Home Development of a high-strength carrageenan fiber with a small amount of aluminum ions pre-crosslinked in spinning solution
Article
Licensed
Unlicensed Requires Authentication

Development of a high-strength carrageenan fiber with a small amount of aluminum ions pre-crosslinked in spinning solution

  • Liting Jia , Xiao Han , Hongjie Zhai , Cuixia Qiao , Cunzhen Geng , Zhixin Xue ORCID logo EMAIL logo and Yanzhi Xia
Published/Copyright: October 26, 2023
Become an author with De Gruyter Brill

Abstract

In this work, an improved wet spinning method was proposed to prepare high-tensile-strength carrageenan fibers by pre-crosslinking process. Pre-crosslinking was achieved by adding a small amount of Al3+ ions into the spinning solution. The properties of the carrageenan spinning solution were analyzed by polarizing microscope, dynamic light scattering, and viscosity, the results showed that the modified spinning solution pre-crosslinked with Al3+ ions was orderly and high-viscosity, and the average particle size of the spinning solution was increased. The properties of the carrageenan fibers were characterized using scanning electron microscope, Fourier transform infrared spectroscopy, X-ray diffraction spectroscopy, X-ray photoelectron spectroscopy, and tensile tests. The results showed that the new carrageenan fibers were formed by coordination and ionic bonds between Al3+, –OH and sulfate groups. The tensile strength was up to 1.77 cN/dtex of Al-3.0/CAF (the best of newly prepared carrageenan fiber in this work), which is the highest strength carrageenan fiber prepared at present. Compared with the traditional process, this method reduced the concentration of Al3+ ions in coagulation bath and stretch bath, thus saving the production cost and protecting the environment.


Corresponding author: Zhixin Xue, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; and Department of Traditional Chinese Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China, E-mail:

Funding source: Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China

Award Identifier / Grant number: IRT14R30

Award Identifier / Grant number: ZR2020ME061

Funding source: State Key Laboratory of Bio-Fibers and Eco-Textiles of Qingdao University

Award Identifier / Grant number: ZFT201810, ZKT17, TSKT202107)

Funding source: Program of the National Natural Science Foundation of China

Award Identifier / Grant number: 52173037

  1. Research ethics: There are no research ethics issues involved in this article.

  2. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  3. Competing interest: The authors declare no conflicts of interest regarding this article.

  4. Research funding: This work was financially supported by the Program of the National Natural Science Foundation of China (52173037), Natural Science Foundation of Shandong Province (ZR2020ME061), State Key Laboratory of Bio-Fibers and Eco-Textiles of Qingdao University (ZFT201810, ZKT17, TSKT202107), and the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (IRT14R30).

  5. Data availability: The data availability of the article is high, ensuring that users can access the data they need.

References

1. Xue, Z., Zhang, W., Yan, M., Liu, J., Wang, B., Xia, Y. Pyrolysis products and thermal degradation mechanism of intrinsically flame-retardant carrageenan fiber. RSC Adv. 2017, 7, 25253–25264; https://doi.org/10.1039/c7ra01076a.Search in Google Scholar

2. Zhou, W., Zhang, H., Yu, Y., Zou, X., Shi, J., Zhao, Y., Ye, Y. Dissolution mechanism of sodium alginate and properties of its regenerated fiber under low temperature. Int. J. Biol. Macromol. 2020, 810–819; https://doi.org/10.1016/j.ijbiomac.2020.06.192.Search in Google Scholar PubMed

3. Yuguchi, Y., Urakawa, H., Kajiwara, K. Structural characteristics of carrageenan gels: various types of counter ions. Food Hydrocolloids 2003, 17, 481–485; https://doi.org/10.1016/s0268-005x(03)00021-3.Search in Google Scholar

4. Siddiqui, A. A., Feroz, A., Khaki, P. S. S., Bano, B. Binding of lambda-carrageenan (a food additive) to almond cystatin: an insight involving spectroscopic and thermodynamic approach. Int. J. Biol. Macromol. 2017, 98, 684–690; https://doi.org/10.1016/j.ijbiomac.2017.01.143.Search in Google Scholar PubMed

5. Campo, V. L., Kawano, D. F., Braz da Silva Jr, D., Carvalho, I. Carrageenans: biological properties, chemical modifications and structural analysis – a review. Carbohydr. Polym. 2009, 77, 167–180; https://doi.org/10.1016/j.carbpol.2009.01.020.Search in Google Scholar

6. Dong, M., Xue, Z., Liu, J., Yan, M., Xia, Y., Wang, B. Preparation of carrageenan fibers with extraction of Chondrus via wet spinning process. Carbohydr. Polym. 2018, 194, 217–224; https://doi.org/10.1016/j.carbpol.2018.04.043.Search in Google Scholar PubMed

7. Kong, L., Ziegler, G. R. Fabrication of κ-carrageenan fibers by wet spinning: addition of ι-carrageenan. Food Hydrocolloids 2013, 30, 302–306; https://doi.org/10.1016/j.foodhyd.2012.06.011.Search in Google Scholar

8. Dong, M., Xue, Z. X., Wang, L. L., Xia, Y. Z. NaOH induced the complete dissolution of iota-carrageenan and the corresponding mechanism. Polymer 2018, 151, 334–339; https://doi.org/10.1016/j.polymer.2018.07.078.Search in Google Scholar

9. Zhang, W., Xue, Z., Yan, M., Liu, J., Xia, Y. Effect of epichlorohydrin on the wet spinning of carrageenan fibers under optimal parameter conditions. Carbohydr. Polym. 2016, 150, 232–240; https://doi.org/10.1016/j.carbpol.2016.05.032.Search in Google Scholar PubMed

10. Zhang, Q., Zhang, W., Geng, C., Xue, Z., Xia, Y., Qin, Y., Zhang, G. Study on the preparation and flame retardant properties of an eco-friendly potassium-calcium carrageenan fiber. Carbohydr. Polym. 2019, 206, 420–427; https://doi.org/10.1016/j.carbpol.2018.10.058.Search in Google Scholar PubMed

11. Wang, L., Zhao, X., Zhang, X., Dong, X., Cui, K., Xu, C., Li, X., Xia, Y. 2D-Planar decorated 3D-network enables strong synergistic mechanics and programmable shape transformations for alginate-based hydrogels. Chem. Eng. J. 2021, 405, 126619; https://doi.org/10.1016/j.cej.2020.126619.Search in Google Scholar

12. Dong, M., Wu, D., Han, J., Wang, Y., Xue, Z., Xia, Y. Comparison of two different preparation methods of wet-spun carrageenan fibers directly from chondrus extractions. ACS Omega 2020, 5, 6661–6665; https://doi.org/10.1021/acsomega.9b04435.Search in Google Scholar PubMed PubMed Central

13. Dong, M., Zhang, K., Wang, L., Han, J., Wang, Y., Xue, Z., Xia, Y. High-strength carrageenan fibers with compactly packed chain structure induced by combination of Ba2+ and ethanol. Carbohydr. Polym. 2020, 236, 116057; https://doi.org/10.1016/j.carbpol.2020.116057.Search in Google Scholar PubMed

14. Bhasin, A. K. K., Chauhan, P., Chaudhary, S. A novel sulfur-incorporated naphthoquinone as a selective “turn-on” fluorescence chemical sensor for rapid detection of Ba2+ ion in semi-aqueous medium. Sens. Actuators, B 2019, 294, 116–122; https://doi.org/10.1016/j.snb.2019.04.098.Search in Google Scholar

15. Buchner, M. R. Beryllium-associated diseases from a chemist’s point of view. Z. Naturforsch. B. 2020, 75, 405–412; https://doi.org/10.1515/znb-2020-0006.Search in Google Scholar

16. Li, G., Ma, Y., Wan, H., Chen, L., An, Y., Ye, Y., Zhou, H., Chen, J. Flake aluminum reinforced polyamideimide-polytetrafluoroethylene bonded solid lubricating composite coating for wear resistance and corrosion protection. Eur. Polym. J. 2021, 152, 110485; https://doi.org/10.1016/j.eurpolymj.2021.110485.Search in Google Scholar

17. Aslan, S. T., Yilmaz, E. A., Haciefendiog, T., Udum, Y. A., Toppare, L., Yildirim, E., Cirpan, A. Investigation the effect of pi bridge and side chain on photovoltaic properties of benzodithiophene and quinoxaline based conjugated polymers. Eur. Polym. J. 2022, 169, 111141; https://doi.org/10.1016/j.eurpolymj.2022.111141.Search in Google Scholar

18. Yu, S., Zuo, H., Xu, X., Ning, N., Yu, B., Zhang, L., Tian, M. Self-healable silicone elastomer based on the synergistic effect of the coordination and ionic bonds. ACS Appl. Polym. Mater. 2021, 3, 2667–2677; https://doi.org/10.1021/acsapm.1c00236.Search in Google Scholar

19. Mukherjee, M., Sen, B., Pal, S., Maji, A., Budhadev, D., Chattopadhyay, P. Development of a cell permeable red-shifted CHEF-based chemosensor for Al3+ ion by controlling PET. Spectrochim. Acta Part A 2016, 157, 11–16; https://doi.org/10.1016/j.saa.2015.11.032.Search in Google Scholar PubMed

20. Fu, M., Wu, Y., Zhang, Q., Xue, Z., Geng, C., Xia, Y. Study on the mechanical and flame retardant properties of a novel carrageenan fiber-CAF-K,Al. Eur. Polym. J. 2021, 150.10.1016/j.eurpolymj.2021.110408Search in Google Scholar

21. Sun, T. L., Kurokawa, T., Kuroda, S., Bin Ihsan, A., Akasaki, T., Sato, K., Haque, M. A., Nakajima, T., Gong, J. P. Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nat. Mater. 2013, 12, 932–937; https://doi.org/10.1038/nmat3713.Search in Google Scholar PubMed

22. Mujika, J. I., Ugalde, J. M., Lopez, X. Aluminum speciation in biological environments. The deprotonation of free and aluminum bound citrate in aqueous solution. Phys. Chem. Chem. Phys. 2012, 14, 12465–12475; https://doi.org/10.1039/c2cp40671c.Search in Google Scholar PubMed

23. Dong, M., Zhang, K., Wang, L., Han, J., Wang, Y., Xue, Z., Xia, Y. High-strength carrageenan fibers with compactly packed chain structure induced by combination of Ba2+ and ethanol. Carbohydr. Polym. 2020, 236, 116057; https://doi.org/10.1016/j.carbpol.2020.116057.Search in Google Scholar PubMed

24. Lequestel, J. Y., Cros, S., Mackie, W., Perez, S. Computer modeling of sulfated of sulfated carbohydrates – applications to carrageenans. Int. J. Biol. Macromol. 1995, 17, 161–175; https://doi.org/10.1016/0141-8130(95)92682-g.Search in Google Scholar PubMed

25. Han, J., Han, X., Xue, Z., Wang, Q., Xia, Y., Zhao, Z. An eco-friendly procedure for achieving high-yield carrageenan from Hypnea cervicornis suitable for wet spinning. J. Appl. Polym. Sci. 2021, 138, 50833.10.1002/app.50833Search in Google Scholar

26. Cao, Y., Li, S., Fang, Y., Nishinari, K., Phillips, G. O., Lerbret, A., Assifaoui, A. Specific binding of trivalent metal ions to λ-carrageenan. Int. J. Biol. Macromol. 2017, 109, 350–356; https://doi.org/10.1016/j.ijbiomac.2017.12.095.Search in Google Scholar PubMed

27. Duncke, A. C. P., Marinho, T. O., Barbato, C. N., Freitas, G. B., De Oliveira, M. C. K., Nele, M. Liquid crystal observations in emulsion fractions from Brazilian crude oils by polarized light microscopy. Energy Fuels 2016, 30, 3815–3820; https://doi.org/10.1021/acs.energyfuels.5b02943.Search in Google Scholar

28. Hattori, Y., Kitamura, M. Crystal orientation imaging of organic monolayer islands by polarized light microscopy. ACS Appl. Mater. Interfaces 2020, 12, 36428–36436; https://doi.org/10.1021/acsami.0c08672.Search in Google Scholar PubMed

29. Shao, C., Chang, H., Wang, M., Xu, F., Yang, J. High-strength, tough, and self-healing nanocomposite physical hydrogels based on the synergistic effects of dynamic hydrogen bond and dual coordination bonds. ACS Appl. Mater. Interfaces 2017, 9, 28305–28318; https://doi.org/10.1021/acsami.7b09614.Search in Google Scholar PubMed

30. Ruan, Y., Zhang, Z., Luo, H., Xiao, C., Zhou, F., Chi, R. Effects of metal ions on the flotation of apatite, dolomite and quartz. Minerals 2018, 8, 141–153; https://doi.org/10.3390/min8040141.Search in Google Scholar

31. Lima, P. H. L., Pereira, S. V. A., Rabello, R. B., Rodriguez-Castellón, E., Beppu, M. M., Chevallier, P., Mantovani, D., Vieira, R. S. Blood protein adsorption on sulfonated chitosan and kappa-carrageenan films. Colloids Surf. B 2013, 111, 719–725; https://doi.org/10.1016/j.colsurfb.2013.06.002.Search in Google Scholar PubMed

32. Facchi, S. P., De Oliveira, A. C., Bezerra, E. O. T., Vlcek, J., Hedayati, M., Reynolds, M. M., Kipper, M. J., Martins, A. F. Polycationic condensed tannin/polysaccharide-based polyelectrolyte multilayers prevent microbial adhesion and proliferation. Eur. Polym. J. 2020, 152, 110485.10.1016/j.eurpolymj.2020.109677Search in Google Scholar

33. Stamker, E., Levy-Ontman, O., Wolfson, A. Green procedure for aerobic oxidation of benzylic alcohols with palladium supported on iota-carrageenan in ethanol. Polymers 2021, 13, 498; https://doi.org/10.3390/polym13040498.Search in Google Scholar PubMed PubMed Central

34. Zouheir, M., Le, T.-A., Torop, J., Nikiforow, K., Khatib, M., Zohar, O., Haick, H., Huynh, T.-P. CuS-carrageenan composite grown from the gel/liquid interface. Chemsystemschem 2021, 3, 1–10; https://doi.org/10.1002/syst.202000063.Search in Google Scholar

35. Li, Y., Zhang, X., Lan, J., Xu, P., Sun, J. Porous Zn(Bmic)(AT) MOF with abundant amino groups and open metal sites for efficient capture and transformation of CO2. Inorg. Chem. 2019, 58, 13917–13926; https://doi.org/10.1021/acs.inorgchem.9b01762.Search in Google Scholar PubMed

36. Chen, K., Gan, Z., Horstmeier, S., White, J. L. Distribution of aluminum species in zeolite catalysts: 27Al NMR of framework, partially-coordinated framework, and non-framework moieties. J. Am. Chem. Soc. 2021, 143, 6669–6680; https://doi.org/10.1021/jacs.1c02361.Search in Google Scholar PubMed PubMed Central

37. Cao, Y., Li, S., Fang, Y., Nishinari, K., Phillips, G. O., Lerbret, A., Assifaoui, A. Specific binding of trivalent metal ions to lambda-carrageenan. Int. J. Biol. Macromol. 2018, 109, 350–356; https://doi.org/10.1016/j.ijbiomac.2017.12.095.Search in Google Scholar PubMed

38. Zhai, H., Qiao, C., Geng, C., Xia, Y., Zhao, G., Xue, Z. Study on the flame retardancy of carrageenan fiber papers. J. Polym. Eng. 2023, 43, 310–317; https://doi.org/10.1515/polyeng-2022-0237.Search in Google Scholar

39. Roh, Y. H., Shin, C. S. Preparation and characterization of alginate-carrageenan complex films. J. Appl. Polym. Sci. 2006, 99, 3483–3490; https://doi.org/10.1002/app.22971.Search in Google Scholar

Received: 2023-06-24
Accepted: 2023-09-07
Published Online: 2023-10-26
Published in Print: 2023-11-27

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2023-0151/pdf
Scroll to top button