Abstract
The hydrophobicity of polyolefin separators causes poor compatibility with the internal environment of lithium-ion batteries and thus elevates lithium-ion migration barriers. In this research, hydroxy-terminated hyperbranched polymer (HTHP) coated separators are fabricated successfully based on the simple and easy-on impregnation method. Abundant hydroxyl groups in HTHP reinforce separator electrolyte affinity, generating the much lower contact angle and higher electrolyte uptake. Accordingly, HTHP-coated separators show broader electrochemical window and superior ionic conductivity and Li+ transport number, which facilitate the Li+ migration within porous pathways and hence maximally weaken counteranions-induced polarizations. The lower interfacial resistances also guarantee the Li+ accelerated diffusion via the separator–electrodes interfaces. Therefore, batteries containing modified separators exhibit optimized C-rate capacity and cycling stability. However, immoderate HTHP coating blocks partial pores and thus restricts Li+ transference, which deteriorates C-rate capacity and cycling durability in turn. This separator modification scheme possesses advantages of simple preparation, environment-friendly, and low manufacturing cost, providing practical guidance for low-cost and high-performance separator manufacture.
Funding source: Liaocheng University Doctoral Initial Fund
Award Identifier / Grant number: 318052137
Funding source: Natural Science Foundation of Shandong Province
Award Identifier / Grant number: ZR2022QB050
-
Research ethics: All the authors have read and approved this version of the article, due care has been taken to ensure the integrity of the work and the work described has not been published previously. No part of this article has been published or submitted elsewhere.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: The authors thank the Natural Science Foundation of Shandong Province (ZR2022QB050) and the Liaocheng University Doctoral Initial Fund (318052137) for financial support.
-
Data availability: The raw data can be obtained on request from the corresponding author.
References
1. Zheng, S.; Shi, D.; Sun, T.; Zhang, L.; Zhang, W.; Li, Y.; Guo, Z.; Tao, Z.; Chen, J. Hydrogen Bond Networks Stabilized High-Capacity Organic Cathode for Lithium-Ion Batteries. Angew. Chem. 2023, 135, e202217710.10.1002/ange.202217710Search in Google Scholar
2. Jiang, F.; Cheng, X.; Yang, S.; Yang, S.; Xie, J.; Yuan, H.; Liu, L.; Huang, J.; Zhang, Q. Thermoresponsive Electrolytes for Safe Lithium Metal Batteries. Adv. Mater. 2023, 35, 202209114.10.1002/adma.202209114Search in Google Scholar PubMed
3. Gu, Z.; Cao, J.; Guo, J.; Wang, X.; Zhao, X.; Zheng, S.; Sun, Z.; Yang, J.; Zhang, K.; Liang, H.; Li, K.; Wu, X. Hybrid Binder Chemistry with Hydrogen-Bond Helix for High-Voltage Cathode of Sodium-Ion Batteries. J. Am. Chem. Soc. 2024, 146, 4652–4664.10.1021/jacs.3c11739Search in Google Scholar PubMed
4. Hu, X.; Li, Y.; Chen, Z.; Duan, C.; Yuan, B. Anchoring Porous F-TiO2 Particles by Directed-Assembly on PMIA Separators for Enhancing Safety and Electrochemical Performances of Li-Ion Batteries. Electrochim. Acta 2023, 443, 141926.10.1016/j.electacta.2023.141926Search in Google Scholar
5. Yang, Y.; Bai, Z.; Liu, S.; Zhu, Y.; Zheng, J.; Chen, G.; Huang, B. Self-Protecting Aqueous Lithium-Ion Batteries. Small 2022, 18, 2203035.10.1002/smll.202203035Search in Google Scholar PubMed
6. Yang, J.; Liu, H.; Zhao, X.; Zhang, X.; Zhang, K.; Ma, M.; Gu, Z.; Cao, J.; Wu, X. Janus Binder Chemistry for Synchronous Enhancement of Iodine Species Adsorption and Redox Kinetics Toward Sustainable Aqueous Zn-I2 Batteries. J. Am. Chem. Soc. 2024, 146, 6628–6637.10.1021/jacs.3c12638Search in Google Scholar PubMed
7. Jiang, C.; Jia, Q.; Tang, M.; Fan, K.; Chen, Y.; Sun, M.; Xu, S.; Wu, Y.; Zhang, C.; Ma, J.; Wang, C.; Hu, W. Regulating the Solvation Sheath of Li Ions by Using Hydrogen Bonds for Highly Stable Lithium-Metal Anodes. Angew. Chem., Int. Ed. 2021, 60, 10871–10879.10.1002/anie.202101976Search in Google Scholar PubMed
8. Zhu, J.; Yao, M.; Huang, S.; Tian, J.; Niu, Z. Thermal-Gated Polymer Electrolytes for Smart Zinc-Ion Batteries. Angew. Chem., Int. Ed. 2020, 59, 16480–16484.10.1002/anie.202007274Search in Google Scholar PubMed
9. Liu, Z., Jiang, Y., Hu, Q., Guo, S., Yu, L., Li, Q., Liu, Q., Hu, X. Safer Lithium-Ion Batteries from the Separator Aspect: Development and Future Perspectives. Energy Environ. Mater. 2021, 3, 336–362.10.1002/eem2.12129Search in Google Scholar
10. Liang, H.; Su, M.; Zhao, X.; Gu, Z.; Yang, J.; Guo, W.; Liu, Z.; Zhang, J.; Wu, X. Weakly-Solvating Electrolytes Enable Ultralow-Temperature (−80 °C) and High-Power CFx/Li Primary Batteries. Sci. China Chem. 2023, 66, 1982–1988.10.1007/s11426-023-1638-0Search in Google Scholar
11. Wang, F.; Ke, X.; Shen, K.; Zhu, L.; Yuan, C. A Critical Review on Materials and Fabrications of Thermally Stable Separators for Lithium-Ion Batteries. Adv. Mater. Technol. 2022, 7, 2100772.10.1002/admt.202100772Search in Google Scholar
12. Zhang, C.; Li, H.; Wang, S.; Cao, Y.; Yang, H.; Ai, X.; Zhong, F. A Polyethylene Microsphere-Coated Separator with Rapid Thermal Shutdown Function for Lithium-Ion Batteries. J. Energy Chem. 2020, 44, 33–40.10.1016/j.jechem.2019.09.017Search in Google Scholar
13. Yang, J. L., Zhao, X. X., Zhang, W., Ren, K., Luo, X. X., Cao, J. M., Zheng, S. H., Li, W. L., Wu, X. L. “Pore-Hopping” Ion Transport in Cellulose-Based Separator Towards High-Performance Sodium-Ion Batteries. Angew. Chem., Int. Ed. 2023, 62, e202300258.10.1002/anie.202300258Search in Google Scholar PubMed
14. Musarurwa, H.; Tavengwa, N. T. Stimuli-Responsive Polymers and Their Applications In Separation Science. React. Funct. Polym. 2022, 175, 105282.10.1016/j.reactfunctpolym.2022.105282Search in Google Scholar
15. Xing, J.; Bliznakov, S.; Bonville, L.; Oljaca, M.; Maric, R. A Review of Nonaqueous Electrolytes, Binders, And Separators For Lithium-Ion Batteries. Electrochem. Energy Rev. 2022, 5, 14.10.1007/s41918-022-00131-zSearch in Google Scholar
16. Cavers, H.; Molaiyan, P.; Abdollahifar, M.; Lassi, U.; Kwade, A. Perspectives on Improving The Safety and Sustainability of High Voltage Lithium-Ion Batteries Through the Electrolyte and Separator Region. Adv. Energy Mater. 2022, 12, 2200147.10.1002/aenm.202200147Search in Google Scholar
17. Ding, L.; Yan, N.; Zhang, S.; Xu, R.; Wu, T.; Yang, F.; Cao, Y.; Xiang, M. Low-Cost Mass Manufacturing Technique for the Shutdown-Functionalized Lithium-Ion Battery Separator Based on Al2O3 Coating Online Construction During the β-iPP Cavitation Process. ACS Appl. Mater. Interfaces 2022, 14, 6714–6728.10.1021/acsami.1c22080Search in Google Scholar PubMed
18. Ding, L.; Yan, N.; Zhang, S.; Xu, R.; Wu, T.; Yang, F.; Cao, Y.; Xiang, M. Low-Cost and Large-Scale Fabricating Technology for High-Performance Lithium-Ion Battery Composite Separators with Connected Nano-Al2O3 Coating. ACS Appl. Energy Mater. 2022, 5, 615–626.10.1021/acsaem.1c03137Search in Google Scholar
19. Kim, K.; Hwang, D.; Kim, S.; Park, S. O.; Cha, H.; Lee, Y. S.; Cho, J.; Kwak, S. K.; Choi, N. S. Cyclic Aminosilane-Based Additive Ensuring Stable Electrode–Electrolyte Interfaces in Li-Ion Batteries. Adv. Energy Mater. 2020, 10, 2000012.10.1002/aenm.202000012Search in Google Scholar
20. Li, H.; Wang, F.; Zhang, C.; Ji, W.; Qian, J.; Cao, Y.; Yang, H.; Ai, X. A Temperature-Sensitive Poly(3-Octylpyrrole)/Carbon Composite as a Conductive Matrix of Cathodes for Building Safer Li-Ion Batteries. Energy Storage Mater. 2019, 17, 275–283.10.1016/j.ensm.2018.07.007Search in Google Scholar
21. Chen, Z.; Hsu, P.; Lopez, J.; Li, Y.; To, J. W. F.; Liu, N.; Wang, C.; Andrews, S. C.; Liu, J.; Cui, Y.; Bao, Z. Fast and Reversible Thermoresponsive Polymer Switching Materials for Safer Batteries. Nat. Energy 2016, 1, 15009.10.1038/nenergy.2015.9Search in Google Scholar
22. Lin, C.; Zhang, H.; Song, Y.; Zhang, Y.; Yuan, J.; Zhu, B. Carboxylated Polyimide Separator with Excellent Lithium Ion Transport Properties for a High-Power Density Lithium-Ion Battery. J. Mater. Chem. A 2018, 6, 991–998.10.1039/C7TA08702KSearch in Google Scholar
23. Wang, Z.; Guo, F.; Chen, C.; Shi, L.; Yuan, S.; Sun, L.; Zhu, J. Self-Assembly of PEI/SiO2 on Polyethylene Separators for Li-Ion Batteries with Enhanced Rate Capability. ACS Appl. Mater. Interfaces 2015, 7, 3314–3322.10.1021/am508149nSearch in Google Scholar PubMed
24. Huang, X. Separator Technologies for Lithium-Ion Batteries. J. Solid State Electrochem. 2011, 15, 649–662.10.1007/s10008-010-1264-9Search in Google Scholar
25. Venugopal, G. Characterization of Thermal Cut-Off Mechanisms in Prismatic Lithium-Ion Batteries. J. Power Sources 2001, 101, 231–237.10.1016/S0378-7753(01)00782-0Search in Google Scholar
26. Rana, M.; Li, M.; Huang, X.; Luo, B.; Gentle, I.; Knibbe, R. Recent Advances in Separators to Mitigate Technical Challenges Associated with Re-chargeable Lithium Sulfur Batteries. J. Mater. Chem. A 2019, 7, 6596–6615.10.1039/C8TA12066HSearch in Google Scholar
27. Arora, P.; Zhang, Z. J. Battery Separators. Chem. Rev. 2004, 104, 4419–4462.10.1021/cr020738uSearch in Google Scholar PubMed
28. Yoneda, H.; Nishimura, Y.; Doi, Y.; Fukuda, M.; Kohno, M. Development of Microporous PE Films to Improve Lithium Ion Batteries. Polym. J. 2010, 42, 425–437.10.1038/pj.2010.25Search in Google Scholar
29. Ihm, D.; Noh, J.; Kim, J. Effect of Polymer Blending and Drawing Conditions on Properties of Polyethylene Separator Prepared for Li-Ion Secondary Battery. J. Power Sources 2002, 109, 388–393.10.1016/S0378-7753(02)00097-6Search in Google Scholar
30. Weighall, M. J. Recent Advances in Polyethylene Separator Technology. J. Power Sources 1991, 34, 257–268.10.1016/0378-7753(91)80092-CSearch in Google Scholar
31. Lin, Y.; Li, X.; Meng, L.; Chen, X.; Lv, F.; Zhang, Q.; Zhang, R.; Li, L. Structural Evolution of Hard-Elastic Isotactic Polypropylene Film during Uniaxial Tensile Deformation: The Effect of Temperature. Macromolecules 2018, 51, 2690–2705.10.1021/acs.macromol.8b00255Search in Google Scholar
32. Lin, Y.; Meng, L.; Wu, L.; Li, X.; Chen, X.; Zhang, Q.; Zhang, R.; Zhang, W.; Li, L. A Semi-quantitative Deformation Model for Pore Formation in Isotactic Polypropylene Microporous Membrane. Polymer 2015, 80, 214–227.10.1016/j.polymer.2015.10.067Search in Google Scholar
33. Xue, C.; Jin, D.; Nan, H.; Wei, H.; Chen, H.; Zhang, C.; Xu, S. A Novel Polymer-Modified Separator for High-Performance Lithium-Ion Batteries. J. Power Sources 2020, 449, 227548.10.1016/j.jpowsour.2019.227548Search in Google Scholar
34. Ding, L.; Li, D.; Liu, L.; Zhang, P.; Du, F.; Wang, C.; Zhang, D.; Zhang, S.; Zhang, S.; Yang, F. Dependence of Lithium Metal Battery Performances on Inherent Separator Porous Structure Regulation. J. Energy Chem. 2023, 84, 436–447.10.1016/j.jechem.2023.06.002Search in Google Scholar
35. Ding, L.; Xu, G.; Ge, Q.; Wu, T.; Yang, F.; Xiang, M. Effect of Fumed SiO2 on Pore Formation Mechanism and Various Performances of β-iPP Microporous Membrane Used for Lithium-Ion Battery Separator. Chin. J. Polym. Sci. 2018, 36, 536–545.10.1007/s10118-018-2029-7Search in Google Scholar
36. Chen, X.; Chen, S.; Lin, Y.; Wu, K.; Lu, S. Multi-functional Ceramic-Coated Separator for Lithium-Ion Batteries Safety Tolerance Improvement. Ceram. Int. 2020, 46, 24689–24697.10.1016/j.ceramint.2020.06.259Search in Google Scholar
37. Gong, W.; Zhang, Z.; Wei, S.; Ruan, S.; Shen, C.; Turng, L. Thermosensitive Polyacrylonitrile/Polyethylene Oxide/Polyacrylonitrile Membrane Separators for Prompt and Safer Thermal Lithium-Ion Battery Shutdown. J. Electrochem. Soc. 2020, 167, 20509.10.1149/1945-7111/ab615fSearch in Google Scholar
38. Zhong, G.; Wang, Y.; Wang, C.; Wang, Z.; Guo, S.; Wang, L.; Liang, X.; Xiang, H. An AlOOH-Coated Polyimide Electrospun Fibrous Membrane as a High-Safety Lithium-Ion Battery Separator. Ionics 2019, 25, 2677–2684.10.1007/s11581-018-2716-ySearch in Google Scholar
39. Li, Z.; Xiong, Y.; Sun, S.; Zhang, L.; Li, S.; Liu, X.; Xu, Z.; Xu, S. Tri-layer Nonwoven Membrane with Shutdown Property and High Robustness as a High-Safety Lithium Ion Battery Separator. J. Membr. Sci. 2018, 565, 50–60.10.1016/j.memsci.2018.07.094Search in Google Scholar
40. Li, D.; Shi, D.; Yuan, Z.; Feng, K.; Zhang, H.; Li, X. A Low Cost Shutdown Sandwich-like Composite Membrane with Superior Thermo-Stability for Lithium-Ion Battery. J. Membr. Sci. 2017, 542, 1–7.10.1016/j.memsci.2017.07.051Search in Google Scholar
41. Chen, W.; Shi, L.; Wang, Z.; Zhu, J.; Yang, H.; Mao, X.; Chi, M.; Sun, L.; Yuan, S. Porous Cellulose Diacetate-SiO2 Composite Coating on Polyethylene Separator for High-Performance Lithium-Ion Battery. Carbohydr. Polym. 2016, 147, 517–524.10.1016/j.carbpol.2016.04.046Search in Google Scholar PubMed
42. Jeon, K. S.; Nirmala, R.; Navamathavan, R.; Kim, K. J.; Chae, S. H.; Kim, T. W.; Kim, H. Y.; Park, S. J. The Study of Efficiency of Al2O3 Drop Coated Electrospun Meta-Aramid Nanofibers as Separating Membrane in Lithium-Ion Secondary Batteries. Mater. Lett. 2014, 132, 384–388.10.1016/j.matlet.2014.06.117Search in Google Scholar
43. Cai, H.; Tong, X.; Chen, K.; Shen, Y.; Wu, J.; Xiang, Y.; Wang, Z.; Li, J. Electrospun Polyethylene Terephthalate Nonwoven Reinforced Polypropylene Separator: Scalable Synthesis and its Lithium Ion Battery Performance. Polymers 2018, 10, 574.10.3390/polym10060574Search in Google Scholar PubMed PubMed Central
44. Ji, W.; Jiang, B.; Ai, F.; Yang, H.; Ai, X. Temperature-Responsive Microspheres-Coated Separator for Thermal Shutdown Protection of Lithium Ion Batteries. RSC Adv. 2014, 5, 172–176.10.1039/C4RA11500GSearch in Google Scholar
45. Xu, H.; Usseglio-Viretta, F.; Kench, S.; Cooper, S. J.; Finegan, D. P. Microstructure Reconstruction of Battery Polymer Separators by Fusing 2D and 3D Image Data for Transport Property Analysis. J. Power Sources 2020, 480, 229101.10.1016/j.jpowsour.2020.229101Search in Google Scholar
46. Francis, C. F. J.; Kyratzis, I. L.; Best, A. S. Lithium-Ion Battery Separators for Ionic-Liquid Electrolytes: A Review. Adv. Mater. 2020, 32, 1904205.10.1002/adma.201904205Search in Google Scholar PubMed
47. Landesfeind, J.; Gasteiger, H. A. Temperature and Concentration Dependence of the Ionic Transport Properties of Lithium-Ion Battery Electrolytes. J. Electrochem. Soc. 2019, 166, A3079–A3097.10.1149/2.0571912jesSearch in Google Scholar
48. Guo, Y.; Ying, Y.; Mao, Y.; Peng, X.; Chen, B. Polystyrene Sulfonate Threaded through a Metal-Organic Framework Membrane for Fast and Selective Lithium-Ion Separation. Angew. Chem. 2016, 128, 15344–15348.10.1002/ange.201607329Search in Google Scholar
49. Dong, G.; Liu, B.; Sun, G.; Tian, G.; Qi, S.; Wu, D. TiO2 Nanoshell@Polyimide Nanofiber Membrane Prepared via a Surface-Alkaline-Etching and In-Situ Complexation-Hydrolysis Strategy for Advanced and Safe LIB Separator. J. Membr. Sci. 2019, 577, 249–257.10.1016/j.memsci.2019.02.003Search in Google Scholar
50. Kim, J.; Lee, D.; Jung, H.; Sun, Y.; Hassoun, J.; Scrosati, B., Lithium-Sulfur Batteries: An Advanced Lithium-Sulfur Battery (Adv. Funct. Mater. 8/2013). Adv. Funct. Mater. 2013, 23, 1092.10.1002/adfm.201370039Search in Google Scholar
51. Deng, X.; Huang, Y.; Song, A.; Liu, B.; Yin, Z.; Wu, Y.; Lin, Y.; Wang, M.; Li, X.; Cao, H. Gel Polymer Electrolyte with High Performances Based on Biodegradable Polymer Polyvinyl Alcohol Composite Lignocellulose. Mater. Chem. Phys. 2019, 229, 232–241.10.1016/j.matchemphys.2019.03.014Search in Google Scholar
52. He, C.; Liu, J.; Li, J.; Zhu, F.; Zhao, H. Blending Based Polyacrylonitrile/Poly(Vinyl Alcohol) Membrane for Rechargeable Lithium Ion Batteries. J. Membr. Sci. 2018, 560, 30–37.10.1016/j.memsci.2018.05.013Search in Google Scholar
53. Xiao, W.; Zhao, L.; Gong, Y.; Liu, J.; Yan, C. Preparation and Performance of Poly(vinyl Alcohol) Porous Separator for Lithium-Ion Batteries. J. Membr. Sci. 2015, 487, 221–228.10.1016/j.memsci.2015.04.004Search in Google Scholar
54. Zhang, Z.; Yuan, W.; Li, L. Enhanced Wettability and Thermal Stability of Nano-SiO2/Poly(Vinyl Alcohol)-Coated Polypropylene Composite Separators for Lithium-Ion Batteries. Particuology 2018, 37, 91–98.10.1016/j.partic.2017.10.001Search in Google Scholar
55. Ding, L.; Yan, N.; Zhang, S.; Xu, R.; Wu, T.; Yang, F.; Cao, Y.; Xiang, M. Separator Impregnated with Polyvinyl Alcohol to Simultaneously Improve Electrochemical Performances and Compression Resistance. Electrochim. Acta 2022, 403, 139568.10.1016/j.electacta.2021.139568Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Material Properties
- Effect of hydroxy-terminated hyperbranched polymer coated separator on the lithium-ion battery performances
- Enhanced properties of Nafion nanofibrous proton exchange membranes by altering the electrospinning solvents
- Impact of proximity of hard and soft segment on IR frequency of carbamate links correlating the mechanical properties of surface-functionalized fly ash–reinforced polyurethane composites
- Effect of cellulose derivatives on crystallization and mechanical properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)
- Preparation and Assembly
- Transparent poly(methyl methacrylate-butyl acrylate-hexafluorobutyl methacrylate) for conservation of stone relics: synthesis and test
- Dry porous polydimethylsiloxane (PDMS): a novel method using camphor as scaffold
- Engineering and Processing
- Mixing performance in an asymmetrical non-twin kneading element channel
- Utilizing ResNet for enhanced quality prediction in PET production: an AI-driven approach
Articles in the same Issue
- Frontmatter
- Material Properties
- Effect of hydroxy-terminated hyperbranched polymer coated separator on the lithium-ion battery performances
- Enhanced properties of Nafion nanofibrous proton exchange membranes by altering the electrospinning solvents
- Impact of proximity of hard and soft segment on IR frequency of carbamate links correlating the mechanical properties of surface-functionalized fly ash–reinforced polyurethane composites
- Effect of cellulose derivatives on crystallization and mechanical properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)
- Preparation and Assembly
- Transparent poly(methyl methacrylate-butyl acrylate-hexafluorobutyl methacrylate) for conservation of stone relics: synthesis and test
- Dry porous polydimethylsiloxane (PDMS): a novel method using camphor as scaffold
- Engineering and Processing
- Mixing performance in an asymmetrical non-twin kneading element channel
- Utilizing ResNet for enhanced quality prediction in PET production: an AI-driven approach