Molecularly imprinted polymer for the selective removal of direct violet 51 from wastewater: synthesis, characterization, and environmental applications
-
Maaz Khan
, Alam Zeb
Abstract
Molecularly imprinted polymers (MIPs) are a diverse class of materials designed for selective molecular recognition. These polymers are synthesized with particular binding sites that are suited to a target molecule or a collection of structurally similar molecules through the use of a process called molecular imprinting. MIPs were synthesized in this work to specifically remove direct violet 51 from occupational leachates and aqueous solutions. Methacrylic acid functioned as the functional monomer, ethylene glycol dimethacrylate (EGDMA) as the cross-linker, 2,2-azobisisobutyronitrile (AIBN) as the initiator, and alcohol as a porogenic solvent. To improve the dye removal effectiveness, a number of factors were optimized, including time, pH, analyte concentrations, and MIP/NIP dosages. The findings showed that MIPs had a much greater capacity for direct violet 51 adsorption than nonimprinted polymers (NIPs), with MIP adsorption capacity reaching 42.553 mg g−1 and NIP adsorption capacity reaching 7 mg g−1. The pseudo 2nd-order model described the adsorption kinetics, and the rate constant (K 2) for MIPs was found to be 0.00251 mg g−1 min. Furthermore, a high rebinding efficiency of 94 % was observed when the selectivity of MIPs for direct violet 51 was assessed against structurally similar templates.
Funding source: Researchers Supporting Project, King Saud University
Award Identifier / Grant number: RSP2024R349
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: Maaz Khan and Ilyas Ahmad wrote the initial draft of the manuscript. Alamzeb performed the SEM and FTIR characterization. Figure modifications, graphics, and quality enhancements were made by Ankur Kulshreshta. The scheme of the study was designed and supervised by Shahab Khan. Sanjaykumar Patel helped with the revision of the manuscript, answered criticisms by reviewers and editors, verified the integrity and scope of the work, and improved language proficiency. References, Tables sitting, and validation were done by Hameed Ur Rahman. Mohamed Farouk Elsadek and Khalid S. Al-Numair helped with providing research instruments and chemicals, finalized the manuscript, corrected the grammar, and approved the final manuscript version along with financial support. The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: Not applicable.
-
Research funding: The authors would like to extend their sincere appreciation for funding this work through the Researchers Supporting Project number (RSP2024R349), King Saud University, Riyadh, Saudi Arabia.
-
Data availability: Not applicable.
References
1. Luo, X.; Zhan, Y.; Huang, Y.; Yang, L.; Tu, X.; Luo, S. Removal of Water-Soluble Acid Dyes from Water Environment Using a Novel Magnetic Molecularly Imprinted Polymer. J. Hazard. Mater. 2011, 187 (1–3), 274–282; https://doi.org/10.1016/j.jhazmat.2011.01.009.Search in Google Scholar PubMed
2. Chen, L.; Wang, X.; Lu, W.; Wu, X.; Li, J. Molecular Imprinting: Perspectives and Applications. Chem. Soc. Rev. 2016, 45 (8), 2137–2211; https://doi.org/10.1039/c6cs00061d.Search in Google Scholar PubMed
3. Mabrouk, M.; Hammad, S. F.; Abdella, A. A.; Mansour, F. R. Tipps and Tricks for Successful Preparation of Molecularly Imprinted Polymers for Analytical Applications: a Critical Review. Microchem. J. 2023, 109152; https://doi.org/10.1016/j.microc.2023.109152.Search in Google Scholar
4. Cowen, T.; Cheffena, M. Template Imprinting versus Porogen Imprinting of Small Molecules: a Review of Molecularly Imprinted Polymers in Gas Sensing. Int. J. Mol. Sci. 2022, 23 (17), 9642; https://doi.org/10.3390/ijms23179642.Search in Google Scholar PubMed PubMed Central
5. Foguel, M. V.; Pedro, N. T. B.; Wong, A.; Khan, S.; Zanoni, M. V. B.; Sotomayor, M. D. P. T. Synthesis and Evaluation of a Molecularly Imprinted Polymer for Selective Adsorption and Quantification of Acid Green 16 Textile Dye in Water Samples. Talanta 2017, 170, 244–251; https://doi.org/10.1016/j.talanta.2017.04.013.Search in Google Scholar PubMed
6. Rutkowska, M.; Płotka-Wasylka, J.; Morrison, C.; Wieczorek, P. P.; Namieśnik, J.; Marć, M. Application of Molecularly Imprinted Polymers in Analytical Chiral Separations and Analysis. TrAC, Trends Anal. Chem. 2018, 102, 91–102; https://doi.org/10.1016/j.trac.2018.01.011.Search in Google Scholar
7. Martins, R. O.; Bernardo, R. A.; Machado, L. S.; Junior, A. C. B.; Maciel, L. Í. L.; de Aguiar, D. V. A.; Neto, F. O. S.; Oliveira, J. V. A.; Simas, R. C.; Chaves, A. R. Greener Molecularly Imprinted Polymers: Strategies and Applications in Separation and Mass Spectrometry Methods. TrAC, Trends Anal. Chem. 2023, 117285; https://doi.org/10.1016/j.trac.2023.117285.Search in Google Scholar
8. Ulusoy, B. Ö.; Odabaşi, M.; Aksoy, N. H. Molecular Imprinting Technology for Sensing and Separation in Food Safety. Adv. Mol. Imprinting Mater. 2016, 352–387; https://doi.org/10.1002/9781119336181.ch9.Search in Google Scholar
9. Renkecz, T.; Horvath, V.; Horvai, G. Molecularly Imprinted Polymers for Chromatography and Related Techniques. In Handbook of Molecularly Imprinted Polymers; Alvarez-Lorenzo, C.; Concheiro, A., Eds., 2013, 1st ed.; pp. 141–188.Search in Google Scholar
10. Alexander, C.; Andersson, H. S.; Andersson, L. I.; Ansell, R. J.; Kirsch, N.; Nicholls, I. A.; O’Mahony, J.; Whitcombe, M. J. Molecular Imprinting Science and Technology: a Survey of the Literature for the Years up to and Including 2003. J. Mol. Recog. 2006, 19 (2), 106–180; https://doi.org/10.1002/jmr.760.Search in Google Scholar PubMed
11. Li, C.; Ma, X.; Zhang, X.; Wang, R.; Li, X.; Liu, Q. Preparation of Magnetic Molecularly Imprinted Polymer Nanoparticles by Surface Imprinting by a Sol–Gel Process for the Selective and Rapid Removal of Di‐(2‐ethylhexyl) Phthalate from Aqueous Solution. J. Sep. Sci. 2017, 40 (7), 1621–1628; https://doi.org/10.1002/jssc.201601190.Search in Google Scholar PubMed
12. Khan, S.; Ullah, I.; Khan, S.; Ajmal, S.; Saqib, N.; Rahman, F. U.; Ali, S. Advancements in Nanohybrids: From Coordination Materials to Flexible Solar Cells. J. Polym. Sci. Eng. 2024, 7 (1), 4276; https://doi.org/10.24294/jpse.v7i1.4276.Search in Google Scholar
13. Khan, S.; Rahman, M.; Marwani, H. M.; Althomali, R. H.; Rahman, M. M. Bicomponent Polymorphs of Salicylic Acid, Their Antibacterial Potentials, Intermolecular Interactions, DFT and Docking Studies. Z. Phys. Chem. 2023, 238 (01), 1–16; https://doi.org/10.1515/zpch-2023-0378.Search in Google Scholar
14. Khan, S.; Ajmal, S.; Hussain, T.; Rahman, M. U. Clay-Based Materials for Enhanced Water Treatment: Adsorption Mechanisms, Challenges, and Future Directions. JUQUAS 2023, 1–16; https://doi.org/10.1007/s43994-023-00083-0.Search in Google Scholar
15. Khan, S.; Zahoor, M.; Rahman, M. U.; Gul, Z. Cocrystals; Basic Concepts, Properties and Formation Strategies. Z. Phys. Chem. 2023, 237 (3), 273–332; https://doi.org/10.1515/zpch-2022-0175.Search in Google Scholar
16. Ullah, A.; Shah Bukhari, K.; Khan, S.; Farooq, F.; Wahab, A.; Hussain, T.; Saleem, S.; Babar, N. Diversification via Coupling Reactions and Biological Activities of Pyrimidine Derivatives. ChemistrySelect 2023, 8 (47), e202303072; https://doi.org/10.1002/slct.202303072.Search in Google Scholar
17. Yang, X. Q.; Zhao, X. X.; Liu, C. Y.; Zheng, Y.; Qian, S. J. Decolorization of Azo, Triphenylmethane and Anthraquinone Dyes by a Newly Isolated Trametes Sp. SQ01 and its Laccase. Process Biochem. 2009, 44 (10), 1185–1189; https://doi.org/10.1016/j.procbio.2009.06.015.Search in Google Scholar
18. Khan, S.; Rahman, F. U.; Zahoor, M.; Haq, A. U.; Shah, A. B.; Rahman, M. U.; Rahman, H. U. The DNA Threat Probing of Some Chromophores Using UV/VIS Spectroscopy. World J. Biol. Biotechnol. 2023, 8 (2), 19–22; https://doi.org/10.33865/wjb.008.02.0962.Search in Google Scholar
19. Rahman, F. U.; Khan, S.; Rahman, M. U.; Zaib, R.; Rahman, M. U.; Ullah, R.; Zahoor, M.; Kamran, A. W. Effect of Ionic Strength on DNA–Dye Interactions of Victoria Blue B and Methylene Green Using UV–Visible Spectroscopy. Z. Phys. Chem. 2024, 238 (1), 173–186; https://doi.org/10.1515/zpch-2023-0365.Search in Google Scholar
20. Khan, S.; Ullah, I.; Khan, H.; Rahman, F. U.; Rahman, M. U.; Saleem, M. A.; Nazir, S.; Ali, A.; Ullah, A. Green Synthesis of AgNPs from Leaves Extract of Saliva Sclarea, Their Characterization, Antibacterial Activity, and Catalytic Reduction Ability. Z. Phys. Chem. 2024, 238 (5), 931–947; https://doi.org/10.1515/zpch-2023-0363.Search in Google Scholar
21. Bişgin, A. T.; Sürme, Y.; Uçan, M.; Narin, I. Simultaneous Spectrophotometric Determination and Column Solid-phase Extraction of Two Lanaset Textile Dyes in Environmental Water Samples. J. Ind. Eng. Chem. 2016, 38, 186–192; https://doi.org/10.1016/j.jiec.2016.04.022.Search in Google Scholar
22. Khan, S.; Ullah, I.; Rahman, M. U.; Khan, H.; Shah, A. B.; Althomali, R. H.; Rahman, M. M. Inorganic-polymer Composite Electrolytes: Basics, Fabrications, Challenges and Future Perspectives. Rev. Inorg. Chem. 2024, 44 (3), 347–375; https://doi.org/10.1515/revic-2023-0030.Search in Google Scholar
23. Nazir, S.; Zhang, J.-M.; Junaid, M.; Saleem, S.; Ali, A.; Ullah, A.; Khan, S. Metal-based Nanoparticles: Basics, Types, Fabrications and Their Electronic Applications. Z. Phys. Chem. 2024, 238 (6), 965–995; https://doi.org/10.1515/zpch-2023-0375.Search in Google Scholar
24. Khan, S.; Iqbal, A. Organic Polymers Revolution: Applications and Formation Strategies, and Future Perspectives. J. Polym. Sci. Eng. 2023, 6 (1), 3125; https://doi.org/10.24294/jpse.v6i1.3125.Search in Google Scholar
25. Ton, X.-A.; Acha, V.; Bonomi, P.; Bui, B. T. S.; Haupt, K. A Disposable Evanescent Wave Fiber Optic Sensor Coated with a Molecularly Imprinted Polymer as a Selective Fluorescence Probe. Biosens. Bioelectron. 2015, 64, 359–366; https://doi.org/10.1016/j.bios.2014.09.017.Search in Google Scholar PubMed
26. Khan, S. Exploring the Chemistry, Reactions, Applications, and Biomedical Potentials of 2-Nitrobenzaldehyde and 2-Chlorobenzaldehyde. Fine Chem. Eng. 2024, 5 (2), 345–359.10.37256/fce.5220244858Search in Google Scholar
27. Munagapati, V. S.; Yarramuthi, V.; Kim, Y.; Lee, K. M.; Kim, D.-S. Removal of Anionic Dyes (Reactive Black 5 and Congo Red) from Aqueous Solutions Using Banana Peel Powder as an Adsorbent. Ecotoxicol. Environ. Saf. 2018, 148, 601–607; https://doi.org/10.1016/j.ecoenv.2017.10.075.Search in Google Scholar PubMed
28. Salahi, S.; Parvini, M.; Ghorbani, M. Equilibrium Studies in Adsorption of Hg (II) from Aqueous Solutions Using Biocompatible Polymeric Polypyrrole-Chitosan Nanocomposite. Polycyclic Aromat. Compd. 2014, 34 (3), 225–236; https://doi.org/10.1080/10406638.2014.886077.Search in Google Scholar
29. Xie, X.; Ma, X.; Guo, L.; Fan, Y.; Zeng, G.; Zhang, M.; Li, J. Novel Magnetic Multi-Templates Molecularly Imprinted Polymer for Selective and Rapid Removal and Detection of Alkylphenols in Water. Chem. Eng. J. 2019, 357, 56–65; https://doi.org/10.1016/j.cej.2018.09.080.Search in Google Scholar
30. Khan, S. Phase Engineering and Impact of External Stimuli for Phase Tuning in 2D Materials. Adv. Energy Convers. Mater. 2024, 40–55; https://doi.org/10.37256/aecm.5120243886.Search in Google Scholar
31. Khan, S.; Zheng, H.-W.; Jiao, H.; Saleem, S.; Gul, Z.; Al-Humaidi, J. Y.; Al Bahir, A.; Althomali, R. H.; Ali, A.; Rahman, M. M. Reduction Mechanism and Energy Transfer between Eu3+ and Eu2+ in Eu-Doped Materials Synthesized in Air Atmosphere. Rev. Inorg. Chem. 2024, https://doi.org/10.1515/revic-2024-0011.Search in Google Scholar
32. Zhang, Y.; Xie, Z.; Teng, X.; Fan, J. Synthesis of Molecularly Imprinted Polymer Nanoparticles for the Fast and Highly Selective Adsorption of Sunset Yellow. J. Sep. Sci. 2016, 39 (8), 1559–1566; https://doi.org/10.1002/jssc.201501295.Search in Google Scholar PubMed
33. Khan, S.; Rahman, F. U.; Ullah, I.; Khan, S.; Gul, Z.; Sadiq, F.; Ahmad, T.; Shakil Hussain, S. M.; Ali, I.; Israr, M. Water Desalination, and Energy Consumption Applications of 2D Nano Materials: Hexagonal Boron Nitride, Graphenes, and Quantum Dots. Rev. Inorg. Chem. 2024, https://doi.org/10.1515/revic-2024-0013.Search in Google Scholar
34. Gul, Z.; Salman, M.; Khan, S.; Shehzad, A.; Ullah, H.; Irshad, M.; Zeeshan, M.; Batool, S.; Ahmed, M.; Altaf, A. A. Single Organic Ligands Act as a Bifunctional Sensor for Subsequent Detection of Metal and Cyanide Ions, a Statistical Approach toward Coordination and Sensitivity. Crit. Rev. Anal. Chem. 2023, 1–17; https://doi.org/10.1080/10408347.2023.2186165.Search in Google Scholar PubMed
35. Shafqat, S. R.; Bhawani, S. A.; Bakhtiar, S.; Ibrahim, M. N. M. Synthesis of Molecularly Imprinted Polymer for Removal of Congo Red. BMC Chem. 2020, 14, 1–15; https://doi.org/10.1186/s13065-020-00680-8.Search in Google Scholar PubMed PubMed Central
36. Zhu, Q.; Wang, L.; Wu, S.; Joseph, W.; Gu, X.; Tang, J. Selectivity of Molecularly Imprinted Solid Phase Extraction for Sterol Compounds. Food Chem. 2009, 113 (2), 608–615; https://doi.org/10.1016/j.foodchem.2008.07.044.Search in Google Scholar
37. Cardoso, A. T.; Martins, R. O.; Lanças, F. M.; Chaves, A. R. Molecularly Imprinted Polymers in Online Extraction Liquid Chromatography Methods: Current Advances and Recent Applications. Anal. Chim. Acta 2023, 341952; https://doi.org/10.1016/j.aca.2023.341952.Search in Google Scholar PubMed
38. Fan, Y.; Zeng, G.; Ma, X. Multi-templates Surface Molecularly Imprinted Polymer for Rapid Separation and Analysis of Quinolones in Water. Environ. Sci. Pollut. Res. 2020, 27, 7177–7187; https://doi.org/10.1007/s11356-019-07437-4.Search in Google Scholar PubMed
39. Regal, P.; Díaz-Bao, M.; Barreiro, R.; Cepeda, A.; Fente, C. Application of Molecularly Imprinted Polymers in Food Analysis: Clean-Up and Chromatographic Improvements. Cent. Eur. J. Chem. 2012, 10, 766–784; https://doi.org/10.2478/s11532-012-0016-3.Search in Google Scholar
40. Ndunda, E. N. Molecularly Imprinted Polymers—A Closer Look at the Control Polymer Used in Determining the Imprinting Effect: A Mini Review. J. Mol. Recognit. 2020, 33 (11), e2855; https://doi.org/10.1002/jmr.2855.Search in Google Scholar PubMed
41. Danylec, B.; Schwarz, L. J.; Harris, S. J.; Boysen, R. I.; Hearn, M. T. The Application of Template Selectophores for the Preparation of Molecularly Imprinted Polymers. Molecules 2015, 20 (9), 17601–17613; https://doi.org/10.3390/molecules200917601.Search in Google Scholar PubMed PubMed Central
42. Pardo, A.; Mespouille, L.; Dubois, P.; Blankert, B.; Duez, P. Molecularly Imprinted Polymers: Compromise between Flexibility and Rigidity for Improving Capture of Template Analogues. Chem. – Eur. J. 2014, 20 (12), 3500–3509; https://doi.org/10.1002/chem.201303216.Search in Google Scholar PubMed
43. Moreno-Bondi, M. C.; Navarro-Villoslada, F.; Benito-Pena, E.; Urraca, J. L. Molecularly Imprinted Polymers as Selective Recognition Elements in Optical Sensing. Curr. Anal. Chem. 2008, 4 (4), 316–340; https://doi.org/10.2174/157341108785914925.Search in Google Scholar
44. Baggiani, C.; Anfossi, L.; Baravalle, P.; Giovannoli, C.; Tozzi, C. Selectivity Features of Molecularly Imprinted Polymers Recognising the Carbamate Group. Anal. Chim. Acta 2005, 531 (2), 199–207; https://doi.org/10.1016/j.aca.2004.10.025.Search in Google Scholar
45. Cheong, W. J.; Ali, F.; Choi, J. H.; Lee, J. O.; Sung, K. Y. Recent Applications of Molecular Imprinted Polymers for Enantio-Selective Recognition. Talanta 2013, 106, 45–59; https://doi.org/10.1016/j.talanta.2012.11.049.Search in Google Scholar PubMed
46. Levi, L.; Raim, V.; Srebnik, S. A Brief Review of Coarse‐grained and Other Computational Studies of Molecularly Imprinted Polymers. J. Mol. Recognit. 2011, 24 (6), 883–891; https://doi.org/10.1002/jmr.1135.Search in Google Scholar PubMed
47. Xu, D.; Zhu, W.; Wang, C.; Tian, T.; Cui, J.; Li, J.; Wang, H.; Li, G. Molecularly Imprinted Photonic Polymers as Sensing Elements for the Creation of Cross‐Reactive Sensor Arrays. Chem. – Eur. J. 2014, 20 (50), 16620–16625; https://doi.org/10.1002/chem.201404101.Search in Google Scholar PubMed
48. Shimizu, K. D.; Stephenson, C. J. Molecularly Imprinted Polymer Sensor Arrays. Curr. Opin. Chem. Biol. 2010, 14 (6), 743–750; https://doi.org/10.1016/j.cbpa.2010.07.007.Search in Google Scholar PubMed
49. Yu, X.; Fu, L.; Wang, T.; Liu, Z.; Niu, N.; Chen, L. Multivariate Chemical Analysis: From Sensors to Sensor Arrays. Chin. Chem. Lett. 2023, 109167; https://doi.org/10.1016/j.cclet.2023.109167.Search in Google Scholar
50. Lu, W.; Dong, X.; Qiu, L.; Yan, Z.; Meng, Z.; Xue, M.; He, X.; Liu, X. Colorimetric Sensor Arrays Based on Pattern Recognition for the Detection of Nitroaromatic Molecules. J. Hazard. Mater. 2017, 326, 130–137; https://doi.org/10.1016/j.jhazmat.2016.12.024.Search in Google Scholar PubMed
51. Li, Z.; Askim, J. R.; Suslick, K. S. The Optoelectronic Nose: Colorimetric and Fluorometric Sensor Arrays. Chem. Rev. 2018, 119 (1), 231–292; https://doi.org/10.1021/acs.chemrev.8b00226.Search in Google Scholar PubMed
52. Alberti, G.; Zanoni, C.; Spina, S.; Magnaghi, L. R.; Biesuz, R. Trends in Molecularly Imprinted Polymers (MIPs)-Based Plasmonic Sensors. Chemosensors 2023, 11 (2), 144; https://doi.org/10.3390/chemosensors11020144.Search in Google Scholar
53. Wright, A. T.; Anslyn, E. V. Differential Receptor Arrays and Assays for Solution-Based Molecular Recognition. Chem. Soc. Rev. 2006, 35 (1), 14–28; https://doi.org/10.1002/chin.200617279.Search in Google Scholar
54. Izumi, S.; Urano, Y.; Hanaoka, K.; Terai, T.; Nagano, T. A Simple and Effective Strategy to Increase the Sensitivity of Fluorescence Probes in Living Cells. J. Am. Chem. Soc. 2009, 131 (29), 10189–10200; https://doi.org/10.1021/ja902511p.Search in Google Scholar PubMed
55. Vendrell, M.; Zhai, D.; Er, J. C.; Chang, Y.-T. Combinatorial Strategies in Fluorescent Probe Development. Chem. Rev. 2012, 112 (8), 4391–4420; https://doi.org/10.1021/cr200355j.Search in Google Scholar PubMed
56. Dean, K. M.; Palmer, A. E. Advances in Fluorescence Labeling Strategies for Dynamic Cellular Imaging. Nat. Chem. Biol. 2014, 10 (7), 512–523; https://doi.org/10.1038/nchembio.1556.Search in Google Scholar PubMed PubMed Central
57. Fang, X.; Zheng, Y.; Duan, Y.; Liu, Y.; Zhong, W. Recent Advances in Design of Fluorescence-Based Assays for High-Throughput Screening. Anal. Chem. 2018, 91 (1), 482–504; https://doi.org/10.1021/acs.analchem.8b05303.Search in Google Scholar PubMed PubMed Central
58. Wang, Y.; Ma, X.; Peng, Y.; Liu, Y.; Zhang, H. Selective and Fast Removal and Determination of β-lactam Antibiotics in Aqueous Solution Using Multiple Templates Imprinted Polymers Based on Magnetic Hybrid Carbon Material. J. Hazard. Mater. 2021, 416, 126098; https://doi.org/10.1016/j.jhazmat.2021.126098.Search in Google Scholar PubMed
59. Guo, L.; Ma, X.; Xie, X.; Huang, R.; Zhang, M.; Li, J.; Zeng, G.; Fan, Y. Preparation of Dual-Dummy-Template Molecularly Imprinted Polymers Coated Magnetic Graphene Oxide for Separation and Enrichment of Phthalate Esters in Water. Chem. Eng. J. 2019, 361, 245–255; https://doi.org/10.1016/j.cej.2018.12.076.Search in Google Scholar
60. Reville, E. K.; Sylvester, E. H.; Benware, S. J.; Negi, S. S.; Berda, E. B. Customizable Molecular Recognition: Advancements in Design, Synthesis, and Application of Molecularly Imprinted Polymers. Polym. Chem. 2022, 13 (23), 3387–3411; https://doi.org/10.1039/d1py01472b.Search in Google Scholar
61. Hu, T.; Chen, R.; Wang, Q.; He, C.; Liu, S. Recent Advances and Applications of Molecularly Imprinted Polymers in Solid‐phase Extraction for Real Sample Analysis. J. Sep. Sci. 2021, 44 (1), 274–309; https://doi.org/10.1002/jssc.202000832.Search in Google Scholar PubMed
62. Yoshikawa, M.; Tharpa, K.; Dima, S.-O. Molecularly Imprinted Membranes: Past, Present, and Future. Chem. Rev. 2016, 116 (19), 11500–11528; https://doi.org/10.1021/acs.chemrev.6b00098.Search in Google Scholar PubMed
63. Feng, Q.; Zhao, L.; Lin, J.-M. Molecularly Imprinted Polymer as Micro-solid Phase Extraction Combined with High Performance Liquid Chromatography to Determine Phenolic Compounds in Environmental Water Samples. Anal. Chim. Acta 2009, 650 (1), 70–76; https://doi.org/10.1016/j.aca.2009.04.016.Search in Google Scholar PubMed
64. McCluskey, A.; Holdsworth, C. I.; Bowyer, M. C. Molecularly Imprinted Polymers (MIPs): Sensing, an Explosive New Opportunity? Org. Biomol. Chem. 2007, 5 (20), 3233–3244; https://doi.org/10.1039/b708660a.Search in Google Scholar PubMed
65. Aylaz, G.; Andaç, M.; Denizli, A.; Duman, M. Recognition of Human Hemoglobin with Macromolecularly Imprinted Polymeric Nanoparticles Using Non‐covalent Interactions. J. Mol. Recognit. 2021, 34 (12), e2935; https://doi.org/10.1002/jmr.2935.Search in Google Scholar PubMed
66. Hasanah, A. N.; Safitri, N.; Zulfa, A.; Neli, N.; Rahayu, D. Factors Affecting Preparation of Molecularly Imprinted Polymer and Methods on Finding Template-Monomer Interaction as the Key of Selective Properties of the Materials. Molecules 2021, 26 (18), 5612; https://doi.org/10.3390/molecules26185612.Search in Google Scholar PubMed PubMed Central
67. Murdaya, N.; Triadenda, A. L.; Rahayu, D.; Hasanah, A. N. A Review: Using Multiple Templates for Molecular Imprinted Polymer: Is it Good? Polymers 2022, 14 (20), 4441; https://doi.org/10.3390/polym14204441.Search in Google Scholar PubMed PubMed Central
68. Malik, M. I.; Shaikh, H.; Mustafa, G.; Bhanger, M. I. Recent Applications of Molecularly Imprinted Polymers in Analytical Chemistry. Sep. Purif. Rev. 2019, 48 (3), 179–219; https://doi.org/10.1080/15422119.2018.1457541.Search in Google Scholar
69. Marć, M.; Wieczorek, P. P. Introduction to MIP Synthesis, Characteristics and Analytical Application. In Comprehensive Analytical Chemistry; Elsevier, Vol. 86, 2019; pp. 1–15.10.1016/bs.coac.2019.05.010Search in Google Scholar
70. Pratama, K. F.; Manik, M. E. R.; Rahayu, D.; Hasanah, A. N. Effect of the Molecularly Imprinted Polymer Component Ratio on Analytical Performance. Chem. Pharm. Bull. 2020, 68 (11), 1013–1024; https://doi.org/10.1248/cpb.c20-00551.Search in Google Scholar PubMed
71. Wei, S.; Jakusch, M.; Mizaikoff, B. Capturing Molecules with Templated Materials—Analysis and Rational Design of Molecularly Imprinted Polymers. Anal. Chim. Acta 2006, 578 (1), 50–58; https://doi.org/10.1016/j.aca.2006.06.077.Search in Google Scholar PubMed
72. Zhang, L.; Cheng, G.; Fu, C. Synthesis and Characteristics of Tyrosine Imprinted Beads via Suspension Polymerization. React. Funct. Polym. 2003, 56 (3), 167–173; https://doi.org/10.1016/s1381-5148(03)00054-3.Search in Google Scholar
73. Kotrotsiou, O.; Chaitidou, S.; Kiparissides, C. On the Synthesis of Peptide Imprinted Polymers by a Combined Suspension—Epitope Polymerization Method. Mater. Sci. Eng. B 2009, 165 (3), 256–260; https://doi.org/10.1016/j.mseb.2009.05.006.Search in Google Scholar
74. Zu, B.; Zhang, Y.; Guo, X.; Zhang, H. Preparation of Molecularly Imprinted Polymers via Atom Transfer Radical “Bulk” Polymerization. J. Polym. Sci., Part A: Polym. Chem. 2010, 48 (3), 532–541; https://doi.org/10.1002/pola.23750.Search in Google Scholar
75. Hasanah, A. N.; Soni, D.; Pratiwi, R.; Rahayu, D.; Megantara, S. Mutakin, Synthesis of Diazepam‐imprinted Polymers with Two Functional Monomers in Chloroform Using a Bulk Polymerization Method. J. Chem. 2020, 2020 (1), 7282415.10.1155/2020/7282415Search in Google Scholar
76. Mohajeri, S. A.; Karimi, G.; Aghamohammadian, J.; Khansari, M. R. Clozapine Recognition via Molecularly Imprinted Polymers; Bulk Polymerization versus Precipitation Method. J. Appl. Polym. Sci. 2011, 121 (6), 3590–3595; https://doi.org/10.1002/app.34147.Search in Google Scholar
77. Zu, B.; Pan, G.; Guo, X.; Zhang, Y.; Zhang, H. Preparation of Molecularly Imprinted Polymer Microspheres via Atom Transfer Radical Precipitation Polymerization. J. Polym. Sci., Part A: Polym. Chem. 2009, 47 (13), 3257–3270; https://doi.org/10.1002/pola.23389.Search in Google Scholar
78. Dai, C.-M.; Zhou, X.-F.; Zhang, Y.-L.; Liu, S.-G.; Zhang, J. Synthesis by Precipitation Polymerization of Molecularly Imprinted Polymer for the Selective Extraction of Diclofenac from Water Samples. J. Hazard. Mater. 2011, 198, 175–181; https://doi.org/10.1016/j.jhazmat.2011.10.027.Search in Google Scholar PubMed
79. Zhang, H. Controlled/“living” Radical Precipitation Polymerization: A Versatile Polymerization Technique for Advanced Functional Polymers. Eur. Polym. J. 2013, 49 (3), 579–600; https://doi.org/10.1016/j.eurpolymj.2012.12.016.Search in Google Scholar
80. Zhang, Y.; Lu, Y.; Zhong, J.; Li, W.; Wei, Q.; Wang, K. Molecularly Imprinted Polymer Microspheres Prepared via the Two‐step Swelling Polymerization for the Separation of Lincomycin. J. Appl. Polym. Sci. 2019, 136 (37), 47938; https://doi.org/10.1002/app.47938.Search in Google Scholar
81. Erol, K.; Uzun, L. Two-step Polymerization Approach for Synthesis of Macroporous Surface Ion-Imprinted Cryogels. J. Macromol. Sci., Part A 2017, 54 (11), 867–875; https://doi.org/10.1080/10601325.2017.1342519.Search in Google Scholar
82. Zeng, G.; Liu, Y.; Ma, X.; Fan, Y. Fabrication of Magnetic Multi-Template Molecularly Imprinted Polymer Composite for the Selective and Efficient Removal of Tetracyclines from Water. Front. Environ. Sci. Eng. 2021, 15, 1–12; https://doi.org/10.1007/s11783-021-1395-5.Search in Google Scholar
83. Ashley, J.; Shahbazi, M.-A.; Kant, K.; Chidambara, V. A.; Wolff, A.; Bang, D. D.; Sun, Y. Molecularly Imprinted Polymers for Sample Preparation and Biosensing in Food Analysis: Progress and Perspectives. Biosens. Bioelectron. 2017, 91, 606–615; https://doi.org/10.1016/j.bios.2017.01.018.Search in Google Scholar PubMed
84. Foguel, M. V.; Ton, X.-A.; Zanoni, M. V.; Maria Del Pilar, T. S.; Haupt, K.; Bui, B. T. S. A Molecularly Imprinted Polymer-Based Evanescent Wave Fiber Optic Sensor for the Detection of Basic Red 9 Dye. Sens. Actuators, B 2015, 218, 222–228; https://doi.org/10.1016/j.snb.2015.05.007.Search in Google Scholar
85. Moczko, E.; Poma, A.; Guerreiro, A.; de Vargas Sansalvador, I. P.; Caygill, S.; Canfarotta, F.; Whitcombe, M. J.; Piletsky, S. Surface-modified Multifunctional MIP Nanoparticles. Nanoscale 2013, 5 (9), 3733–3741; https://doi.org/10.1039/c3nr00354j.Search in Google Scholar PubMed PubMed Central
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Material Properties
- Effect of epoxidized soybean oil on melting behavior of poly(l-lactic acid) and poly(d-lactic acid) blends after isothermal crystallization
- An experimental investigation on the influence of pore foaming agent particle size on cell morphology, hydrophobicity, and acoustic performance of open cell poly (vinylidene fluoride) polymeric foams
- Reinforcement of recycled polypropylene by nano lanthana with improved thermal, mechanical and antimicrobial properties
- Microstructure-mechanical property relationships of polymer nanocomposite reinforced with lyophilized montmorillonite/carbon nanotubes hybrid particles
- Preparation and Assembly
- Preparation and dynamic simulation of a hemin reversible associated copolymer with self-healing properties
- Molecularly imprinted polymer for the selective removal of direct violet 51 from wastewater: synthesis, characterization, and environmental applications
- Engineering and Processing
- Comparative analysis of 3D-printed and freeze-dried biodegradable gelatin methacrylate/ poly‐ε‐caprolactone- polyethylene glycol-poly‐ε‐caprolactone (GelMA/PCL-PEG-PCL) hydrogels for bone applications
- Thermally conductive and electrically insulated DGEBA-epoxy nano-composite fabricated by integrating GO/h-BN and rGO/h-BN hybrid for thermal management applications: a comparative analysis
Articles in the same Issue
- Frontmatter
- Material Properties
- Effect of epoxidized soybean oil on melting behavior of poly(l-lactic acid) and poly(d-lactic acid) blends after isothermal crystallization
- An experimental investigation on the influence of pore foaming agent particle size on cell morphology, hydrophobicity, and acoustic performance of open cell poly (vinylidene fluoride) polymeric foams
- Reinforcement of recycled polypropylene by nano lanthana with improved thermal, mechanical and antimicrobial properties
- Microstructure-mechanical property relationships of polymer nanocomposite reinforced with lyophilized montmorillonite/carbon nanotubes hybrid particles
- Preparation and Assembly
- Preparation and dynamic simulation of a hemin reversible associated copolymer with self-healing properties
- Molecularly imprinted polymer for the selective removal of direct violet 51 from wastewater: synthesis, characterization, and environmental applications
- Engineering and Processing
- Comparative analysis of 3D-printed and freeze-dried biodegradable gelatin methacrylate/ poly‐ε‐caprolactone- polyethylene glycol-poly‐ε‐caprolactone (GelMA/PCL-PEG-PCL) hydrogels for bone applications
- Thermally conductive and electrically insulated DGEBA-epoxy nano-composite fabricated by integrating GO/h-BN and rGO/h-BN hybrid for thermal management applications: a comparative analysis