Startseite PVA-borax/g-C3N4 nanocomposite hydrogel with excellent mechanical property and self-healing efficiency
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

PVA-borax/g-C3N4 nanocomposite hydrogel with excellent mechanical property and self-healing efficiency

  • Shishan Xue EMAIL logo , Dengliang He , Xianchun Hu , Yuqian Cao , Jinliang Ge und Shuxin Liu
Veröffentlicht/Copyright: 20. Juni 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Most self-healing hydrogels always exhibited poor mechanical property which largely limited the applications in many fields. In this work, g-C3N4 nanosheets were introduced to the PVA-borax hydrogel to reinforce the network without sacrificing the self-healing ability. The obtained hydrogel displayed remarkable tensile strength (0.98 MPa), Young’s modulus (1.54 MPa) and toughness (4.43 MJ m−3), of which the self-healing efficiency reached to 99 % in 10 min at room temperature. Overall, the strategy proposed in this work provides a simple, operatable and moderate approach to hydrogel with both excellent mechanical property and self-healing ability.


Corresponding author: Shishan Xue, School of Chemistry and Chemical Engineering, Mianyang Normal University, Mianxing West Road No. 166, Mianyang City, 62100, China, E-mail:

Funding source: Mianyang Teacher’s College Start-up Funding

Award Identifier / Grant number: 71/QD2021A11

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: S. X. thanks Mianyang Teacher’s College Start-up Funding (71/QD2021A11) for financial support.

  3. Conflict of interest statement: The authors declare that they have no conflicts of interest regarding this article.

References

1. Zhang, Y. S., Khademhosseini, A. Advances in engineering hydrogels. Science 2017, 356, 3627; https://doi.org/10.1126/science.aaf3627.Suche in Google Scholar PubMed PubMed Central

2. Guo, M. L., Wu, Y. P., Xue, S. S., Xia, Y. M., Yang, X., Dzenis, Y., Lei, W. W., Smith, A. T., Sun, L. A highly stretchable, ultra-tough, remarkably tolerant, and robust self-healing glycerol-hydrogel for a dual-responsive soft actuator. J. Mater. Chem. A 2019, 7, 25969; https://doi.org/10.1039/c9ta10183g.Suche in Google Scholar

3. Xue, S. S., Wu, Y. P., Liu, G. F., Guo, M. L., Zhang, T., Wang, Z. H. Hierarchically reversible crosslinking polymeric hydrogels with highly efficient self-healing, robust mechanical properties, and double-driven shape memory behavior. J. Mater. Chem. A 2021, 9, 5730–5739; https://doi.org/10.1039/d0ta10850b.Suche in Google Scholar

4. Luo, X., Wu, Y. P., Guo, M. L., Yang, X., Xie, L. Y., Lai, J. J., Li, Z. Y., Zhou, H. W. Multi-functional polyurethane composites with self-healing and shape memory properties enhanced by graphene oxide. J. Appl. Polym. Sci. 2021, 138, 50827; https://doi.org/10.1002/app.50827.Suche in Google Scholar

5. Hia, I. L., Pasbakhsh, P., Vahedi, V. Self-healing polymer composites: prospects, challenges, and applications. Polym. Rev. 2016, 56, 225–261; https://doi.org/10.1080/15583724.2015.1106555.Suche in Google Scholar

6. Wen, N., Song, T. T., Ji, Z. H., Jiang, D. W., Wu, Z. J., Wang, Y., Guo, Z. H. Recent advancements in self-healing materials: mechanicals, performances and features. React. Funct. Polym. 2021, 168, 105041; https://doi.org/10.1016/j.reactfunctpolym.2021.105041.Suche in Google Scholar

7. Qi, H. Z., Zhao, Y. H., Zhu, K. Y., Yuan, X. Y. Research progresses in self-healing polymer materials. Prog. Chem. 2011, 23, 2560–2567.Suche in Google Scholar

8. Hu, Z., Zhang, D. Y., Lu, F., Yuan, W. H., Xu, X. R., Zhang, Q., Liu, H., Shao, Q., Guo, Z. H., Huang, Y. D. Multistimuli-responsive intrinsic self-healing epoxy resin constructed by host-guest interactions. Macromolecules 2018, 51, 5294–5303; https://doi.org/10.1021/acs.macromol.8b01124.Suche in Google Scholar

9. Liu, H., Xiong, C., Tao, Z., Fan, Y., Tang, X., Yang, H. Zwitterionic copolymer-based and hydrogen bonding-strengthened self-healing hydrogel. RSC Adv. 2015, 5, 33083–33088; https://doi.org/10.1039/c4ra15003a.Suche in Google Scholar

10. Darabi, M. A., Khosrozadeh, A., Mbeleck, R., Liu, Y., Chang, Q., Jiang, J., Cai, J., Wang, Q., Luo, G., Xing, M. Skin-inspired multifunctional autonomic-intrinsic conductive self-healing hydrogels with pressure sensitivity, stretchability, and 3D printability. Adv. Mater. 2017, 29, 1700533; https://doi.org/10.1002/adma.201700533.Suche in Google Scholar PubMed

11. Ji, Z. Y., Wang, H., Chen, Z., Wang, P. P., Liu, J., Wang, J. Q., Hu, M. M., Fei, J. B., Nie, N. Y., Huang, Y. A both microscopically and macroscopically intrinsic self-healing long lifespan yarn battery. Energy Storage Mater. 2020, 28, 334–341; https://doi.org/10.1016/j.ensm.2020.03.020.Suche in Google Scholar

12. Chen, L. J., Shao, J., Yu, Q. J., Wang, S. High-strength, anti-fatigue, stretchable self-healing polyvinyl alcohol hydrogel based on borate bonds and hydrogen bonds. J. Dispersion Sci. Technol. 2022, 43, 690–703; https://doi.org/10.1080/01932691.2020.1844740.Suche in Google Scholar

13. Ai, J. Y., Li, K., Li, J. B., Yu, F., Ma, J. Super flexible, fatigue resistant, self-healing PVA/xylan/borax hydrogel with dual-crosslinked network. Int. J. Biol. Macromol. 2021, 172, 66–73; https://doi.org/10.1016/j.ijbiomac.2021.01.038.Suche in Google Scholar PubMed

14. Zhang, H. J., Xia, H. S., Zhao, Y. Poly(vinyl alcohol) hydrogel can autonomously self-heal. ACS Macro Lett. 2012, 1, 1233–1236; https://doi.org/10.1021/mz300451r.Suche in Google Scholar PubMed

15. Zhao, D. W., Feng, M., Zhang, L., He, B., Chen, X. Y., Sun, J. Facile synthesis of self-healing and layered sodium alginate/polyacrylamide hydrogel promoted by dynamic hydrogen bond. Carbohydr. Polym. 2021, 256, 117580; https://doi.org/10.1016/j.carbpol.2020.117580.Suche in Google Scholar PubMed

16. Wu, G. F., Jin, K. Y., Liu, L., Zhang, H. X. A rapid self-healing hydrogel based on PVA and sodium alginate with conductive and cold-resistant properties. Soft Matter 2020, 16, 3319–3324; https://doi.org/10.1039/c9sm02455g.Suche in Google Scholar PubMed

17. Xue, S. S., Liu, G. F., Lai, J. J., An, P., Liu, Y., Wu, Y. P., Wang, Y., Ye, Z. Y., Tang, Q., Zhou, H. W. Boron nitride nanosheets strengthened PVA/borax hydrogels with highly efficient self-healing and rapid pH-driven shape memory effect. Macromol. Mater. Eng. 2021, 306, 2100415; https://doi.org/10.1002/mame.202100415.Suche in Google Scholar

18. Yang, W. J., Wang, X. D., Zhang, R., Wang, Y. X., Qiu, Q., Yuwen, L. H., Wang, L. H. A hybrid polyvinyl alcohol/molybdenum disulfide nanosheet hydrogel with light-triggered rapid self-healing capability. J. Mater. Chem. B 2021, 9, 2266–2274; https://doi.org/10.1039/d0tb02830d.Suche in Google Scholar PubMed

19. Wang, B. B., Dai, L., Hunter, L. A., Zhang, L., Yang, G. H., Chen, J. C. A., Zhang, X. Y., He, Z. B., Ni, Y. H. A multifunctional nanocellulose-based hydrogel for strain sensing and self-powering applications. Carbohydr. Polym. 2021, 268, 118210; https://doi.org/10.1016/j.carbpol.2021.118210.Suche in Google Scholar PubMed

20. Wang, H. Q., Li, J. C., Ding, N., Zeng, X. H., Tang, X., Sun, Y., Lei, T. Z., Lin, L. Eco-friendly polymer nanocomposite hydrogel enhanced by cellulose nanocrystal and graphitic-like carbon nitride nanosheet. Chem. Eng. J. 2020, 386, 124021; https://doi.org/10.1016/j.cej.2020.124021.Suche in Google Scholar

21. Hu, S. Z., Wang, K. Y., Li, P., Wang, F., Kang, X. X., Wu, G. The effect of hydroxyl group grafting on the photocatalytic phenolic compounds oxidation ability of g-C3N4 prepared by a novel H2O2-alkali hydrothermal method. Appl. Surf. Sci. 2020, 513, 145783; https://doi.org/10.1016/j.apsusc.2020.145783.Suche in Google Scholar

22. Jing, L., Li, H., Tay, R. Y., Sun, B., Tsang, S. H., Cometto, O., Lin, J., Teo, E. H. T., Tok, A. I. Y. Biocompatible hydroxylated boron nitride nanosheets/poly(vinyl alcohol) interpenetrating hydrogels with enhanced mechanical and thermal responses. ACS Nano 2017, 11, 3742–3751; https://doi.org/10.1021/acsnano.6b08408.Suche in Google Scholar PubMed

23. Wang, Y. X., Wang, Z. C., Wu, K. L., Wu, J. N., Meng, G. H., Liu, Z. Y., Guo, X. H. Synthesis of cellulose-based double-network hydrogels demonstrating high strength, self-healing, and antibacterial properties. Carbohydr. Polym. 2017, 168, 112–120; https://doi.org/10.1016/j.carbpol.2017.03.070.Suche in Google Scholar PubMed

24. He, X. Y., Zhang, C. Y., Wang, M., Zhang, Y. L., Liu, L. Q., Yang, W. An electrically and mechanically autonomic self-healing hybrid hydrogel with tough and thermoplastic properties. ACS Appl. Mater. Interfaces 2017, 9, 11134–11143; https://doi.org/10.1021/acsami.7b00358.Suche in Google Scholar PubMed

25. Gong, Z. Y., Zhang, G. P., Zeng, X. L., Li, J. H., Li, G., Huang, W. P., Sun, R., Wong, C. P. High-strength, tough, fatigue resistant, and self-healing hydrogel based on dual physically cross-linked network. ACS Appl. Mater. Interfaces 2016, 8, 24030–24037; https://doi.org/10.1021/acsami.6b05627.Suche in Google Scholar PubMed

26. Liang, Y. P., Li, M., Yang, Y. T., Qiao, L. P., Guo, B. L. pH/glucose dual responsive metformin release hydrogeldressings with adhesion and self-healing via dual-dynamic bonding for athletic diabetic foot wound healing. ACS Nano 2022, 16, 3194–3207; https://doi.org/10.1021/acsnano.1c11040.Suche in Google Scholar PubMed

27. Liang, Y. Q., Xu, H. R., Li, Z. L., Zhang, A., Guo, B. L. Bioinspired injectable self-healing hydrogel sealant with fault-tolerant and repeated thermo-responsive adhesion for sutureless post-wound-closure and wound healing. Nano-Micro Lett. 2022, 14, 185; https://doi.org/10.1007/s40820-022-00928-z.Suche in Google Scholar PubMed PubMed Central

28. Li, J. Y., Illeperuma, W. B. K., Suo, Z. G., Vlassak, J. J. Hybrid hydrogels with extremely high stiffness and toughness. ACS Macro Lett. 2014, 3, 520–523; https://doi.org/10.1021/mz5002355.Suche in Google Scholar PubMed

29. Cui, Z. H., Martinez, A. P., Adamson, D. H. PMMA functionalized boron nitride sheets as nanofillers. Nanoscale 2015, 7, 10193–10197; https://doi.org/10.1039/c5nr00936g.Suche in Google Scholar PubMed

30. Xue, S. S., Wu, Y. P., Guo, M. L., Liu, D., Zhang, T., Lei, W. W. Fabrication of poly(acrylic acid)/boron nitride composite hydrogels with excellent mechanical properties and rapid self-healing through hierarchically physical interactions. Nanoscale Res. Lett. 2018, 13, 393; https://doi.org/10.1186/s11671-018-2800-2.Suche in Google Scholar PubMed PubMed Central


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/polyeng-2023-0069).


Received: 2023-03-24
Accepted: 2023-06-07
Published Online: 2023-06-20
Published in Print: 2023-08-28

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 26.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2023-0069/html
Button zum nach oben scrollen