Abstract
The aim of the present work is the development and characterization of new formulation of emulsified films based on soluble starch/sodium alginate blend and microcrystalline wax. The developed films were studied in order to use them as new formulations to produce food packaging. The obtained films were generally homogeneous, thin, and slightly flexible. These films appeared more opaque compared to the non-emulsified film. Incorporation of microcrystalline wax was caused modifications of mechanical properties of films; these modifications were principally due to the formation of amylose–lipid complex. It was found that microcrystalline significantly reduced film water vapor permeability (WVP) of emulsified films. Atomic force microscope (AFM) was used to evaluate surface topography and roughness of the films. The surface topography was significantly affected, in the other word high roughness values were obtained. Microemultion formation in which the microcrystalline wax particles are distributed homogeneously within the polymer matrix was investigated by scanning electron microscopy (SEM). Moreover, the polysaccharides blend/microcrystalline wax emulsified films can be useful as a biodegradable packaging material to maintain the quality of food products.
Acknowledgments
The authors wish to express their gratitude to the Faculty of Engineering of University of Boumerdes and Laboratory of Coating Materials and Environment for providing the facilities and technical assistance for this research.
-
Research ethics: The local Institutional Review Board deemed the study exempt from review.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
1. Mangaraj, S., Yadav, A., Bal, L. M., Dash, S. K., Mahanti, N. K. J. Package Technol. Res. 2019, 3, 77–96; https://doi.org/10.1007/s41783-018-0049-y.Search in Google Scholar
2. Maria, F. R. F., Jeysson, S. S., Manuel, F. V., Sonia, R. B., Luis, E. D. Bioengineering 2021, 8, 154.Search in Google Scholar
3. Rodrigo, A., Till, T., Lars, B., Christina, A., Jessica, Z., Vivian, D., Camila, G., Alvaro, D. Rev. Environ. Sci. 2022, 21, 829–850.10.1007/s11157-022-09631-2Search in Google Scholar
4. Rodrigo, A., Munoz, M., Gerardo, C. P., Fiderman, M. M., Luis, A., Rodríguez, J. E., Diosa, E. V. Heliyon 2022, 8, e09028; https://doi.org/10.1016/j.heliyon.2022.e09028.Search in Google Scholar PubMed PubMed Central
5. Otoni, C. G., Avena-Bustillos, R. J., Azeredo, H. M. C., Lorevice, M. V., Moura, M. R., Mattoso, L. H. C., McHugh, T. H. Compr. Rev. Food Sci. 2017, 16, 1151–1169; https://doi.org/10.1111/1541-4337.12281.Search in Google Scholar PubMed
6. Hasan, M., Ajash, K. V., Maheshwari, C., Mangraj, S. Int. J. Chem. Stud. 2020, 8, 2242–2245; https://doi.org/10.22271/chemi.2020.v8.i1ah.8606.Search in Google Scholar
7. Salman, S., Mudasir, Y., Poonam, A. Curr. Res. Nutr. Food Sci. 2021, 4, 503–520.Search in Google Scholar
8. Prakash, J., Marana, V., Sivakumar, R., Sridharc, K. Carbohydr. Polym. 2013, 92, 1335–1347; https://doi.org/10.1016/j.carbpol.2012.09.069.Search in Google Scholar PubMed
9. Bertuzzi, M. A., Armada, M., Gottifredi, J. C. J. Food. Eng. 2007, 82, 17–25; https://doi.org/10.1016/j.jfoodeng.2006.12.016.Search in Google Scholar
10. Chenxi, W., Chen, G., Yang, Q., Yao, H., Aiquan, J., Zhengyu, J., Chao, Q., Jinpeng, W. J. Food. Eng. 2022, 312, 110752.Search in Google Scholar
11. Getnet, A., Belay, W., Hundessa, D. D., Garret, M. Int. J. Biol. Macromol. 2020, 155, 581–587.Search in Google Scholar
12. Yachuan, Z., Han, J. H. J. Food Sci. 2006, 71, 109–118.10.1016/j.jfoodeng.2004.09.030Search in Google Scholar
13. Chang, H. P., Geng, F., Yu, J., Ma, X. Carbohydr. Polym. 2010, 79, 306–311.10.1016/j.carbpol.2009.08.012Search in Google Scholar
14. Zheng, P., Chang, P., Yu, J., Ma, X. Carbohydr. Polym. 2009, 78, 296–301; https://doi.org/10.1016/j.carbpol.2009.03.044.Search in Google Scholar
15. Dai, H., Chang, P., Geng, F., Yu, J., Ma, X. Carbohydr. Polym. 2010, 80, 139–144; https://doi.org/10.1016/j.carbpol.2009.11.001.Search in Google Scholar
16. Hoque, M., Benjakul, S., Prodpran, H. Food. Hydrocoll. 2011, 25, 1085–1097; https://doi.org/10.1016/j.foodhyd.2010.10.005.Search in Google Scholar
17. Souza, R. C. R., Andrade, C. T. J. Appl. Polym. Sci. 2001, 81, 412–420; https://doi.org/10.1002/app.1453.Search in Google Scholar
18. Maher, Z. E., Entsar, S. A. Mater. Sci. Eng. C 2013, 33, 1819–1841.10.1016/j.msec.2013.01.010Search in Google Scholar PubMed
19. Rocío, Y. A. L., Adriana, I. R. H., Norberto, C. H. CyTA – J. Food. 2014, 12, 305–312.10.1080/19476337.2013.853207Search in Google Scholar
20. Larotonda, F., Hilliou, L., Sereno, A., Gonçalves, M. Proceedings of the 2nd Mercosur Congress on Chemical Engineering; Rio de Janeiro, 2005.Search in Google Scholar
21. ASTM E96-E80. Standard Test Methods for Water Vapor Transmission of Materials; Annual Book of ASTM Standards: Philadelphia, 1989; pp. 730–739.Search in Google Scholar
22. Al Mahdi, R. Mise au Point et Caractérisation de Films Comestibles à Base de Polysaccharides et de Matières Grasses. PhD thesis; National Polytechnic Institute of Lorraine: France, 2006.Search in Google Scholar
23. Shima, J., Abd, K. A., Fazilah, A., Shahrom, M. Int. J. Food Prop. 2018, 21, 983–995.10.1080/10942912.2018.1474056Search in Google Scholar
24. Limpan, N., Prodpran, T., Benjakul, S., Prasarpan, S. J. Food. Process. Eng. 2010, 100, 85–92; https://doi.org/10.1016/j.jfoodeng.2010.03.031.Search in Google Scholar
25. Jiménez, A., Fabra, M. J., Talens, P., Chiralt, A. Food. Hydrocoll. 2012, 26, 302–310; https://doi.org/10.1016/j.foodhyd.2011.06.009.Search in Google Scholar
26. Wu, J., Sun, X., Guo, X., Ge, S., Zhang, Q. Aquac. Fish. 2017, 2, 1–8.10.1016/j.aaf.2017.06.004Search in Google Scholar
27. Quezada-Gallo, J. A., Debeaufort, F., Callegarin, A., Voilley, J. J. Membr. Sci. 2000, 180, 37–46; https://doi.org/10.1016/s0376-7388(00)00531-7.Search in Google Scholar
28. Sabina, G., Justyna, K. Food. Technol. Biotechnol. 2016, 54, 78–89.Search in Google Scholar
29. Jiménez, A., Fabra, M. J., Talens, P., Chiralt, A. Carbohydr. Polym. 2010, 82, 585–593; https://doi.org/10.1016/j.carbpol.2010.05.014.Search in Google Scholar
30. Aqila, Z. N., Junaidah, J., Sherif, A. A., Norasmah, M. M. Sci. Res. J. 2020, 17, 221–245.Search in Google Scholar
31. Bahareh, S., Quan, V. V., Suwimol, C., John, B. G., Christopher, J. S., Costas, E. S. Foods 2016, 5, 1–18.Search in Google Scholar
32. Slavutsky, A. M., Bertuzzi, M. A. Food. Packag. Shelf. Life. 2016, 7, 41–46; https://doi.org/10.1016/j.fpsl.2016.01.004.Search in Google Scholar
33. Galus, S., Kadzinska, J. Food. Technol. Biotechnol. 2016, 54, 78–89; https://doi.org/10.1016/j.foodhyd.2015.06.013.Search in Google Scholar
34. Ghasemlou, M., Aliheidari, N., Fahmi, R., Shojaee-Aliabadi, S., Keshavarz, B., Cran, M. J., Khaksar, R. Carbohydr. Polym. 2013, 98, 1117–1126; https://doi.org/10.1016/j.carbpol.2013.07.026.Search in Google Scholar PubMed
35. Suput, D., Popovic, S., Hromis, N., Bulut, S., Lazic, V. J. Process. Energy Agric. 2019, 23, 61–65.Search in Google Scholar
36. Morillon, V., Debeaufort, F., Blond, G., Capelle, M., Voilley, A. Crit. Rev. Food. Sci. Nutr. 2002, 42, 67–89; https://doi.org/10.1080/10408690290825466.Search in Google Scholar PubMed
37. Fabra, M. J., Talens, P., Chiralt, A. J. Food. Eng. 2008, 85, 393–400; https://doi.org/10.1016/j.jfoodeng.2007.07.022.Search in Google Scholar
38. Hagenmaier, R. D., Shaw, P. E. J. Agric. Food Chem. 1990, 38, 1799–1803; https://doi.org/10.1021/jf00099a004.Search in Google Scholar
39. Gontard, N. D. C., Duchez, C., Cuq, J. L., Guilbert, S. Int. J. Food Sci. Technol. 1994, 29, 39–50; https://doi.org/10.1111/j.1365-2621.1994.tb02045.x.Search in Google Scholar
40. Schmidt, V. C. R., Porto, L. M., Laurindo, J. B., Menegalli, F. C. Ind. Crops. Prod. 2013, 41, 227–234; https://doi.org/10.1016/j.indcrop.2012.04.038.Search in Google Scholar
41. Fennema, O., DonhoweI, G., Kester, J. J. J. Food. Eng. 1994, 22, 225–239; https://doi.org/10.1016/0260-8774(94)90032-9.Search in Google Scholar
42. Wanga, R., Liua, P., Cuia, B., Kanga, X., Yua, B., Qiu, L., Sun, C. Int. J. Biol. Macromol. 2020, 156, 1330–1336; https://doi.org/10.1016/j.ijbiomac.2019.11.173.Search in Google Scholar PubMed
43. Helene, C., Surjani, U., Ingrid, A. M. A., Michael, J. G., Elliot, P. G., Amparo, L. R. J. Agric. Food Chem. 2007, 55, 9883–9890; https://doi.org/10.1021/jf071974e.Search in Google Scholar PubMed
44. Raphaelides, S., Dimitreli, G., Exarhopoulos, S., Mintzas, D., Lykidou, A. Carbohydr. Polym. 2012, 88, 282–289; https://doi.org/10.1016/j.carbpol.2011.12.003.Search in Google Scholar
45. Lilin, C., Xiao, Z., Bruce, R. H., Hui, Z., Osvaldo, H. C. Carbohydr. Polym. 2019, 216, 157–166.Search in Google Scholar
46. Khanzadia, M., Jafaria, S. M., Mirzaeia, H., Cheginib, F. K., Maghsoudloua, Y., Dehnada, D. Carbohydr. Polym. 2015, 118, 24–29.Search in Google Scholar
47. Landmann, W., Lovegren, N. V., Feuge, R. O. J. Am. Oil Chem. Soc. 1960, 37, 1–4; https://doi.org/10.1007/bf02630810.Search in Google Scholar
48. Xiao, J., Wang, W., Wang, K., Liu, Y., Liu, A., Zhang, S., Zhao, Y. Food. Hydrocoll. 2016, 60, 243–251; https://doi.org/10.1016/j.foodhyd.2016.03.042.Search in Google Scholar
49. Acosta, S., Jimenez, A., Chafer, M., Gonzalez, M. C., Chiralt, A. Food. Hydrocoll. 2015, 49, 135–143; https://doi.org/10.1016/j.foodhyd.2015.03.015.Search in Google Scholar
50. Ma, W., Tang, C., Yin, S., Yang, X., Wang, Q., Liu, F., Wei, Z. Food Res. Int. 2012, 49, 572–579; https://doi.org/10.1016/j.foodres.2012.07.037.Search in Google Scholar
51. Raisi-Nafchi, M., Kavoosi1, G., Nasiri, S. M. Acad. J. Food. Res. 2016, 4, 1–10.Search in Google Scholar
52. Ghasemlou, M., Khodaiyan, F., Oromiehie, A., Yarmand, M. S. Int. J. Biol. Macromol. 2011, 49, 378–384; https://doi.org/10.1016/j.ijbiomac.2011.05.013.Search in Google Scholar PubMed
53. Supardan, M. D., Annisa, Y., Arpi, N., Satriana, A. W., Mustapha, W. Int. J. Adv. Sci. Eng. Inf. Technol. 2016, 6, 216–220; https://doi.org/10.18517/ijaseit.6.2.736.Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Material Properties
- Effect of super critical carbon dioxide and alkali treatment on oxygen barrier properties of thermoplastic starch/poly(vinyl alcohol) films
- Promoting antibacterial activity of polyurethane blend films by regulating surface-enrichment of SiO2 bactericidal agent
- Improving anti-aging performance of terminal blend rubberized bitumen by using graft activated crumb rubber
- An experimental investigation of flame retardancy and thermal stability of treated and untreated kenaf fiber reinforced epoxy composites
- Preparation and properties of ABS/BNNS composites with high thermal conductivity for FDM
- Development of a high-strength carrageenan fiber with a small amount of aluminum ions pre-crosslinked in spinning solution
- Development and characterization of new formulation of biodegradable emulsified film based on polysaccharides blend and microcrystalline wax
- Study on the volatilization behavior of monomer and oligomers in polyamide-6 melt by dynamic film–forming device
- Engineering and Processing
- Numerical simulation on the mixing behavior of double-wave screw under speed sinusoidal pulsating enhancement induced by differential drive
- Numerical and experimental studies on the influence of gas pressure on particle size during gas-assisted extrusion of tubes with embedded antibacterial particles
Articles in the same Issue
- Frontmatter
- Material Properties
- Effect of super critical carbon dioxide and alkali treatment on oxygen barrier properties of thermoplastic starch/poly(vinyl alcohol) films
- Promoting antibacterial activity of polyurethane blend films by regulating surface-enrichment of SiO2 bactericidal agent
- Improving anti-aging performance of terminal blend rubberized bitumen by using graft activated crumb rubber
- An experimental investigation of flame retardancy and thermal stability of treated and untreated kenaf fiber reinforced epoxy composites
- Preparation and properties of ABS/BNNS composites with high thermal conductivity for FDM
- Development of a high-strength carrageenan fiber with a small amount of aluminum ions pre-crosslinked in spinning solution
- Development and characterization of new formulation of biodegradable emulsified film based on polysaccharides blend and microcrystalline wax
- Study on the volatilization behavior of monomer and oligomers in polyamide-6 melt by dynamic film–forming device
- Engineering and Processing
- Numerical simulation on the mixing behavior of double-wave screw under speed sinusoidal pulsating enhancement induced by differential drive
- Numerical and experimental studies on the influence of gas pressure on particle size during gas-assisted extrusion of tubes with embedded antibacterial particles