Home Development and characterization of new formulation of biodegradable emulsified film based on polysaccharides blend and microcrystalline wax
Article
Licensed
Unlicensed Requires Authentication

Development and characterization of new formulation of biodegradable emulsified film based on polysaccharides blend and microcrystalline wax

  • Djalila Aoufi EMAIL logo , Nabila Belloul and Aicha Serier
Published/Copyright: October 23, 2023
Become an author with De Gruyter Brill

Abstract

The aim of the present work is the development and characterization of new formulation of emulsified films based on soluble starch/sodium alginate blend and microcrystalline wax. The developed films were studied in order to use them as new formulations to produce food packaging. The obtained films were generally homogeneous, thin, and slightly flexible. These films appeared more opaque compared to the non-emulsified film. Incorporation of microcrystalline wax was caused modifications of mechanical properties of films; these modifications were principally due to the formation of amylose–lipid complex. It was found that microcrystalline significantly reduced film water vapor permeability (WVP) of emulsified films. Atomic force microscope (AFM) was used to evaluate surface topography and roughness of the films. The surface topography was significantly affected, in the other word high roughness values were obtained. Microemultion formation in which the microcrystalline wax particles are distributed homogeneously within the polymer matrix was investigated by scanning electron microscopy (SEM). Moreover, the polysaccharides blend/microcrystalline wax emulsified films can be useful as a biodegradable packaging material to maintain the quality of food products.


Corresponding author: Djalila Aoufi, Research Center in Industrial Technologies (CRTI), Cheraga, Algeria; and Laboratory of Coating, Materials and Environment, Department of Industrial Process Engineering, M’hamed Bougara University (UMBB), Boumerdes 35000, Algeria, E-mail:

Acknowledgments

The authors wish to express their gratitude to the Faculty of Engineering of University of Boumerdes and Laboratory of Coating Materials and Environment for providing the facilities and technical assistance for this research.

  1. Research ethics: The local Institutional Review Board deemed the study exempt from review.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: Not applicable.

References

1. Mangaraj, S., Yadav, A., Bal, L. M., Dash, S. K., Mahanti, N. K. J. Package Technol. Res. 2019, 3, 77–96; https://doi.org/10.1007/s41783-018-0049-y.Search in Google Scholar

2. Maria, F. R. F., Jeysson, S. S., Manuel, F. V., Sonia, R. B., Luis, E. D. Bioengineering 2021, 8, 154.Search in Google Scholar

3. Rodrigo, A., Till, T., Lars, B., Christina, A., Jessica, Z., Vivian, D., Camila, G., Alvaro, D. Rev. Environ. Sci. 2022, 21, 829–850.10.1007/s11157-022-09631-2Search in Google Scholar

4. Rodrigo, A., Munoz, M., Gerardo, C. P., Fiderman, M. M., Luis, A., Rodríguez, J. E., Diosa, E. V. Heliyon 2022, 8, e09028; https://doi.org/10.1016/j.heliyon.2022.e09028.Search in Google Scholar PubMed PubMed Central

5. Otoni, C. G., Avena-Bustillos, R. J., Azeredo, H. M. C., Lorevice, M. V., Moura, M. R., Mattoso, L. H. C., McHugh, T. H. Compr. Rev. Food Sci. 2017, 16, 1151–1169; https://doi.org/10.1111/1541-4337.12281.Search in Google Scholar PubMed

6. Hasan, M., Ajash, K. V., Maheshwari, C., Mangraj, S. Int. J. Chem. Stud. 2020, 8, 2242–2245; https://doi.org/10.22271/chemi.2020.v8.i1ah.8606.Search in Google Scholar

7. Salman, S., Mudasir, Y., Poonam, A. Curr. Res. Nutr. Food Sci. 2021, 4, 503–520.Search in Google Scholar

8. Prakash, J., Marana, V., Sivakumar, R., Sridharc, K. Carbohydr. Polym. 2013, 92, 1335–1347; https://doi.org/10.1016/j.carbpol.2012.09.069.Search in Google Scholar PubMed

9. Bertuzzi, M. A., Armada, M., Gottifredi, J. C. J. Food. Eng. 2007, 82, 17–25; https://doi.org/10.1016/j.jfoodeng.2006.12.016.Search in Google Scholar

10. Chenxi, W., Chen, G., Yang, Q., Yao, H., Aiquan, J., Zhengyu, J., Chao, Q., Jinpeng, W. J. Food. Eng. 2022, 312, 110752.Search in Google Scholar

11. Getnet, A., Belay, W., Hundessa, D. D., Garret, M. Int. J. Biol. Macromol. 2020, 155, 581–587.Search in Google Scholar

12. Yachuan, Z., Han, J. H. J. Food Sci. 2006, 71, 109–118.10.1016/j.jfoodeng.2004.09.030Search in Google Scholar

13. Chang, H. P., Geng, F., Yu, J., Ma, X. Carbohydr. Polym. 2010, 79, 306–311.10.1016/j.carbpol.2009.08.012Search in Google Scholar

14. Zheng, P., Chang, P., Yu, J., Ma, X. Carbohydr. Polym. 2009, 78, 296–301; https://doi.org/10.1016/j.carbpol.2009.03.044.Search in Google Scholar

15. Dai, H., Chang, P., Geng, F., Yu, J., Ma, X. Carbohydr. Polym. 2010, 80, 139–144; https://doi.org/10.1016/j.carbpol.2009.11.001.Search in Google Scholar

16. Hoque, M., Benjakul, S., Prodpran, H. Food. Hydrocoll. 2011, 25, 1085–1097; https://doi.org/10.1016/j.foodhyd.2010.10.005.Search in Google Scholar

17. Souza, R. C. R., Andrade, C. T. J. Appl. Polym. Sci. 2001, 81, 412–420; https://doi.org/10.1002/app.1453.Search in Google Scholar

18. Maher, Z. E., Entsar, S. A. Mater. Sci. Eng. C 2013, 33, 1819–1841.10.1016/j.msec.2013.01.010Search in Google Scholar PubMed

19. Rocío, Y. A. L., Adriana, I. R. H., Norberto, C. H. CyTA – J. Food. 2014, 12, 305–312.10.1080/19476337.2013.853207Search in Google Scholar

20. Larotonda, F., Hilliou, L., Sereno, A., Gonçalves, M. Proceedings of the 2nd Mercosur Congress on Chemical Engineering; Rio de Janeiro, 2005.Search in Google Scholar

21. ASTM E96-E80. Standard Test Methods for Water Vapor Transmission of Materials; Annual Book of ASTM Standards: Philadelphia, 1989; pp. 730–739.Search in Google Scholar

22. Al Mahdi, R. Mise au Point et Caractérisation de Films Comestibles à Base de Polysaccharides et de Matières Grasses. PhD thesis; National Polytechnic Institute of Lorraine: France, 2006.Search in Google Scholar

23. Shima, J., Abd, K. A., Fazilah, A., Shahrom, M. Int. J. Food Prop. 2018, 21, 983–995.10.1080/10942912.2018.1474056Search in Google Scholar

24. Limpan, N., Prodpran, T., Benjakul, S., Prasarpan, S. J. Food. Process. Eng. 2010, 100, 85–92; https://doi.org/10.1016/j.jfoodeng.2010.03.031.Search in Google Scholar

25. Jiménez, A., Fabra, M. J., Talens, P., Chiralt, A. Food. Hydrocoll. 2012, 26, 302–310; https://doi.org/10.1016/j.foodhyd.2011.06.009.Search in Google Scholar

26. Wu, J., Sun, X., Guo, X., Ge, S., Zhang, Q. Aquac. Fish. 2017, 2, 1–8.10.1016/j.aaf.2017.06.004Search in Google Scholar

27. Quezada-Gallo, J. A., Debeaufort, F., Callegarin, A., Voilley, J. J. Membr. Sci. 2000, 180, 37–46; https://doi.org/10.1016/s0376-7388(00)00531-7.Search in Google Scholar

28. Sabina, G., Justyna, K. Food. Technol. Biotechnol. 2016, 54, 78–89.Search in Google Scholar

29. Jiménez, A., Fabra, M. J., Talens, P., Chiralt, A. Carbohydr. Polym. 2010, 82, 585–593; https://doi.org/10.1016/j.carbpol.2010.05.014.Search in Google Scholar

30. Aqila, Z. N., Junaidah, J., Sherif, A. A., Norasmah, M. M. Sci. Res. J. 2020, 17, 221–245.Search in Google Scholar

31. Bahareh, S., Quan, V. V., Suwimol, C., John, B. G., Christopher, J. S., Costas, E. S. Foods 2016, 5, 1–18.Search in Google Scholar

32. Slavutsky, A. M., Bertuzzi, M. A. Food. Packag. Shelf. Life. 2016, 7, 41–46; https://doi.org/10.1016/j.fpsl.2016.01.004.Search in Google Scholar

33. Galus, S., Kadzinska, J. Food. Technol. Biotechnol. 2016, 54, 78–89; https://doi.org/10.1016/j.foodhyd.2015.06.013.Search in Google Scholar

34. Ghasemlou, M., Aliheidari, N., Fahmi, R., Shojaee-Aliabadi, S., Keshavarz, B., Cran, M. J., Khaksar, R. Carbohydr. Polym. 2013, 98, 1117–1126; https://doi.org/10.1016/j.carbpol.2013.07.026.Search in Google Scholar PubMed

35. Suput, D., Popovic, S., Hromis, N., Bulut, S., Lazic, V. J. Process. Energy Agric. 2019, 23, 61–65.Search in Google Scholar

36. Morillon, V., Debeaufort, F., Blond, G., Capelle, M., Voilley, A. Crit. Rev. Food. Sci. Nutr. 2002, 42, 67–89; https://doi.org/10.1080/10408690290825466.Search in Google Scholar PubMed

37. Fabra, M. J., Talens, P., Chiralt, A. J. Food. Eng. 2008, 85, 393–400; https://doi.org/10.1016/j.jfoodeng.2007.07.022.Search in Google Scholar

38. Hagenmaier, R. D., Shaw, P. E. J. Agric. Food Chem. 1990, 38, 1799–1803; https://doi.org/10.1021/jf00099a004.Search in Google Scholar

39. Gontard, N. D. C., Duchez, C., Cuq, J. L., Guilbert, S. Int. J. Food Sci. Technol. 1994, 29, 39–50; https://doi.org/10.1111/j.1365-2621.1994.tb02045.x.Search in Google Scholar

40. Schmidt, V. C. R., Porto, L. M., Laurindo, J. B., Menegalli, F. C. Ind. Crops. Prod. 2013, 41, 227–234; https://doi.org/10.1016/j.indcrop.2012.04.038.Search in Google Scholar

41. Fennema, O., DonhoweI, G., Kester, J. J. J. Food. Eng. 1994, 22, 225–239; https://doi.org/10.1016/0260-8774(94)90032-9.Search in Google Scholar

42. Wanga, R., Liua, P., Cuia, B., Kanga, X., Yua, B., Qiu, L., Sun, C. Int. J. Biol. Macromol. 2020, 156, 1330–1336; https://doi.org/10.1016/j.ijbiomac.2019.11.173.Search in Google Scholar PubMed

43. Helene, C., Surjani, U., Ingrid, A. M. A., Michael, J. G., Elliot, P. G., Amparo, L. R. J. Agric. Food Chem. 2007, 55, 9883–9890; https://doi.org/10.1021/jf071974e.Search in Google Scholar PubMed

44. Raphaelides, S., Dimitreli, G., Exarhopoulos, S., Mintzas, D., Lykidou, A. Carbohydr. Polym. 2012, 88, 282–289; https://doi.org/10.1016/j.carbpol.2011.12.003.Search in Google Scholar

45. Lilin, C., Xiao, Z., Bruce, R. H., Hui, Z., Osvaldo, H. C. Carbohydr. Polym. 2019, 216, 157–166.Search in Google Scholar

46. Khanzadia, M., Jafaria, S. M., Mirzaeia, H., Cheginib, F. K., Maghsoudloua, Y., Dehnada, D. Carbohydr. Polym. 2015, 118, 24–29.Search in Google Scholar

47. Landmann, W., Lovegren, N. V., Feuge, R. O. J. Am. Oil Chem. Soc. 1960, 37, 1–4; https://doi.org/10.1007/bf02630810.Search in Google Scholar

48. Xiao, J., Wang, W., Wang, K., Liu, Y., Liu, A., Zhang, S., Zhao, Y. Food. Hydrocoll. 2016, 60, 243–251; https://doi.org/10.1016/j.foodhyd.2016.03.042.Search in Google Scholar

49. Acosta, S., Jimenez, A., Chafer, M., Gonzalez, M. C., Chiralt, A. Food. Hydrocoll. 2015, 49, 135–143; https://doi.org/10.1016/j.foodhyd.2015.03.015.Search in Google Scholar

50. Ma, W., Tang, C., Yin, S., Yang, X., Wang, Q., Liu, F., Wei, Z. Food Res. Int. 2012, 49, 572–579; https://doi.org/10.1016/j.foodres.2012.07.037.Search in Google Scholar

51. Raisi-Nafchi, M., Kavoosi1, G., Nasiri, S. M. Acad. J. Food. Res. 2016, 4, 1–10.Search in Google Scholar

52. Ghasemlou, M., Khodaiyan, F., Oromiehie, A., Yarmand, M. S. Int. J. Biol. Macromol. 2011, 49, 378–384; https://doi.org/10.1016/j.ijbiomac.2011.05.013.Search in Google Scholar PubMed

53. Supardan, M. D., Annisa, Y., Arpi, N., Satriana, A. W., Mustapha, W. Int. J. Adv. Sci. Eng. Inf. Technol. 2016, 6, 216–220; https://doi.org/10.18517/ijaseit.6.2.736.Search in Google Scholar

Received: 2023-04-03
Accepted: 2023-09-08
Published Online: 2023-10-23
Published in Print: 2023-11-27

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2023-0048/pdf?lang=en
Scroll to top button