Abstract
The use of reagents containing bonds between group 14 elements and Se or Te for the self-assembly of polynuclear metal–chalcogen compounds is covered. Background material is briefly reviewed and examples from the literature are highlighted from the period 2007–2017. Emphasis is placed on the different classes of 14–16 precursors and their application in the targeted synthesis of metal–chalcogen compounds. The unique properties arising from the combination of specific 14–16 precursors, metal atoms, and ancillary ligands are also described. Selected examples are chosen to underline the progress in (i) controlled synthesis of heterometallic (ternary) chalcogen clusters, (ii) chalcogen clusters with organic functionalized surfaces, and (iii) crystalline open-framework metal chalcogenides.
References
[1] Dance, IG, and K Fisher. Metal chalcogenide cluster chemistry. Prog Inorg Chem. 1994;41:637–803.10.1002/9780470166420.ch9Suche in Google Scholar
[2] Dehnen, S, A Eichhöfer, and D Fenske. Chalcogen-bridged copper clusters. Eur J Inorg Chem. 2002;2002:279–317.10.1002/1099-0682(20022)2002:2<279::AID-EJIC279>3.0.CO;2-HSuche in Google Scholar
[3] Corrigan, JF, O Fuhr, and D Fenske. Metal chalcogenide clusters on the border between molecules and materials. Adv Mater. 2009;21:1867–71.10.1002/adma.200802897Suche in Google Scholar
[4] Fuhr, O, S Dehnen, and D Fenske. Chalcogenide clusters of copper and silver from silylated chalcogenide sources. Chem Soc Rev. 2013;42:1871–906.10.1039/C2CS35252DSuche in Google Scholar PubMed
[5] Levchenko, TI, Y Huang, and JF Corrigan. Large metal chalcogenide clusters and their ordered superstructures via solvothermal and ionothermal syntheses. In S. Dehnen, ed. Clusters – Contemporary insights in structure and bonding. Structure and bonding, vol. 174. Basel Switzerland: Springer 2017.10.1007/430_2016_5Suche in Google Scholar
[6] Xie, Y-P, J-L Jin, G-X Duan, X Lu, and TCW Mak. High-nuclearity silver(I) chalcogenide clusters: a novel class of supramolecular assembly. Coord Chem Rev. 2017;331:54–72.10.1016/j.ccr.2016.10.007Suche in Google Scholar
[7] Kanatzidis, MG, and S-P Huang. Coordination chemistry of heavy polychalcogenide ligands. Coord Chem Rev. 1994;130:509–621.10.1016/0010-8545(94)80012-XSuche in Google Scholar
[8] Kanatzidis, MG, and AC Sutorik. The application of polychalcogenide salts to the exploratory synthesis of solid state multinary chalcogenides at intermediate temperatures. In K.D. Karlin, ed. Progress in inorganic chemistry. Vol. 43. New York: John Wiley & Sons, Inc.; 1995. p. 151–265.10.1002/9780470166444.ch2Suche in Google Scholar
[9] Kanatzidis, MG. Discovery – Synthesis, design, and prediction of chalcogenide phases. Inorg Chem. 2017;56:3158–73.10.1021/acs.inorgchem.7b00188Suche in Google Scholar PubMed
[10] Herskovitz, T, BA Averill, RH Holm, JA Ibers, WD Phillips, and JF Weiher. Structure and properties of a synthetic analogue of bacterial iron-sulfur proteins. Proc Nat Acad Sci USA. 1972;69:2437–41.10.1073/pnas.69.9.2437Suche in Google Scholar
[11] Howard, JB, and DC Rees. Structural basis of biological nitrogen fixation. Chem Rev. 1996;96:2965–82.10.1021/cr9500545Suche in Google Scholar PubMed
[12] J-M, M, and B Lamotte. Iron–Sulfur clusters and their electronic and magnetic properties. Coord Chem Rev. 1998;178-180:1573–614.10.1016/S0010-8545(98)00155-6Suche in Google Scholar
[13] Ohki, Y, Y Sunada, M Honda, M Katada, and K Tatsumi. Synthesis of the P-cluster inorganic core of nitrogenases. J Am Chem Soc. 2003;125:4052–3.10.1021/ja029383mSuche in Google Scholar PubMed
[14] Riaz, U, O Curnow, and MD Curtis. Desulfurization of thiophene and thiophenol by a sulfido-cobalt-molybdenum cluster: toward a homogeneous hydrodesulfurization catalyst. J Am Chem Soc. 1991;113:1416–7.10.1021/ja00004a055Suche in Google Scholar
[15] Kuwata, S, and M Hidai. Hydrosulfido complexes of transition metals. Coord Chem Rev. 2001;213:211–305.10.1016/S0010-8545(00)00375-1Suche in Google Scholar
[16] Nirmal, M, and L Brus. Luminescence photophysics in semiconductor nanocrystals. Acc Chem Res. 1999;32:407–14.10.1021/ar9700320Suche in Google Scholar
[17] Owen, J, and L Brus. Chemical synthesis and luminescence applications of colloidal semiconductor quantum dots. J Am Chem Soc. 2017;139:10939–43.10.1021/jacs.7b05267Suche in Google Scholar PubMed
[18] Lokhande AC, Chalapathy RBV, He M, Jo E, Gang M, Pawar SA, et al. Development of Cu2SnS3 (CTS) thin film solar cells by physical techniques: a status review. Sol Energy Mater Sol Cells. 2016;153:84–107.10.1016/j.solmat.2016.04.003Suche in Google Scholar
[19] Hou, H-W, X X-Q, and S Shi. Mo(W,V)-Cu(Ag)-S(Se) cluster compounds. Coord Chem Rev. 1996;153:25–56.10.1016/0010-8545(95)01224-9Suche in Google Scholar
[20] Zhang, Q-F, L W-H, and X Xin. Heteroselenometallic cluster compounds with tetraselenometalates. Coord Chem Rev. 2002;224:35–49.10.1016/S0010-8545(01)00371-XSuche in Google Scholar
[21] Chung, I, and MG Kanatzidis. Metal chalcogenides: a rich source of nonlinear optical materials. Chem Mater. 2014;26:849–69.10.1021/cm401737sSuche in Google Scholar
[22] Hsu KF, Loo S, Guo F, Chen W, Dyck JS, Uher C, et al. Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit. Science. 2004;303:818–21.10.1126/science.1092963Suche in Google Scholar PubMed
[23] Sootsman, JR, DY Chung, and MG Kanatzidis. New and old concepts in thermoelectric materials. Angew Chem Int Ed. 2009;48:8616–39.10.1002/anie.200900598Suche in Google Scholar PubMed
[24] Kanatzidis, MG. Nanostructured thermoelectrics: the new paradigm? Chem Mater. 2010;22:648–59.10.1021/cm902195jSuche in Google Scholar
[25] Schulz, S. Covalently bonded compounds of heavy group 15/16 elements - synthesis, structure and potential application in material sciences. Coord Chem Rev. 2015;297-298:49–76.10.1016/j.ccr.2014.11.003Suche in Google Scholar
[26] Beaulac, R, PI Archer, ST Ochsenbein, and DR Gamelin. Mn2+-doped CdSe quantum dots: new inorganic materials for spin-electronics and spin-photonics. Adv Funct Mater. 2008;18:3873–91.10.1002/adfm.200801016Suche in Google Scholar
[27] Mulrooney, RC, N Singh, N Kaur, and JF Callan. An “off-on” sensor for fluoride using luminescent CdSe/ZnS quantum dots. Chem Commun. 2009;686–8.10.1039/B817569ASuche in Google Scholar PubMed
[28] Bowes, CL, and GA Ozin. Self-assembling frameworks: beyond microporous oxides. Adv Mater. 1996;8:13–28.10.1002/adma.19960080103Suche in Google Scholar
[29] Bu, X, N Zheng, and P Feng. Tetrahedral chalcogenide clusters and open frameworks. Chem – Eur J. 2004;10:3356–62.10.1002/chem.200306041Suche in Google Scholar PubMed
[30] Feng, P, X Bu, and N Zheng. The interface chemistry between chalcogenide clusters and open framework chalcogenides. Acc Chem Res. 2005;38:293–303.10.1021/ar0401754Suche in Google Scholar PubMed
[31] Kanatzidis, MG. Beyond silica: nonoxidic mesostructured materials. Adv Mater. 2007;19:1165–81.10.1002/adma.200601763Suche in Google Scholar
[32] DeGroot, MW, and JF Corrigan. High nuclearity clusters: metal-chalcogenide polynuclear complexes. In M. Fujita, A. Powell and C.A. Creutz, ed. Comprehensive coordination chemistry II. Vol. 7. Oxford, UK: Elsevier; 2004. p. 57–123.10.1016/B0-08-043748-6/06147-8Suche in Google Scholar
[33] DeGroot, MW, and JF Corrigan. Metal - chalcogenolate complexes with silyl functionalities: synthesis and reaction chemistry. Z Anorg Allg Chem. 2006;632:19–29.10.1002/zaac.200500314Suche in Google Scholar
[34] MacDonald, DG, and JF Corrigan. Metal chalcogenide nanoclusters with ‘tailored’ surfaces via ‘designer’ silylated chalcogen reagents. Phil Trans R Soc A. 2010;368:1455–72.10.1098/rsta.2009.0276Suche in Google Scholar
[35] Sheldrick, WS, and M Wachhold. Chalcogenidometalates of the heavier Group 14 and 15 elements. Coord Chem Rev. 1998;176:211–322.10.1016/S0010-8545(98)00120-9Suche in Google Scholar
[36] Dehnen, S, and M Melullis. A coordination chemistry approach towards ternary M/14/16 anions. Coord Chem Rev. 2007;251:1259–80.10.1016/j.ccr.2006.11.003Suche in Google Scholar
[37] Heine, J, and S Dehnen. From simple chalcogenidotetrelate precursors to complex structures and functional compounds. Z Anorg Allg Chem. 2012;638:2425–40.10.1002/zaac.201200319Suche in Google Scholar
[38] Santner, S, J Heine, and S Dehnen. Synthesis of crystalline chalcogenides in ionic liquids. Angew Chem Int Ed. 2016;55:876–93.10.1002/anie.201507736Suche in Google Scholar PubMed
[39] Abel, EW, and DB Brady. The preparation and properties of some alkylthio-compounds of tin. J Chem Soc. 1965;1192–7.10.1039/jr9650001192Suche in Google Scholar
[40] Schumann, H, and M Schmidt. New products of reaction of organometallic compounds with sulfur, selenium, tellurium, and phosphorous. Angew Chem Int Ed Engl. 1965;4:1007–13.10.1002/anie.196510071Suche in Google Scholar
[41] Abel, EW, DB Brady, and BC Crosse. The cleavage of organotin-sulphur compounds by halides. J Organomet Chem. 1966;5:260–2.10.1016/S0022-328X(00)80363-0Suche in Google Scholar
[42] Woodward, P, LF Dahl, EW Abel, and BC Crosse. A new type of cyclic transition metal complex, [Ni(SC2H5)2]6. J Am Chem Soc. 1965;87:5251–3.10.1021/ja00950a049Suche in Google Scholar
[43] Do, Y, ED Simhon, and RH Holm. Improved syntheses of [Fe2S2Cl4]2- and [Fe2OCl6]2- and oxo/sulfido ligand substitution by use of silylsulfide reagents. Inorg Chem. 1983;22:3809–12.10.1021/ic00167a027Suche in Google Scholar
[44] Fenske, D, J Hachgenei, and J Ohmer. Novel cobalt‐ and nickel‐clusters with S and PPh3 as ligands; crystal structures of [Co7S6(PPh3)5Cl2], [Co6S8(PPh3)6]+[CoCl3(THF)]−, [Ni8S6Cl2(PPh3)6], and [Ni8S5(PPh3)7]. Angew Chem Int Ed Engl. 1985;24:706–9.10.1002/anie.198507061Suche in Google Scholar
[45] Fenske, D, J Ohmer, and J Hachgenei. New Co and Ni clusters with Se and PPh3 as ligands: [Co4(μ3‐Se)4(PPh3)4], [Co6(μ3‐Se)8(PPh3)6], [Co9(μ4‐Se)3(μ3‐Se)8(PPh3)6], and [Ni34(μ5‐Se)2(μ4‐Se)20(PPh3)10]. Angew Chem Int Ed Engl. 1985;24:993–5.10.1002/anie.198509931Suche in Google Scholar
[46] Christou, V, and J Arnold. Synthesis of reactive homoleptic tellurolates of zirconium and hafnium and their conversion to terminal tellurides: a model for the first step in a molecule-to-solid transformation. J Am Chem Soc. 1992;114:6240–2.10.1021/ja00041a049Suche in Google Scholar
[47] Christou, V, and J Arnold. Formation of monomeric terminal chalcogenides by template-induced disilylchalcogenide elimination; the crystal structures of [ETa{(Me3SiNCH2CH2)3N}] (E = Se, Te). Angew Chem Int Ed Engl. 1993;32:1450–2.10.1002/anie.199314501Suche in Google Scholar
[48] Liang, H-C, and PA Shapley. Synthesis and reactivity of [PPh4][Ru(N)Me3(SSiMe3)], a ruthenium(VI) trimethylsilanethiolate complex. Organometallics. 1996;15:1331–3.10.1021/om950696iSuche in Google Scholar
[49] Tran, DTT, NJ Taylor, and JF Corrigan. Copper chalcogenolate complexes as precursors to ternary nanoclusters: synthesis and characterization of [Hg15Cu20S25(nPr3P)18]. Angew Chem Int Ed. 2000;39:935–7.10.1002/(SICI)1521-3773(20000303)39:5<935::AID-ANIE935>3.0.CO;2-ISuche in Google Scholar
[50] Tran, DTT, LMC Beltran, CM Kowalchuk, NR Trefiak, NJ Taylor, and JF Corrigan. Ternary nanoclusters of CuHgS, CuHgSe, and CulnS. Inorg Chem. 2002;41:5693–8.10.1021/ic0110528Suche in Google Scholar
[51] Komuro, T, H Kawaguchi, and K Tatsumi. Synthesis and reactions of triphenylsilanethiolato complexes of manganese(II), iron(II), cobalt(II), and nickel(II). Inorg Chem. 2002;41:5083–90.10.1021/ic025715cSuche in Google Scholar PubMed
[52] Komuro, T, T Matsuo, H Kawaguchi, and K Tatsumi. Synthesis and structural characterization of silanethiolato complexes having tert-butyldimethylsilyl and trimethylsilyl groups. Dalton Trans. 2004;1618–25.10.1039/b316567aSuche in Google Scholar PubMed
[53] Steigerwald ML, Alivisatos AP, Gibson JM, Harris TD, Kortan R, Muller AJ, et al. Surface derivatization and isolation of semiconductor cluster molecules. J Am Chem Soc. 1988;110:3046–50.10.1021/ja00218a008Suche in Google Scholar
[54] García-Rodríguez, R, MP Hendricks, BM Cossairt, H Liu, and JS Owen. Conversion reactions of cadmium chalcogenide nanocrystal precursors. Chem Mater. 2013;25:1233–49.10.1021/cm3035642Suche in Google Scholar
[55] Eichhöfer, A, G Buth, S Lebedkin, M Kühn, and F Weigend. Luminescence in phosphine-stabilized copper chalcogenide cluster molecules - A comparative study. Inorg Chem. 2015;54:9413–22.10.1021/acs.inorgchem.5b01146Suche in Google Scholar PubMed
[56] Sevillano P, Fuhr O, Hampe O, Lebedkin S, Neiss C, Ahlrichs R, et al. Synthesis, characterization and quantum mechanical calculations of [Au18Se8(dppthph)6]Cl2. Eur J Inorg Chem. 2007;2007:5163–7.10.1002/ejic.200700870Suche in Google Scholar
[57] Sevillano, P, O Fuhr, and D Fenske. Synthesis and structure of [Au10Se5(dppa)4{Co2(CO)5}4]. Z Anorg Allg Chem. 2007;633:1783–6.10.1002/zaac.200700146Suche in Google Scholar
[58] Yu, W, O Fuhr, and D Fenske. Derivatives of bis(diphenylphosphino)maleic anhydride as ligands in polynuclear gold(I) complexes. J Clust Sci. 2012;23:753–66.10.1007/s10876-012-0487-6Suche in Google Scholar
[59] Kumar, GA, RE Riman, and JG Brennan. NIR emission from molecules and clusters with lanthanide-chalcogen bonds. Coord Chem Rev. 2014;273-274:111–24.10.1016/j.ccr.2014.04.009Suche in Google Scholar
[60] Bechlars, B, R Feuerhake, and D Fenske. Syntheses and crystal structures of novel chalcogenido-bridged niobium copper clusters. Z Anorg Allg Chem. 2007;633:2603–13.10.1002/zaac.200700443Suche in Google Scholar
[61] Bechlars, B, I Issac, R Feuerhake, R Clérac, O Fuhr, and D Fenske. Syntheses, structures and magnetic properties of new chalcogen-bridged heterodimetallic cluster compounds with heterocubane structure. Eur J Inorg Chem. 2008;2008:1632–44.10.1002/ejic.200701154Suche in Google Scholar
[62] Sola, J, Y Do, JM Berg, and RH Holm. Soluble sulfides of niobium(V) and tantalum(V): synthesis, structures, and properties of the fivefold symmetric cages [M6S17]4-. Inorg Chem. 1985;24:1706–13.10.1021/ic00205a023Suche in Google Scholar
[63] Lorenz, A, and D Fenske. Chalcogenoniobates as reagents for the synthesis of new heterobimetallic niobium coinage metal chalcogenide clusters. Z Anorg Allg Chem. 2001;627:2232–48.10.1002/1521-3749(200109)627:9<2232::AID-ZAAC2232>3.0.CO;2-TSuche in Google Scholar
[64] Robles, V, JF Trigo, C Guillén, and J Herrero. Copper tin sulfide (CTS) absorber thin films obtained by co-evaporation: influence of the ratio Cu/Sn. J Alloys Cmpd. 2015;642:40–4.10.1016/j.jallcom.2015.04.104Suche in Google Scholar
[65] Eichhöfer A, Jiang J, Lebedkin S, Fenske D, McDonald DG, Corrigan JF, et al. A ternary Cu–Sn–S cluster complex - (NBu4)[Cu19S28(SnPh)12(PEt2Ph)3]. Dalton Trans. 2012;41:3321–7.10.1039/c2dt11840hSuche in Google Scholar PubMed
[66] Kühn, M, S Lebedkin, F Weigend, and A Eichhöfer. Optical properties of trinuclear metal chalcogenolate complexes – Room temperature NIR fluorescence in [Cu2Ti(SPh)6(PPh3)2]. Dalton Trans. 2017;46:1502–9.10.1039/C6DT04287BSuche in Google Scholar
[67] Eichhöfer, A, M Kühn, S Lebedkin, M Kehry, MM Kappes, and F Weigend. Synthesis and optical properties of [Cu6E6(SnPh)2(PPh2Et)6] (E = S, Se, Te) cluster molecules. Inorg Chem. 2017;56:9330–6.10.1021/acs.inorgchem.7b01495Suche in Google Scholar
[68] Hauser, R, and K Merzweiler. [(PhSnS3)2(CuPPhMe2)6], a hexanuclear copper(I) complex with PhSnS3 ligands. Z Anorg Allg Chem. 2002;628:905–6.10.1002/1521-3749(200206)628:5<905::AID-ZAAC905>3.0.CO;2-SSuche in Google Scholar
[69] Turner, EA, Y Huang, and JF Corrigan. Me3Si-SeS-SiMe3: a reagent for the synthesis of the mixed sulfo-selenide cluster [Cu84Se42-xSx(PEt2Ph)24]. Z Anorg Allg Chem. 2007;633:2135–7.10.1002/zaac.200700262Suche in Google Scholar
[70] Tolman, CA. Steric effects of phosphorus ligands in organometallic chemistry and homogeneous catalysis. Chem Rev. 1977;77:313–48.10.1021/cr60307a002Suche in Google Scholar
[71] Choi B, Capozzi B, Ahn S, Turkiewicz A, Lovat G, Nuckolls C, et al. Solvent-dependent conductance decay constants in single cluster junctions. Chem Sci. 2016;7:2701–5.10.1039/C5SC02595HSuche in Google Scholar PubMed
[72] Lovat, G, B Choi, DW Paley, ML Steigerwald, L Venkataraman, and X Roy. Room-temperature current blockade in atomically defined single-cluster junctions. Nat Nanotechnol. 2017;12:1050–4.10.1038/nnano.2017.156Suche in Google Scholar PubMed
[73] Khadka, CB, B Khalili Najafabadi, M Hesari, MS Workentin, and JF Corrigan. Copper chalcogenide clusters stabilized with ferrocene-based diphosphine ligands. Inorg Chem. 2013;52:6798–805.10.1021/ic3021854Suche in Google Scholar PubMed
[74] Dance, IG. The structural chemistry of metal thiolate complexes. Polyhedron. 1986;5:1037–104.10.1016/S0277-5387(00)84307-7Suche in Google Scholar
[75] Concepción Gimeno, M. Thiolates, selenolates, and tellurolates. In F.A. Devillanova, ed. Handbook of chalcogen chemistry: new perspectives in sulfur, selenium and tellurium. Cambridge, UK: Royal Society of Chemistry; 2007. p. 33–80.10.1039/9781847557575-00031Suche in Google Scholar
[76] Gysling, HJ. The ligand chemistry of tellurium. Coord Chem Rev. 1982;42:133–244.10.1016/S0010-8545(00)80535-4Suche in Google Scholar
[77] Arnold, J. The chemistry of metal complexes with selenolate and tellurolate ligands. In K.D. Karlin, ed. Progress in inorganic chemistry. Vol. 43. New York: John Wiley & Sons Inc; 1995. p. 353–417.10.1002/9780470166444.ch4Suche in Google Scholar
[78] Veselska, O, and A Demessence. d10 coinage metal organic chalcogenolates: from oligomers to coordination polymers. Coord Chem Rev. 2018;325:240–70.10.1016/j.ccr.2017.08.014Suche in Google Scholar
[79] Eichhöfer A, Jiang J-J, Sommer H, Weigend F, Fuhr O, Fenske D, et al. 1-D-tin(II) phenylchalcogenolato complexes Sn(EPh)2] (E = S, Se, Te) - Synthesis, structures, quantum chemical studies and thermal behaviour. Eur J Inorg Chem. 2010;2010:410–8.10.1002/ejic.200900940Suche in Google Scholar
[80] Eichhöfer, A, PT Wood, R Viswanath, and RA Mole. Synthesis, structure and magnetic behaviour of manganese(II) selenolate complexes Mn(SePh)2], [Mn(SePh)2(bipy)2] and [Mn(SePh)2(phen)2] (bipy = bipyridyl, phen = phenanthroline). Eur J Inorg Chem. 2007;2007:4794–9.10.1002/ejic.200700129Suche in Google Scholar
[81] Sommer, H, A Eichhöfer, and D Fenske. Synthesis and crystal structures of bismuth chalcogenolato compounds Bi(SC6H5)3, Bi(SeC6H5)3, and Bi(S-4-CH3C6H4)3. Z Anorg Allg Chem. 2008;634:436–40.10.1002/zaac.200700410Suche in Google Scholar
[82] Eichhöfer, A, G Buth, F Dolci, K Fink, RA Mole, and PT Wood. Homoleptic 1-D iron selenolate complexes-synthesis, structure, magnetic and thermal behaviour of Fe(SeR)2] (R=Ph, Mes). Dalton Trans. 2011;40:7022–32.10.1039/c1dt10089kSuche in Google Scholar PubMed
[83] Kluge, O, K Grummt, R Biedermann, and H Krautscheid. Trialkylphosphine-stabilized copper(I) phenylchalcogenolate complexes - Crystal structures and copper–Chalcogenolate bonding. Inorg Chem. 2011;50:4742–52.10.1021/ic102249gSuche in Google Scholar PubMed
[84] Fu, M-L, D Fenske, B Weinert, and O Fuhr. One-dimensional coordination polymers containing polynuclear (selenolato)copper complexes linked by bipyridine ligands. Eur J Inorg Chem. 2010;2010:1098–102.10.1002/ejic.200900711Suche in Google Scholar
[85] Humenny, WJ, S Mitzinger, CB Khadka, B Khalili Najafabadi, I Vieira, and JF Corrigan. N-heterocyclic carbene stabilized copper- and silver-phenylchalcogenolate ring complexes. Dalton Trans. 2012;41:4413–22.10.1039/c2dt11998fSuche in Google Scholar PubMed
[86] Choi, B, DW Paley, T Siegrist, ML Steigerwald, and X Roy. Ligand control of manganese telluride molecular cluster core nuclearity. Inorg Chem. 2015;54:8348–55.10.1021/acs.inorgchem.5b01020Suche in Google Scholar PubMed
[87] Malik, MA, M Afzaal, and P O'Brien. Precursor chemistry for main group elements in semiconducting materials. Chem Rev. 2010;110:4417–46.10.1021/cr900406fSuche in Google Scholar PubMed
[88] Bendt, G, A Weber, S Heimann, W Assenmacher, O Prymak, and S Schulz. Wet-chemical synthesis of different bismuth telluride nanoparticles using metal organic precursors – Single source vs. dual source approach. Dalton Trans. 2015;44: 14272–80. and references therein.10.1039/C5DT02072GSuche in Google Scholar PubMed
[89] Knapp, CE, and CJ Carmalt. Solution based CVD of main group materials. Chem Soc Rev. 2016;45:1036–64.10.1039/C5CS00651ASuche in Google Scholar PubMed
[90] Schulz, S, S Heimann, J Friedrich, M Engenhorst, G Schierning, and W Assenmacher. Synthesis of hexagonal Sb2Te3 nanoplates by thermal decomposition of the single-source precursor (Et2Sb)2Te. Chem Mater. 2012;24:2228–34.10.1021/cm301259uSuche in Google Scholar
[91] Bendt, G, S Schulz, S Zastrow, and K Nielsch. Single-source precursor-based deposition of Sb2Te3 films by MOCVD. Chem Vap Deposition. 2013;19:235–41.10.1002/cvde.201207044Suche in Google Scholar
[92] Benjamin SL, De Groot CH, Gurnani C, Hector AL, Huang R, Koukharenko E, et al. Controlling the nanostructure of bismuth telluride by selective chemical vapour deposition from a single source precursor. J Mater Chem A. 2014;2:4865–69.10.1039/c4ta00341aSuche in Google Scholar
[93] Traut, S, AP Hähnel, and C Von Hänisch. Dichloro organosilicon bismuthanes as precursors for rare compounds with a bismuth–Pnictogen or bismuth–Tellurium bond. Dalton Trans. 2011;40:1365–71.10.1039/C0DT01111HSuche in Google Scholar PubMed
[94] Heimann, S, D Bläser, C Wölper, and S Schulz. Solid-state structures of bis(diethylbismuthanyl)sulfane, -selenane, and -tellurane. Organometallics. 2014;33:2295–300.10.1021/om500208cSuche in Google Scholar
[95] Heimann S, Kuczkowski A, Bläser D, Wölper C, Haack R, Jansen G, et al. Syntheses and solid-state structures of Et2SbTeEt and Et2BiTeEt. Eur J Inorg Chem. 2014;2014:4858–64.10.1002/ejic.201402471Suche in Google Scholar
[96] Traut, S, S Stahl, A Eichhöfer, and C Von Hänisch. Synthesis, structure and thermal decomposition of the bismuth silyltellurolate Bi(TeSitBu2Ph)3. Z Anorg Allg Chem. 2015;641:1200–2.10.1002/zaac.201400558Suche in Google Scholar
[97] Traut, S, C Von Hänisch, AP Hähnel, and S Stahl. Cyclic and polycyclic tellurium–Tin and tellurium–Lead compounds – Synthesis, structures and thermal decomposition. Chem Commun. 2012;48:6984–6.10.1039/c2cc32615aSuche in Google Scholar PubMed
[98] Seligson, AL, and J Arnold. Synthesis, structure, and reactivity of homoleptic tin(II) and lead(II) chalcogenolates and their conversion to metal chalcogenides. X-ray crystal structures of {Sn[TeSi(SiMe3)3]2}2 and (PMe3)Sn[TeSi(SiMe3)3]2. J Am Chem Soc. 1993;115:8214–20.10.1021/ja00071a034Suche in Google Scholar
[99] Fuhrmann, D, T Severin, and H Krautscheid. Synthesis and crystal structures of copper zinc phenylthiolate and the first copper zinc selenolate and tellurolate complexes. Z Anorg Allg Chem. 2017;643:932–7.10.1002/zaac.201600426Suche in Google Scholar
[100] Sommer, H, A Eichhöfer, N Drebov, R Ahlrichs, and D Fenske. Preparation, geometric and electronic structures of [Bi2Cu4(SPh)8(PPh3)4] with a Bi2 dumbbell, [Bi4Ag3(SePh)6Cl3(PPh3)3]2 and [Bi4Ag3(SePh)6X3(PPhiPr2)3]2 (X = Cl, Br) with a Bi4 unit. Eur J Inorg Chem. 2008;2008:5138–45.10.1002/ejic.200800839Suche in Google Scholar
[101] Hu, B, C-Y Su, D Fenske, and O Fuhr. Synthesis, characterization and optical properties of a series of binuclear copper chalcogenolato complexes. Inorg Chim Acta. 2014;419:118–23.10.1016/j.ica.2014.05.009Suche in Google Scholar
[102] Azizpoor Fard, M, B Khalili Najafabadi, M Hesari, MS Workentin, and JF Corrigan. New polydentate trimethylsilyl chalcogenide reagents for the assembly of polyferrocenyl architectures. Chem – Eur J. 2014;20:7037–47.10.1002/chem.201400185Suche in Google Scholar PubMed
[103] Azizpoor Fard, M, MJ Willans, B Khalili Najafabadi, TI Levchenko, and JF Corrigan. Polydentate chalcogen reagents for the facile preparation of Pd2 and Pd4 complexes. Dalton Trans. 2015;44:8267–77.10.1039/C5DT00197HSuche in Google Scholar PubMed
[104] Labande, A, J Ruiz, and D Astruc. Supramolecular gold nanoparticles for the redox recognition of oxoanions: syntheses, titrations, stereoelectronic effects, and selectivity. J Am Chem Soc. 2002;124:1782–9.10.1021/ja017015xSuche in Google Scholar PubMed
[105] Stiles, RL, R Balasubramanian, SW Feldberg, and RW Murray. Anion-induced adsorption of ferrocenated nanoparticles. J Am Chem Soc. 2008;130:1856–65.10.1021/ja074161fSuche in Google Scholar PubMed
[106] Uosaki, K, T Kondo, M Okamura, and W Song. Electron and ion transfer through multilayers of gold nanoclusters covered by self-assembled monolayers of alkylthiols with various functional groups. Faraday Discuss. 2002;121:373–89.10.1039/b200397jSuche in Google Scholar PubMed
[107] Nitschke, C, AI Wallbank, D Fenske, and JF Corrigan. Facile synthesis of high nuclearity silver-ferrocenyldiselenolate clusters. J Clust Sci. 2007;18:131–40.10.1007/s10876-006-0091-8Suche in Google Scholar
[108] The only exception to this is for platinum(II) and palladium(II) complexes[(fcSe2)M(PnBu3)]2 (M = Pd, Pt), and [(fcSe2)Pd(PnBu2)2] from Brown MJ, Corrigan JF. Synthesis, characterization and electrochemistry of ferrocenylselenolate bridged palladium(II) and platinum(II) complexes. J Organomet Chem. 2004;689:2872–9.10.1016/j.jorganchem.2004.05.044Suche in Google Scholar
[109] Ahmar, S, C Nitschke, N Vijayaratnam, DG MacDonald, D Fenske, and JF Corrigan. A ferrocenylmethylselenolate complex of Ag(I): preparation of the polyferrocenyl cluster [Ag8(SeCH2Fc)8(PPh3)4] from the new silylated reagent FcCH2SeSiMe3. New J Chem. 2011;35:2013–7.10.1039/c1nj20183bSuche in Google Scholar
[110] Ahmar, S, DG MacDonald, N Vijayaratnam, TL Battista, MS Workentin, and JF Corrigan. A nanoscopic 3D polyferrocenyl assembly: the triacontakaihexa(ferrocenylmethylthiolate) [Ag48(μ4-S)6(μ2/3-SCH2Fc)36]. Angew Chem Int Ed. 2010;49:4422–4.10.1002/anie.201000686Suche in Google Scholar PubMed
[111] MacDonald, DG, and JF Corrigan. New reagents for the synthesis of a series of ferrocenoyl functionalized copper and silver chalcogenolate complexes. Dalton Trans. 2008;5048–53.10.1039/b804597fSuche in Google Scholar PubMed
[112] MacDonald, DG, A Eichhöfer, CF Campana, and JF Corrigan. Ferrocene-based trimethylsilyl chalcogenide reagents for the assembly of functionalized metal-chalcogen architectures. Chem – Eur J. 2011;17:5890–902.10.1002/chem.201003756Suche in Google Scholar
[113] Anson CE, Eichhöfer A, Issac I, Fenske D, Fuhr O, Sevillano P, et al. Synthesis and crystal structures of the ligand-stabilized silver chalcogenide clusters [AgSe77(dppxy)18], [Ag320(StBu)60S130(dppp)12], [Ag352S128(StC5H11)96], and [Ag490S188(StC5H11)114]. Angew Chem Int Ed. 2008;47:1326–31.10.1002/anie.200704249Suche in Google Scholar
[114] Duan, T, X-Z Zhang, and Q-F Zhang. Synthesis and crystal structure of a polynuclear copper-selenide cluster [CuI36(CuIICl)2Se13(SePh)12(dppe)6]·3EtOH. Z Naturforsch B. 2008;63:941–4.10.1515/znb-2008-0804Suche in Google Scholar
[115] Nayek, HP, W Massa, and S Dehnen. Presence or absence of a central Se atom in silver selenide/selenolate clusters with halite topology: syntheses and properties of [(Ph3PAg)8Ag6(μ6- Se)1-x/2(SePh)]x+ (x = 0, 1). Inorg Chem. 2010;49:144–9.10.1021/ic901629kSuche in Google Scholar
[116] Corrigan, JF, and D Fenske. New copper telluride clusters by light-induced tellurolate-telluride conversions. Angew Chem Int Ed Engl. 1997;36:1981–3.10.1002/anie.199719811Suche in Google Scholar
[117] Levchenko TI, Kübel C, Khalili Najafabadi B, Boyle PD, Cadogan C, Goncharova LV, et al. Luminescent CdSe superstructures: a nanocluster superlattice and a nanoporous crystal. J Am Chem Soc. 2017;139:1129–44.10.1021/jacs.6b10490Suche in Google Scholar
[118] Fu, M-L, I Issac, D Fenske, and O Fuhr. Metal-rich copper chalcogenide clusters at the border between molecule and bulk phase: the structures of [Cu93Se42(SeC6H4SMe)9(PPh3)18], [Cu96Se45(SeC6H4SMe)6(PPh3)18], and [Cu136S56(SCH2C4H3O)24(dpppt)10]. Angew Chem Int Ed. 2010;49:6899–903.10.1002/anie.201001301Suche in Google Scholar
[119] Fenske, D, N Zhu, and T Langetepe. Synthesis and structure of new Ag−Se clusters: [Ag30Se8(SetBu)14(PnPr3)8], [Ag90Se38(SetBu)14(PEt3)22], [Ag114Se34(SenBu)46(PtBu3)14], [Ag112Se32(SenBu)48(PtBu3)12], and [Ag172Se40(SenBu)92(dppp)4]. Angew Chem Int Ed. 1998;37:2639–44.10.1002/(SICI)1521-3773(19981016)37:19<2639::AID-ANIE2639>3.0.CO;2-8Suche in Google Scholar
[120] Eichhöfer, A, PT Wood, RN Viswanath, and RA Mole. Synthesis, structure and physical properties of the manganese(II) selenide/selenolate cluster complexes [Mn32Se14(SePh)36(PnPr3)4] and [Na(benzene-15-crown-5)(C4H8O)2]2[Mn8Se(SePh)16]. Chem Commun. 2008;14:1596–8.10.1039/b714582aSuche in Google Scholar
[121] Matheis, K, A Eichhöfer, F Weigend, OT Ehrler, O Hampe, and MM Kappes. Probing the influence of size and composition on the photoelectron spectra of cadmium chalcogenide cluster dianions. J Phys Chem C. 2012;116:13800–9.10.1021/jp303048uSuche in Google Scholar
[122] Eichhöfer A, Olkowska-Oetzel J, Fenske D, Fink K, Mereacre V, Powell AK, et al. Synthesis and structure of an “iron-doped” copper selenide cluster molecule: [Cu30Fe2Se6(SePh)24(dppm)4]. Inorg Chem. 2009;48:8977–84.10.1021/ic900890nSuche in Google Scholar PubMed
[123] Eichhöfer, A, D Fenske, and J Olkowska-Oetzel. Synthesis and structure of [nPr3N(CH2)6NnPr3][CuFe3Br3(SePh)6], [Cu5Fe(SePh)7(PPh3)4], and [Cu4Fe3(SePh)10(PPh3)4]. Eur J Inorg Chem. 2007;2007:74–9.10.1002/ejic.200600631Suche in Google Scholar
[124] Zhu, N, and D Fenske. Novel Cu–Se clusters with Se–Layer structures: [Cu32Se7(SenBu)18(PiPr3)6], [Cu50Se20(SetBu)10(PiPr3)10], [Cu73Se35(SePh)3(PiPr3)21], [Cu140Se70(PEt3)34] and [Cu140Se70(PEt3)36]. J Chem Soc, Dalton Trans. 1999;1067–75.10.1039/a900021fSuche in Google Scholar
[125] Eichhöfer, A, O Hampe, S Lebedkin, and F Weigend. Bistrimethylsilylamide transition-metal complexes as starting reagents in the synthesis of ternary Cd−Mn−Se cluster complexes. Inorg Chem. 2010;49:7331–9.10.1021/ic100310wSuche in Google Scholar PubMed
[126] MacDonald, DG, C Kübel, and JF Corrigan. Ferrocenyl functionalized silver-chalcogenide nanoclusters. Inorg Chem. 2011;50:3252–61.10.1021/ic101717zSuche in Google Scholar PubMed
[127] Fuhr, O, L Fernandez-Recio, A Castiñeiras, and D Fenske. Synthesis and structure of the clusters [Cu50Se24(S-thiaz)2(dppm)10] and [Cu48Se24(S-thiazH)2(dppm)10]. Z Anorg Allg Chem. 2007;633:700–4.10.1002/zaac.200600359Suche in Google Scholar
[128] Fernandez-Recio, L, D Fenske, and O Fuhr. Copper chalcogenide cluster compounds with nitro-functionalized ligand shell. Z Anorg Allg Chem. 2008;634:2853–7.10.1002/zaac.200800208Suche in Google Scholar
[129] Langer, R, B Breitung, L Wünsche, D Fenske, and O Fuhr. Functionalised silver chalcogenide clusters. Z Anorg Allg Chem. 2011;637:995–1006.10.1002/zaac.201100018Suche in Google Scholar
[130] Langer, R, W Yu, L Wünsche, G Buth, O Fuhr, and D Fenske. Syntheses and structure determination of trimethylsiloxy functionalized copper chalcogenide clusters. Z Anorg Allg Chem. 2011;637:1834–40.10.1002/zaac.201100249Suche in Google Scholar
[131] Langer, R, D Fenske, and O Fuhr. [Cu40Se16(S-C6H4-CN)8(dppm)8]: a disc-like copper cluster with a nitrile-functionalized ligand shell. Z Naturforsch B. 2013;68:575–80.10.5560/znb.2013-3078Suche in Google Scholar
[132] Vahrenkamp, H. Metallorganische lewis-basen, II. Organometallische Schwefelkomplexe Des Molybdäns, Mangans, Rheniums Und Eisens. Chem Ber. 1970;103:3580–90.10.1002/cber.19701031121Suche in Google Scholar
[133] Vergamini, PJ, H Vahrenkamp, and LF Dahl. Organometallic chalcogen complexes. XXIII. Preparation and structural characterization of a mixed transition metal cluster complex, [Re2Mo(η5-C5H5)(CO)8](S)[SMo(η5-C5H5)(CO)3], containing triply and quadruply bridging sulfur atoms. New synthetic route to highly clustered metal-sulfur systems. J Am Chem Soc. 1971;93:6326–7.10.1021/ja00752a087Suche in Google Scholar
[134] S-B, Y. The Preparation and Structure of Mo2(OAc)2(SSiMe3)2(PEt3)2. Polyhedron. 1992;11:2115–7.10.1016/S0277-5387(00)83169-1Suche in Google Scholar
[135] Dehnen, S, and D Fenske. [Cu24S12(PMeiPr2)12], [Cu28S14(PtBu2Me)12], [Cu50S25(PtBu2Me)16], [Cu70Se35(PtBu2Me)21], [Cu31Se15(SeSiMe3)(PtBu2Me)12] and [Cu48Se24(PMe2Ph)20]: new sulfur- and selenium-bridged copper clusters. Chem – Eur J. 1996;2:1407–16.10.1002/chem.19960021113Suche in Google Scholar
[136] DeGroot, MW, NJ Taylor, and JF Corrigan. Zinc chalcogenolate complexes as capping agents in the synthesis of ternary II−II′−VI nanoclusters: structure and photophysical properties of [(N, N'-tmeda)5Zn5Cd11Se13(SePh)6(thf)2]. J Am Chem Soc. 2003;125:864–65.10.1021/ja028800sSuche in Google Scholar PubMed
[137] DeGroot, MW, KM Atkins, A Borecki, H Rösner, and JF Corrigan. A molecular precursor approach for the synthesis of composition-controlled ZnxCd1-xS and ZnxCd1-xSe nanoparticles. J Mater Chem. 2008;18:1123–30.10.1039/b714745gSuche in Google Scholar
[138] Biedermann, R, O Kluge, D Fuhrmann, and H Krautscheid. Synthesis and crystal structures of [(iPr3P)2Cu(μ-ESiMe3)(InMe3)] (E = S, Se): lewis acid-base adducts with chalcogen atoms in planar coordination. Eur J Inorg Chem. 2013;2013:4727–31.10.1002/ejic.201300768Suche in Google Scholar
[139] Kluge, O, M Puidokait, R Biedermann, and H Krautscheid. Synthesis and crystal structures of spirocyclic gallium and indium chalcogen heterocycles [(Me2Ga)6S(SSiMe3)4], [(Me2Ga)6Se(SeSiMe3)4] and [(Me2In)6S(SSiMe3)4]. Z Anorg Allg Chem. 2007;633:2138–40.10.1002/zaac.200700373Suche in Google Scholar
[140] Kluge, O, R Biedermann, J Holldorf, and H Krautscheid. Organo-gallium/indium chalcogenide complexes of copper(I): molecular structures and thermal decomposition to ternary semiconductors. Chem – Eur J. 2014;20:1318–31.10.1002/chem.201302530Suche in Google Scholar PubMed
[141] Fuhrmann, D, S Dietrich, and H Krautscheid. Zinc tin chalcogenide complexes and their evaluation as molecular precursors for Cu2ZnSnS4 (CZTS) and Cu2ZnSnSe4 (CZTSe). Inorg Chem. 2017;56:13123–31.10.1021/acs.inorgchem.7b01697Suche in Google Scholar PubMed
[142] Khadka, CB, DG MacDonald, Y Lan, AK Powell, D Fenske, and JF Corrigan. Trimethylsilylchalcogenolates of Co(II) and Mn(II): from mononuclear coordination complexes to clusters containing -ESiMe3 moieties (E = S, Se). Inorg Chem. 2010;49:7289–97.10.1021/ic902346uSuche in Google Scholar PubMed
[143] Khadka, CB, A Eichhöfer, F Weigend, and JF Corrigan. Zinc chalcogenolate complexes as precursors to ZnE and Mn/ZnE (E = S, Se) clusters. Inorg Chem. 2012;51:2747–56.10.1021/ic200307gSuche in Google Scholar PubMed
[144] Borecki, A, and JF Corrigan. New copper and silver trimethylsilylchalcogenolates. Inorg Chem. 2007;46:2478–84.10.1021/ic0618910Suche in Google Scholar PubMed
[145] Azizpoor Fard, M, F Weigend, and JF Corrigan. Simple but effective: thermally stable Cu-ESiMe3 via NHC ligation. Chem Commun. 2015;51:8361–4.10.1039/C5CC00940ESuche in Google Scholar PubMed
[146] Azizpoor Fard, M, TI Levchenko, C Cadogan, WJ Humenny, and JF Corrigan. Stable -ESiMe3 complexes of CuI and AgI (E=S, Se) with NHCs: synthons in ternary nanocluster assembly. Chem – Eur J. 2016;22:4543–50.10.1002/chem.201503320Suche in Google Scholar PubMed
[147] Polgar, AM, F Weigend, A Zhang, MJ Stillman, and JF Corrigan. A N-heterocyclic carbene-stabilized coinage metal-chalcogenide framework with tunable optical properties. J Am Chem Soc. 2017;139:14045–8.10.1021/jacs.7b09025Suche in Google Scholar PubMed
[148] Krebs, B. Thio- and seleno-compounds of main group elements - Novel inorganic oligomers and polymers. Angew Chem Int Ed Engl. 1983;22:113–34.10.1002/anie.198301131Suche in Google Scholar
[149] Kromm, A, and WS Sheldrick. Synthesis and structures of dimanganese(II) complexes with spirotricyclic [Mn(μ-Ge2Se7)Mn] and [Mn(μ-Sn2Se6)Mn] cores. Z Anorg Allg Chem. 2008;634:1005–10.10.1002/zaac.200700551Suche in Google Scholar
[150] Zhang, G, P Li, and J Ding. Surfactant-thermal syntheses, structures, and magnetic properties of Mn–Ge–Sulfides/selenides. Inorg Chem. 2014;53:10248–56.10.1021/ic501282dSuche in Google Scholar PubMed
[151] Yaghi, OM, Z Sun, DA Richarson, and TL Groy. Directed transformation of molecules to solids: synthesis of a microporous sulfide from molecular germanium sulfide cages. J Am Chem Soc. 1994;116:807–8.10.1021/ja00081a067Suche in Google Scholar
[152] Bag, S, PN Trikalitis, PJ Chupas, GS Armatas, and MG Kanatzidis. Porous semiconducting gels and aerogels from chalcogenide clusters. Science. 2007;317:490–3.10.1126/science.1142535Suche in Google Scholar PubMed
[153] Bag, S, IU Arachchige, and MG Kanatzidis. Aerogels from metal chalcogenides and their emerging unique properties. J Mater Chem. 2008;18:3628–32.10.1039/b804011gSuche in Google Scholar
[154] Bag, S, and MG Kanatzidis. Chalcogels: porous metal-chalcogenide networks from main-group metal ions. Effect of Surface Polarizability on Selectivity in Gas Separation. J Am Chem Soc. 2010;132:14951–9.10.1021/ja1059284Suche in Google Scholar PubMed
[155] Ruzin, E, and S Dehnen. Influence of the counterions on the structures of ternary Zn/Sn/Se anions: synthesis and properties of [Rb10(H2O)14.5][Zn4(μ4-Se)2(SnSe4)4] and [Ba5(H2O)32][Zn5Sn(μ3-Se)4(SnSe4)4]. Z Anorg Allg Chem. 2006;632:749–55.10.1002/zaac.200500454Suche in Google Scholar
[156] Melullis, M, R Clérac, and S Dehnen. Ternary Mn/Ge/Se anions from reactions of [Ba2(H2O)9][GeSe4]: synthesis and characterization of compounds containing discrete or polymeric [Mn6Ge4Se17]6– Units. Chem Commun. 2005;6008–10.10.1039/b513305jSuche in Google Scholar
[157] Zimmermann, C, M Melullis, and S Dehnen. Reactivity of chalcogenostannate salts: unusual synthesis and structure of a compound containing ternary cluster anions [Co4(μ4-Se)(SnSe4)4]10-. Angew Chem Int Ed. 2002;41:4269–72.10.1002/1521-3773(20021115)41:22<4269::AID-ANIE4269>3.0.CO;2-8Suche in Google Scholar
[158] Dehnen, S, and MK Brandmeyer. Reactivity of chalcogenostannate compounds: syntheses, crystal structures, and electronic properties of novel compounds containing discrete ternary anions [MII4(μ4-Se)(SnSe4)4]10- (MII = Zn, Mn). J Am Chem Soc. 2003;125:6618–9.10.1021/ja029601bSuche in Google Scholar PubMed
[159] Brandmeyer, MK, R Clérac, F Weigend, and S Dehnen. Ortho-chalcogenostannates as ligands: syntheses, crystal structures, electronic properties, and magnetism of novel compounds containing ternary anionic substructures [M4(μ4-Se)(SnSe4)4]10− (M=Mn, Zn, Cd, Hg), [Hg4(μ4-Se)(SnSe4)3]6−}, or [HgSnSe4]2−}. Chem – Eur J. 2004;10:5147–57.10.1002/chem.200400521Suche in Google Scholar
[160] Ruzin, E, A Fuchs, and S Dehnen. Fine-tuning of optical properties with salts of discrete or polymeric, heterobimetallic telluride anions [M4(μ4-Te)(SnTe4)4]10− (M = Mn, Zn, Cd, Hg) and [Hg4(μ4-Te)(SnTe4)3]6−}. Chem Commun. 2006;4796–8.10.1039/B610833DSuche in Google Scholar
[161] Ruzin, E, C Zimmermann, P Hillebrecht, and S Dehnen. Syntheses and structures of solvated tetrasodiumtetrachalcogenostannates [Na4(en)4][SnE4] (en = 1,2-diaminoethane; E = Te, Se), and their reactions toward further ternary or quaternary chalcogenometallates [Mn(en)3]2[Sn2Te6]·4H2O or [Na10(H2O)34][Mn4(μ4-Se)(SnSe4)4]. Z Anorg Allg Chem. 2007;633:820–9.10.1002/zaac.200700071Suche in Google Scholar
[162] Santner, S, and S Dehnen. [M4Sn4Se17]10– Cluster anions (M = Mn, Zn, Cd) in a Cs+ environment and as ternary precursors for ionothermal treatment. Inorg Chem. 2015;54:1188–90.10.1021/ic5026087Suche in Google Scholar PubMed
[163] Dhingra, SS, and RC Haushalter. One dimensional inorganic polymers: synthesis and structural characterization of the main-group metal polymers K2HgSnTe4, (Et4N)2HgSnTe4, (Ph4P)GeInTe4, and RbInTe2. Chem Mater. 1994;6:2376–81.10.1021/cm00048a026Suche in Google Scholar
[164] Zimmermann, C, and S Dehnen. Cs2[MnSnTe4]: uncommon synthesis of a quaternary phase based on one-dimensional, ternary anionic chains. Z Anorg Allg Chem. 2003;629:1553–6.10.1002/chin.200345022Suche in Google Scholar
[165] Thiele G, Peter S, Schwarzer M, Ruzin E, Clérac R, Staesche H, et al. Heterobimetallic chalcogenidometallate strands: synthesis, structure, magnetism, and conductivity. Inorg Chem. 2012;51:3349–51.10.1021/ic300075aSuche in Google Scholar PubMed
[166] Haddadpour S, Melullis M, Staesche H, Mariappan CR, Roling B, Clérac R, et al. Inorganic frameworks from selenidotetrelate anions [T2Se6]4− (T = Ge, Sn): synthesis, structures, and ionic conductivity of [K2(H2O)3][MnGe4Se10] and (NMe4)2[MSn4Se10] (M = Mn, Fe). Inorg Chem. 2009;48:1689–98.10.1021/ic802170fSuche in Google Scholar PubMed
[167] Tsamourtzi, K, J-H Song, T Bakas, AJ Freeman, PN Trikalitis, and MG Kanatzidis. Straightforward route to the adamantane clusters [Sn4Q10]4− (Q = S, Se, Te) and use in the assembly of open-framework chalcogenides (Me4N)2 M[Sn4Se10] (M = MnII, FeII0, CoII, ZnII) including the first telluride member (Me4N)2Mn[Ge4Te10]. Inorg Chem. 2008;47:11920–9.10.1021/ic801762hSuche in Google Scholar PubMed
[168] Lips, F, and S Dehnen. One-size adjustable-gap cluster anions: systematic approach to multinary, water-soluble chalcogenidometalate compounds. Inorg Chem. 2008;47:5561–3.10.1021/ic8008199Suche in Google Scholar PubMed
[169] Ding, N, C D-Y, and K Mg. K6Cd4Sn3Se13: a polar open-framework compound based on the partially destroyed supertetrahedral [Cd4Sn4Se17]10- cluster. Chem Commun. 2004;1170–1.10.1039/b402686aSuche in Google Scholar
[170] Ruzin, E, E Zent, E Matern, W Massa, and S Dehnen. Syntheses, structures, and comprehensive NMR spectroscopic investigations of hetero-chalcogenidometallates: the right mix toward multinary complexes. Chem – Eur J. 2009;15:5230–44.10.1002/chem.200802060Suche in Google Scholar PubMed
[171] Finger, LH, B Scheibe, and J Sundermeyer. Synthesis of organic (trimethylsilyl)chalcogenolate salts Cat[TMS-E] (E = S, Se, Te): the methylcarbonate anion as a desilylating agent. Inorg Chem. 2015;54:9568–75.10.1021/acs.inorgchem.5b01665Suche in Google Scholar PubMed
[172] Finger, LH, and J Sundermeyer. Halide-free synthesis of hydrochalcogenide ionic liquids of the type [Cation][HE] (E=S, Se, Te). Chem – Eur J. 2016;22:4218–30.10.1002/chem.201504577Suche in Google Scholar PubMed
[173] Donsbach, C, G Thiele, LH Finger, J Sundermeyer, and S Dehnen. Mercurates from a revised ionothermal synthesis route: the pseudo-flux approach. Inorg Chem. 2016;55:6725–30.10.1021/acs.inorgchem.6b00974Suche in Google Scholar PubMed
[174] Lin, Y, W Massa, and S Dehnen. “Zeoball” [Sn36Ge24Se132]24– : a molecular anion with zeolite-related composition and spherical shape. J Am Chem Soc. 2012;134:4497–500.10.1021/ja2115635Suche in Google Scholar PubMed
[175] Lin, Y, W Massa, and S Dehnen. Controlling the assembly of chalcogenide anions in ionic liquids: from binary Ge/Se through ternary Ge/Sn/Se to binary Sn/Se frameworks. Chem – Eur J. 2012;18:13427–34.10.1002/chem.201201774Suche in Google Scholar PubMed
[176] Lin Y, Xie D, Massa W, Mayrhofer L, Lippert S, Ewers B, et al. Changes in the structural dimensionality of selenidostannates in ionic liquids: formation, structures, stability, and photoconductivity. Chem – Eur J. 2013;19:8806–13.10.1002/chem.201300807Suche in Google Scholar PubMed
[177] Sheldrick, WS, and H-G Braunbeck. Preparation and crystal structure of Cs2Sn3Se7, a cesium selenostannate(IV) with pentacoordinated tin. Z Naturforsch B. 1990;45:1643–6.10.1515/znb-1990-1208Suche in Google Scholar
[178] Li, J-R, -W-W Xiong, Z-L Xie, C-F Du, G-D Zou, and X-Y Huang. From selenidostannates to silver-selenidostannate: structural variation of chalcogenidometallates synthesized in ionic liquids. Chem Commun. 2013;49:181–3.10.1039/C2CC37051DSuche in Google Scholar PubMed
[179] Lin, Y, and S Dehnen. [BMIm]4[Sn9Se20]: ionothermal synthesis of a selenidostannate with a 3D open-framework structure. Inorg Chem. 2011;50:7913–5.10.1021/ic200697kSuche in Google Scholar PubMed
[180] Xu, G-H, C Wang, and P Guo. Poly[[(pentaethylenehexamine)manganese(II)] [hepta-μ-selenido-tritin(IV)]]: a tin–Selenium net with remarkable flexibility. Acta Crystallogr. 2009;C65:m171–3.10.1107/S0108270109010956Suche in Google Scholar PubMed
[181] Dehnen, S, and C Zimmermann. A new route into single-crystalline partially oxidized cobalt compounds: reactions with Zintl-type hexaselenodistannate(III) K6Sn2Se6 as mild oxidant. Chem – Eur J. 2000;6:2256–61.10.1002/1521-3765(20000616)6:12<2256::AID-CHEM2256>3.0.CO;2-VSuche in Google Scholar
[182] Zimmermann, C, CE Anson, and S Dehnen. Chalcogenido-bridged clusters by reactions of chalcogenostannate salts. J Clust Sci. 2007;18:618–29.10.1007/s10876-007-0130-0Suche in Google Scholar
[183] Thiele, G, Z You, and DS Molecular. CHEVREL-like clusters [(RhPPh3)6(μ3-Se)8] and [Pd6(μ3-Te)8]4–. Inorg Chem. 2015;54:2491–3.10.1021/ic502409rSuche in Google Scholar PubMed
[184] Thiele, G, Y Franzke, F Weigend, and S Dehnen. {μ-PbSe}: a heavy CO homologue as an unexpected ligand. Angew Chem Int Ed. 2015;54:11283–8.10.1002/anie.201504863Suche in Google Scholar
[185] Eußner, JP, RO Kusche, and S Dehnen. Synthesis and thorough investigation of discrete organotin telluride clusters. Chem – Eur J. 2015;21:12376–88.10.1002/chem.201501666Suche in Google Scholar
[186] Dorfelt, C, A Janeck, D Kobelt, EF Paulus, and H Scherer. Röntgenstrukturanalyse von alkylthiostannonsäuren (monoalkylzinnsesquisulfiden). J Organomet Chem. 1968;14:P22–4.10.1016/S0022-328X(00)92632-9Suche in Google Scholar
[187] Bouška M, Dostál L, Padělková Z, Lyčka A, Herres-Pawlis S, Jurkschat K, et al. Intramolecularly coordinated organotin tellurides: stable or unstable? Angew Chem Int Ed. 2012;51:3478–82.10.1002/anie.201107666Suche in Google Scholar
[188] Heimann, S, M Hołynska, and S Dehnen. Synthesis, structures, and light-induced transformation of keto-functionalized selenidogermanate complexes. Z Anorg Allg Chem. 2012;638:1663–6.10.1002/zaac.201200155Suche in Google Scholar
[189] Barth, BEK, BA Tkachenko, JP Eußner, PR Schreiner, and S Dehnen. Diamondoid hydrazones and hydrazides: sterically demanding ligands for Sn/S cluster design. Organometallics. 2014;33:1678–88.10.1021/om500014zSuche in Google Scholar
[190] Leusmann, E, M Wagner, NW Rosemann, S Chatterjee, and S Dehnen. Synthesis, crystal structure, and photoluminescence studies of a ruthenocenyl-decorated Sn/S cluster. Inorg Chem. 2014;53:4228–33.10.1021/ic500367ySuche in Google Scholar PubMed
[191] Leusmann, E, F Schneck, and S Dehnen. Functionalization of Sn/S clusters with hetero- and polyaromatics. Organometallics. 2015;34:3264–71.10.1021/acs.organomet.5b00295Suche in Google Scholar
[192] Rinn, N, K Hanau, L Guggolz, A Rinn, S Chatterjee, and S Dehnen. Trigonal bipyramidal metalselenide clusters with palladium and tin atoms in various positions. Z Anorg Allg Chem. 2017;643:1508–12.10.1002/zaac.201700252Suche in Google Scholar
[193] Rinn, N, L Guggolz, K Gries, K Volz, J Senker, and S Dehnen. Formation and structural diversity of organo-functionalized tin-silver selenide clusters. Chem – Eur J. 2017;23:15607–11.10.1002/chem.201703614Suche in Google Scholar PubMed
[194] Eußner, JP, and S Dehnen. Bronze, silver and gold: functionalized group 11 organotin sulfide clusters. Chem Commun. 2014;50:11385–8.10.1039/C4CC05666CSuche in Google Scholar PubMed
[195] You, Z, J Bergunde, B Gerke, R Pöttgen, and S Dehnen. Ferrocenyl-functionalized Sn/Se and Sn/Te complexes: synthesis, reactivity, optical, and electronic properties. Inorg Chem. 2014;53:12512–8.10.1021/ic502026gSuche in Google Scholar PubMed
[196] Komuro, T, T Matsuo, H Kawaguchi, and K Tatsumi. Copper and silver complexes containing the S(SiMe2S)22- ligand: efficient entries into heterometallic sulfido clusters. Angew Chem Int Ed. 2003;42:465–8.10.1002/anie.200390141Suche in Google Scholar PubMed
[197] Fard, HZ, L Xiong, C Müller, M Hołynska, and S Dehnen. Synthesis and reactivity of functionalized binary and ternary thiometallate complexes [(RT)4S6], [(RSn)3S4]2-, [(RT)2(CuPPh3)6S6], and [(RSn)6(OMe)6Cu2S6]4- (R = C2H4COOH, CMe2CH2COMe; T = Ge, Sn). Chem – Eur J. 2009;15:6595–604.10.1002/chem.200900523Suche in Google Scholar PubMed
© 2018 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- The environmental fate of synthetic organic chemicals
- Forensics: evidence examination via Raman spectroscopy
- Optical spectroscopy as a tool for battery research
- Selenium and Tellurium Electrophiles in Organic Synthesis
- Introduction to cheminformatics for green chemistry education
- Analyzing Raman spectroscopic data
- Green chemistry in secondary school
- Recent advances in the self-assembly of polynuclear metal–selenium and –tellurium compounds from 14–16 reagents
- Physicochemical approaches to gold and silver work, an overview: Searching for technologies, tracing routes, attempting to preserve
Artikel in diesem Heft
- The environmental fate of synthetic organic chemicals
- Forensics: evidence examination via Raman spectroscopy
- Optical spectroscopy as a tool for battery research
- Selenium and Tellurium Electrophiles in Organic Synthesis
- Introduction to cheminformatics for green chemistry education
- Analyzing Raman spectroscopic data
- Green chemistry in secondary school
- Recent advances in the self-assembly of polynuclear metal–selenium and –tellurium compounds from 14–16 reagents
- Physicochemical approaches to gold and silver work, an overview: Searching for technologies, tracing routes, attempting to preserve