spectroscopy. New York: Marcel Dekker, CRC Press, 2001.10.1201/9781420029253Suche in Google Scholar

[4] Turrell G, Delhaye M, Dhamelincourt P. 2 - Characteristics of Raman microscopy. In: Turrell G, Corset J, editors. Raman microscopy. London: Academic Press, 1996:27–49.10.1016/B978-012189690-4/50022-3Suche in Google Scholar

[5] Schrader BF. Albert cotton: chemical applications of group theory, 3rd ed. Berichte der Bunsengesellschaft für physikalische Chemie. 1991;95:755–6.10.1002/bbpc.19910950625Suche in Google Scholar

[6] Baddour-Hadjean R, Pereira-Ramos J-P. Raman microspectrometry applied to the study of electrode materials for lithium batteries. Chem Rev. 2010;110:1278–319.10.1021/cr800344kSuche in Google Scholar PubMed

[7] Stancovski V, Badilescu S. In situ Raman spectroscopic–electrochemical studies of lithium-ion battery materials: a historical overview. J Appl Electrochem. 2014;44:23–43.10.1007/s10800-013-0628-0Suche in Google Scholar

[8] Delhaye M, Barbillat J, Aubard J, Bridoux M, Silva ED. 3 - Instrumentation. In: Turrell G, Corset J, editors. Raman microscopy. London: Academic Press, 1996:51–173.10.1016/B978-012189690-4/50023-5Suche in Google Scholar

[9] Minsky M. Memoir on inventing the confocal scanning microscope. Scanning. 1988;10:128–38.10.1002/sca.4950100403Suche in Google Scholar

[10] Wilson T. Confocal microscopy. London: Academic Press, 1990.Suche in Google Scholar

[11] Dieing T, Hollricher O, Toporski J. Confocal Raman microscopy. Springer Series in Optical Sciences. Berlin Heidelberg: Springer, 2011.10.1007/978-3-642-12522-5Suche in Google Scholar

[12] Holze R. Surface and interface analysis: an electrochemists toolbox. Springer Series in Chemical Physics. Berlin Heidelberg: Springer, 2008.Suche in Google Scholar

[13] Everall NJ. Modeling and measuring the effect of refraction on the depth resolution of confocal Raman microscopy. Appl Spectrosc. 2000;54:773–82.10.1366/0003702001950382Suche in Google Scholar

[14] Everall NJ. Confocal Raman microscopy: why the depth resolution and spatial accuracy can be much worse than you think. Appl Spectrosc. 2000;54:1515–20.10.1366/0003702001948439Suche in Google Scholar

[15] Everall NJ. Depth profiling with confocal Raman microscopy, part I. Spectroscopy. 2004;19:22–33.Suche in Google Scholar

[16] Everall NJ. Depth profiling with confocal Raman microscopy, part II. Spectroscopy. 2004;19:16–27.Suche in Google Scholar

[17] Abraham K, Jiang Z. A polymer electrolyte-based rechargeable lithium/oxygen battery. J Electrochem Soc. 1996;143:1–5.10.1149/1.1836378Suche in Google Scholar

[18] Wang G, Shen X, Yao J, Park J. Graphene nanosheets for enhanced lithium storage in lithium-ion batteries. Carbon. 2009;47:2049–53.10.1016/j.carbon.2009.03.053Suche in Google Scholar

[19] Endo M, Kim C, Nishimura K, Fujino T, Miyashita K. Recent development of carbon materials for Li Ion batteries. Carbon. 2000;38:183–97.10.1016/S0008-6223(99)00141-4Suche in Google Scholar

[20] Peng Z, Freunberger SA, Chen Y, Bruce PG. A reversible and higher-rate Li-O2 battery. Science. 2012;337:563–6.10.1126/science.1223985Suche in Google Scholar PubMed

[21] Cho J, Kim YJ, Park B. Novel LiCoO2 cathode material with Al2O3 coating for a Li-Ion cell. Chem Mater. 2000;12:3788–91.10.1021/cm000511kSuche in Google Scholar

[22] Zou Y, Wang Y. NiO nanosheets grown on graphene nanosheets as superior anode materials for Li-Ion batteries. Nanoscale. 2011;3:2615–20.10.1039/c1nr10070jSuche in Google Scholar PubMed

[23] Ellis BL, Makahnouk WRM, Makimura Y, Toghill K, Nazar LF. A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. Nat Mater. 2007;6:749–53.10.1038/nmat2007Suche in Google Scholar PubMed

[24] Choi D, Kumta PN. Surfactant based Sol–Gel approach to nanostructured LiFePO4 for high rate Li-Ion batteries. J Power Sources. 2007;163:1064–9.10.1016/j.jpowsour.2006.09.082Suche in Google Scholar

[25] Matthews MJ, Pimenta MA, Dresselhaus G, Dresselhaus MS, Endo M. Origin of dispersive effects of the Raman D band in carbon materials. Phys Rev B. 1999;59:R6585.10.1103/PhysRevB.59.R6585Suche in Google Scholar

[26] Ferrari AC, Robertson J. Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys Rev B. 2001;64:075414.10.1103/PhysRevB.64.075414Suche in Google Scholar

[27] Ferrari AC, Basko DM. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotechnol. 2013;8:235–46.10.1038/nnano.2013.46Suche in Google Scholar PubMed

[28] Solin SA, Ramdas AK, Raman spectrum of diamond. Phys Rev B. 1970;1:1687–98.10.1103/PhysRevB.1.1687Suche in Google Scholar

[29] Ferrari AC, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B. 2000;61:14095–107.10.1103/PhysRevB.61.14095Suche in Google Scholar

[30] Tuinstra F, Koenig JL. Raman spectrum of graphite. J Chem Phys. 1970;53:1126–30.10.1063/1.1674108Suche in Google Scholar

[31] Li Z, Bommier C, Chong ZS, Jian Z, Surta TW, Wang X, et al. Mechanism of Na-Ion storage in hard carbon anodes revealed by heteroatom doping. Adv Energy Mater. 2017;7:1602894–n/a.10.1002/aenm.201602894Suche in Google Scholar

[32] Cai W, Piner RD, Stadermann FJ, Park S, Shaibat MA, Ishii Y, et al. Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide. Science. 2008;321:1815–7.10.1126/science.1162369Suche in Google Scholar PubMed

[33] Ferrari AC, Meyer J, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, et al. Raman spectrum of graphene and graphene layers. Phys Rev Lett. 2006;97:187401.10.1103/PhysRevLett.97.187401Suche in Google Scholar PubMed

[34] Koroteev V, Münchgesang W, Shubin Y, Palyanov Y, Plyusnin P, Smirnov D, et al. Multiscale characterization of 13C-enriched fine-grained graphitic materials for chemical and electrochemical applications. Carbon. 2017;124:161–9.10.1016/j.carbon.2017.08.038Suche in Google Scholar

[35] Buqa H, Würsig A, Goers D, Hardwick L, Holzapfel M, Novák P, et al. Behaviour of highly crystalline graphites in lithium-ion cells with propylene carbonate containing electrolytes. J Power Sources. 2005;146:134–41.10.1016/j.jpowsour.2005.03.106Suche in Google Scholar

[36] Inaba M, Iriyama Y, Ogumi Z, Todzuka Y, Tasaka A. Raman study of layered rock-salt LiCoO2 and its electrochemical lithium deintercalation. J Raman Spectrosc. 1997;28:613–7.10.1002/(SICI)1097-4555(199708)28:8<613::AID-JRS138>3.0.CO;2-TSuche in Google Scholar

[37] Hardwick LJ, Holzapfel M, Novák P, Dupont L, Baudrin E. Electrochemical lithium insertion into anatase-type TiO2: an in situ Raman microscopy investigation. Electrochimica Acta. 2007;52:5357–67.10.1016/j.electacta.2007.02.050Suche in Google Scholar

[38] Smirnov M, Baddour-Hadjean R. Li intercalation in TiO2 anatase: Raman spectroscopy and lattice dynamic studies. J Chem Phys. 2004;121:2348–55.10.1063/1.1767993Suche in Google Scholar PubMed

[39] Novák P, Panitz J-C, Joho F, Lanz M, Imhof R, Coluccia M. Advanced in situ methods for the characterization of practical electrodes in lithium-ion batteries. J Power Sources. 2000;90:52–8.10.1016/S0378-7753(00)00447-XSuche in Google Scholar

[40] Panitz J-C, Joho F, Novak P. In situ characterization of a graphite electrode in a secondary lithium-ion battery using Raman microscopy. Appl Spectrosc. 1999;53:1188–99.10.1366/0003702991945650Suche in Google Scholar

[41] Inaba M, Yoshida H, Ogumi Z, Abe T, Mizutani Y, Asano M. In situ Raman study on electrochemical Li intercalation into graphite. J Electrochem Soc. 1995;142:20–6.10.1149/1.2043869Suche in Google Scholar

[42] Huang W, Frech R. In situ Raman studies of graphite surface structures during lithium electrochemical intercalation. J Electrochem Soc. 1998;145:765–70.10.1149/1.1838343Suche in Google Scholar

[43] Novák P, Joho F, Imhof R, Panitz J-C, Haas O. In situ investigation of the interaction between graphite and electrolyte solutions. J Power Sources. 1999;81–82:212–6.10.1016/S0378-7753(99)00119-6Suche in Google Scholar

[44] Pollak E, Geng B, Jeon K-J, Lucas IT, Richardson TJ, Wang F, et al. The interaction of Li+ with single-layer and few-layer graphene. Nano Lett. 2010;10:3386–8.10.1021/nl101223kSuche in Google Scholar PubMed

[45] Aurbach D. Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries. J Power Sources. 2000;89:206–18.10.1016/S0378-7753(00)00431-6Suche in Google Scholar

[46] Spahr ME, Palladino T, Wilhelm H, Würsig A, Goers D, Buqa H, et al. Exfoliation of graphite during electrochemical lithium insertion in ethylene carbonate-containing electrolytes. J Electrochem Soc. 2004;151:A1383–95.10.1149/1.1775224Suche in Google Scholar

[47] Wagner M, Albering J, Moeller K-C, Besenhard JO, Winter M. XRD evidence for the electrochemical formation of Li+(PC)yCn in PC-based electrolytes. Electrochem Commun. 2005;7:947–52.10.1016/j.elecom.2005.06.009Suche in Google Scholar

[48] Zhu Y, Stoller MD, Cai W, Velamakanni A, Piner RD, Chen D, et al. Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets. ACS Nano. 2010;4:1227–33.10.1021/nn901689kSuche in Google Scholar PubMed

[49] Loh KP, Wang J. Methods of forming graphene by graphite exfoliation. US Patent 9309124. Apr. 12 2016.Suche in Google Scholar

[50] Liu J. Electrochemical exfoliation synthesis of graphene. In: Graphene-based composites for electrochemical energy storage. Singapore: Springer, 2017:39–50.10.1007/978-981-10-3388-9_2Suche in Google Scholar

[51] Hardwick LJ, Buqa H, Holzapfel M, Scheifele W, Krumeich F, Novák P. Behaviour of highly crystalline graphitic materials in lithium-ion cells with propylene carbonate containing electrolytes: an in situ Raman and SEM study. Electrochim Acta. 2007;52:4884–91.10.1016/j.electacta.2006.12.081Suche in Google Scholar

[52] Hardwick LJ, Ruch PW, Hahn M, Scheifele W, Kötz R, Novák P. In situ Raman spectroscopy of insertion electrodes for lithium-ion batteries and supercapacitors: first cycle effects. J Phys Chem Solids. 2008;69:1232–7.10.1016/j.jpcs.2007.10.017Suche in Google Scholar

[53] Otto A, Mrozek I, Grabhorn H, Akemann W. Surface-enhanced Raman scattering. J Phys Condens Matter. 1992;4:1143.10.1088/0953-8984/4/5/001Suche in Google Scholar

[54] Itoh T, Maeda T, Kasuya A. In situ surface-enhanced Raman scattering spectroelectrochemistry of oxygen species. Faraday Discuss. 2006;132:95–109.10.1039/B506197KSuche in Google Scholar PubMed

[55] Zhang W, Yeo BS, Schmid T, Zenobi R. Single molecule tip-enhanced Raman spectroscopy with silver tips. J Phys Chem C. 2007;111:1733–8.10.1021/jp064740rSuche in Google Scholar

[56] Zeng Z-C, Huang S-C, Wu D-Y, Meng L-Y, Li M-H, Huang T-X, et al. Electrochemical tip-enhanced Raman spectroscopy. J Am Chem Soc. 2015;137:11928–31.10.1021/jacs.5b08143Suche in Google Scholar PubMed

[57] Kumar N, Mignuzzi S, Su W, Roy D. Tip-enhanced Raman spectroscopy: principles and applications. EPJ Tech Inst. 2015;2:9.10.1140/epjti/s40485-015-0019-5Suche in Google Scholar

[58] Jiang N, Kurouski D, Pozzi EA, Chiang N, Hersam MC, Duyne RPV. Tip-enhanced Raman spectroscopy: from concepts to practical applications. Chem Phys Lett. 2016;659:16–24.10.1016/j.cplett.2016.06.035Suche in Google Scholar

[59] Ding S-Y, Yi J, Li J-F, Ren B, Wu D-Y, Panneerselvam R, et al. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat Rev Mater. 2016;1:16021.10.1038/natrevmats.2016.21Suche in Google Scholar

[60] Kurouski D. Advances of tip-enhanced Raman spectroscopy (TERS) in electrochemistry, biochemistry, and surface science. Vib Spectrosc.Suche in Google Scholar

[61] Mattei M, Kang G, Goubert G, Chulhai DV, Schatz GC, Jensen L, Van Duyne RP. Tip-enhanced Raman voltammetry: coverage dependence and quantitative modeling. Nano Lett. 2017;17:590–6.10.1021/acs.nanolett.6b04868Suche in Google Scholar PubMed

[62] Yamamoto K, Ishida H. Optical theory applied to infrared spectroscopy. Vib Spectrosc 1994;8:1–36.10.1016/0924-2031(94)00022-9Suche in Google Scholar

[63] Chichester Steele D, Chalmers JM. Infrared Spectroscopy: Theory. In Handbook of Vibrational Spectroscopy (eds J. M. Chalmers and P. R. Griffiths). John Wiley & Sons, Ltd, 2006. doi:10.1002/0470027320.s0103.Suche in Google Scholar

[64] Stuart B. Infrared spectroscopy: fundamentals and applications. Analytical Techniques in the Sciences (AnTs), Chichester, West Sussex: Wiley, 2004.10.1002/0470011149Suche in Google Scholar

[65] Siesler H, Ozaki Y, Kawata S, Heise H. Near-infrared spectroscopy: principles, instruments, applications, NetLibrary, Inc, Weinheim: Wiley-VCH, 2008.Suche in Google Scholar

[66] Griffiths P, De Haseth J, Winefordner J. Fourier transform infrared spectrometry, chemical analysis: a series of monographs on analytical chemistry and its applications. New Jersey: Wiley, 2007.10.1002/047010631XSuche in Google Scholar

[67] Günzler H, Gremlich H. IR spectroscopy: an introduction. Weinheim: Wiley, 2002.Suche in Google Scholar

[68] Abouali S, Garakani MA, Xu Z-L, Kim J-K. NiCo2O4/CNT nanocomposites as Bi-functional electrodes for Li ion batteries and supercapacitors. Carbon. 2016;102:262–72.10.1016/j.carbon.2016.02.055Suche in Google Scholar

[69] Chittur KK. FTIR/ATR for protein adsorption to biomaterial surfaces. Biomaterials. 1998;19:357–69.10.1016/S0142-9612(97)00223-8Suche in Google Scholar PubMed

[70] Selected applications of modern FTIR techniques, electrochemical technology: innovation and new developments. Tokyo, Amsterdam: Taylor & Francis, 1996.Suche in Google Scholar

[71] Harks P, Mulder F, Notten P. In situ methods for Li-ion battery research: a review of recent developments. J Power Sources. 2015;288:92–105.10.1016/j.jpowsour.2015.04.084Suche in Google Scholar

[72] Sharabi R, Markevich E, Borgel V, Salitra G, Aurbach D, Semrau G, et al. In Situ FTIR spectroscopy study of Li/LiNi0.8Co0.15Al0.05O2 cells with ionic liquid-based electrolytes in overcharge condition. Electrochem Solid-State Lett. 2010;13:A32–5.10.1149/1.3292635Suche in Google Scholar

[73] Akita Y, Segawa M, Munakata H, Kanamura K. In situ Fourier transform infrared spectroscopic analysis on dynamic behavior of electrolyte solution on LiFePO4 cathode. J Power Sources. 2013;239:175–80.10.1016/j.jpowsour.2013.03.134Suche in Google Scholar

[74] Hongyou K, Hattori T, Nagai Y, Tanaka T, Nii H, Shoda K. Dynamic in situ Fourier transform infrared measurements of chemical bonds of electrolyte solvents during the initial charging process in a Li-Ion battery. J Power Sources. 2013;243:72–7.10.1016/j.jpowsour.2013.05.192Suche in Google Scholar

[75] Peled E, Menachem C, Bar-Tow D, Melman A. Improved graphite anode for lithium-ion batteries chemically bonded solid electrolyte interface and nanochannel formation. J Electrochem Soc. 1996;143:L4–7.10.1149/1.1836372Suche in Google Scholar

[76] Zhang X, Kostecki R, Richardson TJ, Pugh JK, Ross PN. Electrochemical and infrared studies of the reduction of organic carbonates. J Electrochem Soc. 2001;148:A1341–5.10.1149/1.1415547Suche in Google Scholar

[77] Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev. 2004;104:4303–418.10.1021/cr030203gSuche in Google Scholar PubMed

[78] Goodenough JB, Kim Y. Challenges for rechargeable Li batteries. Chem Mater. 2010;22:587–603.10.1021/cm901452zSuche in Google Scholar

[79] Peled E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems–the solid electrolyte interphase model. J Electrochem Soc. 1979;126:2047–51.10.1149/1.2128859Suche in Google Scholar

[80] Abe K, Yoshitake H, Kitakura T, Hattori T, Wang H, Yoshio M. Additives-containing functional electrolytes for suppressing electrolyte decomposition in Lithium-Ion batteries. Electrochim Acta. 2004;49:4613–22.10.1016/j.electacta.2004.05.016Suche in Google Scholar

[81] Märkle W, Lu C-Y, Novák P. Morphology of the solid electrolyte interphase on graphite in dependency on the formation current. J Electrochem Soc 2011;158:A1478–82.10.1149/2.077112jesSuche in Google Scholar

[82] An SJ, Li J, Daniel C, Mohanty D, Nagpure S, Wood III DL. The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon. 2016;105:52–76.10.1016/j.carbon.2016.04.008Suche in Google Scholar

[83] Andersson A, Edström K. Chemical composition and morphology of the elevated temperature SEI on graphite. J Electrochem Soc. 2001;148:A1100–9.10.1149/1.1397771Suche in Google Scholar

[84] Edström K, Herstedt M, Abraham DP. A new look at the solid electrolyte interphase on graphite anodes in Li-Ion batteries. J Power Sources. 2006;153:380–4.10.1016/j.jpowsour.2005.05.062Suche in Google Scholar

[85] Dedryvére R, Martinez H, Leroy S, Lemordant D, Bonhomme F, Biensan P, et al. Surface film formation on electrodes in a LiCoO2/Graphite cell: a step by step XPS study. J Power Sources. 2007;174:462-8. 13th International Meeting on Lithium Batteries.10.1016/j.jpowsour.2007.06.033Suche in Google Scholar

[86] Xu K, Lam Y, Zhang SS, Jow TR, Curtis TB. Solvation sheath of Li+ in nonaqueous electrolytes and its implication of graphite/electrolyte interface chemistry. J Phys Chem C. 2007;111:7411–21.10.1021/jp068691uSuche in Google Scholar

[87] Gachot G, Grugeon S, Armand M, Pilard S, Guenot P, Tarascon JM, et al. Deciphering the multi-step degradation mechanisms of carbonate-based electrolyte in Li batteries. J Power Sources. 2008;178:409–21.10.1016/j.jpowsour.2007.11.110Suche in Google Scholar

[88] Tasaki K, Goldberg A, Lian JJ, Walker M, Timmons A, Harris SJ et al. Solubility of lithium salts formed on the lithium-ion battery negative electrode surface in organic solvents. J Electrochem Soc. 2009;156:A1019–27.10.1149/1.3239850Suche in Google Scholar

[89] Nie M, Chalasani D, Abraham DP, Chen Y, Bose A, Lucht BL. Lithium Ion battery graphite solid electrolyte interphase revealed by microscopy and spectroscopy. J Phys Chem C. 2013;117:1257–67.10.1021/jp3118055Suche in Google Scholar

[90] Zampardi G, Mantia FL, Schuhmann W. In operando evaluation of the effect of vinylene carbonate on the insulating character of the solid electrolyte interphase. Electrochem Commun. 2015;58:1–5.10.1016/j.elecom.2015.05.013Suche in Google Scholar

[91] Trease NM, Zhou L, Chang HJ, Zhu BY, Grey CP. In situ NMR of lithium ion batteries: bulk susceptibility effects and practical considerations. Solid State Nucl Magn Reson. 2012;42:62–70.10.1016/j.ssnmr.2012.01.004Suche in Google Scholar PubMed

[92] Goren E, Chusid O, Aurbach D, The application of in situ FTIR spectroscopy to the study of surface films formed on lithium and noble metals at low potentials in li battery electrolytes. J Electrochem Soc. 1991;138:L6–9.10.1149/1.2085828Suche in Google Scholar

[93] Aurbach D, Markovsky B, Levi M, Levi E, Schechter A, Moshkovich M, Cohen Y. New insights into the interactions between electrode materials and electrolyte solutions for advanced nonaqueous batteries. J Power Sources. 1999;81–82:95–111.10.1016/S0378-7753(99)00187-1Suche in Google Scholar

[94] Moshkovich M, Cojocaru M, Gottlieb H, Aurbach D. The study of the anodic stability of alkyl carbonate solutions by in situ FTIR spectroscopy, EQCM, NMR and MS. J Electroanal Chem. 2001;497:84–96.10.1016/S0022-0728(00)00457-5Suche in Google Scholar

[95] Ota H, Sakata Y, Inoue A, Yamaguchi S. Analysis of vinylene carbonate derived SEI layers on graphite anode. J Electrochem Soc. 2004;151:A1659–69.10.1149/1.1785795Suche in Google Scholar

[96] Matsushita T, Dokko K, Kanamura K. In situ FTIR measurement for electrochemical oxidation of electrolyte with ethylene carbonate and diethyl carbonate on cathode active material used in rechargeable lithium batteries. J Power Sources. 2005;146:360–4.10.1016/j.jpowsour.2005.03.011Suche in Google Scholar

[97] Ikezawa Y, Nishi H. In situ FTIR study of the Cu electrode/ethylene carbonate + dimethyl carbonate solution interface. Electrochimica Acta. 2008;53:3663–9.10.1016/j.electacta.2007.12.038Suche in Google Scholar

[98] Alves Dalla Corte D, Caillon G, Jordy C, Chazalviel J-N, Rosso M, Ozanam F. Spectroscopic Insight into Li-Ion batteries during operation: an alternative infrared approach. Adv Energy Mater. 2016;6:1501768–8.10.1002/aenm.201501768Suche in Google Scholar

[99] Nie M, Chalasani D, Abraham DP, Chen Y, Bose A, Lucht BL. Lithium Ion battery graphite solid electrolyte interphase revealed by microscopy and spectroscopy. J Phys Chem C. 2013;117:1257–67.10.1021/jp3118055Suche in Google Scholar

[100] Markevich E, Sharabi R, Borgel V, Gottlieb H, Salitra G, Aurbach D, et al. In situ FTIR Study of the decomposition of N-butyl-N-methylpyrrolidinium bis (trifluoromethanesulfonyl) amide ionic liquid during cathodic polarization of lithium and graphite electrodes. Electrochimica Acta. 2010;55:2687–96.10.1016/j.electacta.2009.12.030Suche in Google Scholar

[101] Clark B, Frost T, Russell M. UV spectroscopy: techniques, instrumentation and data handling. Techniques in Visible and Ultraviolet Spectrometry, Springer Netherlands, 1993.Suche in Google Scholar

[102] Perkampus H, Grinter H, Threlfall T. UV/VIS Spectroscopy and Its Applications. Springer Lab Manuals, Springer Berlin Heidelberg, 2013.Suche in Google Scholar

[103] Xie L, Lu J. In situ UV/Vis diffuse reflectance studies on lithium-intercalated carbons. J Electroanal Chem. 2001;497:159–62.10.1016/S0022-0728(00)00448-4Suche in Google Scholar

[104] Heber M, Schilling C, Gross T, Hess C. In situ Raman and UV/Vis spectroscopic analysis of lithium-ion batteries. MRS Proc. 2015;1773:33–40.10.1557/opl.2015.634Suche in Google Scholar

[105] Patel MUM, Demir-Cakan R, Morcrette M, Tarascon J-M, Gaberscek M, Dominko R. Li-S battery analyzed by UV/Vis in operando mode. Chem Sus Chem. 2013;6:1177–81.10.1002/cssc.201300142Suche in Google Scholar PubMed

[106] Brooker RP, Bell CJ, Bonville LJ, Kunz HR, Fenton JM. Determining vanadium concentrations using the UV/Vis response method. J Electrochem Soc. 2015;162:A608–13.10.1149/2.0371504jesSuche in Google Scholar

[107] Schwenke KU, Meini S, Wu X, Gasteiger HA, Piana M. Stability of superoxide radicals in glyme solvents for non-aqueous Li-O2 battery electrolytes. Phys Chem Chem Phys. 2013;15:11830–9.10.1039/c3cp51531aSuche in Google Scholar PubMed

Published Online: 2018-09-18

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 10.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/psr-2017-0154/pdf?lang=de
Button zum nach oben scrollen