Abstract
In this study, controlled release of trans-chalcone was achieved by using a polycaprolactone-based hybrid system as the drug carrier material. Encapsulation efficiency was obtained in the range of 70–75% for various formulations and in vitro release studies, conducted at 37 °C and pH 7.4, revealed slow profile reaching 60% cumulative release. As interpreted from kinetic modelling, drug release was controlled mainly by Fickian diffusion; polymer erosion did not contribute to the TC release. Difference in drug loading efficiencies of the hybrid and neat PCL microparticles was observed such that PCL microparticles had lower loading efficiency than the hybrid microparticles whereas the release profiles were similar. pH of the release medium had affected release profiles; acidic medium enhanced drug release. Characterization of the microparticles were realized by FT-IR, TGA, DSC, SEM and WCA which revealed key properties such as molecular dispersion state and hydrophilicity. With the results obtained, we concluded that our hybrid system has a significant potential for long term release of trans-chalcone.
Funding source: Istanbul Teknik Üniversitesi
Award Identifier / Grant number: MDK-2019-42177
Acknowledgements
The FT-IR analysis was provided by Beykent University Chemical Engineering Department.
-
Author contributions: All the authors have accepted respon-sibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This study is funded by Istanbul Technical University Scientific Research Projects Coordination Depart-ment. Grant number: MDK-2019-42177.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Passalacqua, T. G., Dutra, L. A., De Almeida, L., Velásquez, A. M. A., Esteves, F. A. T., Yamasaki, P. R., Dos Santos Bastos, M., Regasini, L. O., Michels, P. A. M., Da Silva Bolzani, V., Graminha, M. A. S. Synthesis and evaluation of novel prenylated chalcone derivatives as anti-leishmanial and anti-trypanosomal compounds. Bioorg. Med. Chem. Lett. 2015, 25, 3342–3345; https://doi.org/10.1016/j.bmcl.2015.05.072.Search in Google Scholar PubMed
2. Bortolotto, L. F. B., Barbosa, F. R., Silva, G., Bitencourt, T. A., Beleboni, R. O., Baek, S. J., Marins, M., Fachin, A. L. Cytotoxicity of trans-chalcone and licochalcone a against breast cancer cells is due to apoptosis induction and cell cycle arrest. Biomed. Pharmacother. 2017, 85, 425–433; https://doi.org/10.1016/j.biopha.2016.11.047.Search in Google Scholar PubMed
3. Silva, G., Marins, M., Fachin, A. L., Lee, S. H., Baek, S. J. Anti-cancer activity of trans-chalcone in osteosarcoma: involvement of sp1 and p53. Mol. Carcinog. 2016, 55, 1438–1448; https://doi.org/10.1002/mc.22386.Search in Google Scholar PubMed
4. Siqueira, E. D. S., Concato, V. M., Tomiotto-Pellissier, F., Silva, T. F., Bortoleti, B. T. da S., Gonçalves, M. D., Costa, I. N., Junior, W. A. V., Pavanelli, W. R., Panis, C., Mantovani, M. S., Miranda-Sapla, M. M., Conchon-Costa, I. Trans-chalcone induces death by autophagy mediated by p53 up-regulation and β-catenin down-regulation on human hepatocellular carcinoma huh7.5 cell line. Phytomedicine 2021, 80, 153373; https://doi.org/10.1016/j.phymed.2020.153373..Search in Google Scholar PubMed
5. Coelho, D., Veleirinho, B., Mazzarino, L., Alberti, T., Buzanello, E., Oliveira, R. E., Yunes, R. A., Moraes, M., Steindel, M., Maraschin, M. Polyvinyl alcohol-based electrospun matrix as a delivery system for nanoemulsion containing chalcone against Leishmania (Leishmania) amazonensis. Colloids Surf., B 2021, 198, 111390; https://doi.org/10.1016/j.colsurfb.2020.111390.Search in Google Scholar PubMed
6. Piñero, J., Temporal, R. M., Silva-Gonçalves, A. J., Jiménez, I. A., Bazzocchi, I. L., Oliva, A., Perera, A., Leon, L. L., Valladares, B. New administration model of trans-chalcone biodegradable polymers for the treatment of experimental leishmaniasis. Acta Trop. 2006, 98, 59–65; https://doi.org/10.1016/j.actatropica.2006.02.001.Search in Google Scholar PubMed
7. Miranda-Sapla, M. M., Tomiotto-Pellissier, F., Assolini, J. P., Carloto, A. C. M., Bortoleti, B. T. D. S., Gonçalves, M. D., Tavares, E. R., Rodrigues, J. H. da S., Simão, A. N. C., Yamauchi, L. M., Nakamura, C. V., Verri, W. A., Costa, I. N., Conchon-Costa, I., Pavanelli, W. R. Trans-chalcone modulates leishmania amazonensis infection in vitro by nrf2 overexpression affecting iron availability. Eur. J. Pharmacol. 2019, 853, 275–288; https://doi.org/10.1016/j.ejphar.2019.03.049.Search in Google Scholar PubMed
8. Martinez, R. M., Pinho-Ribeiro, F. A., Vale, D. L., Steffen, V. S., Vicentini, F. T. M. C., Vignoli, J. A., Baracat, M. M., Georgetti, S. R., Verri, W. A., Casagrande, R. Trans-chalcone added in topical formulation inhibits skin inflammation and oxidative stress in a model of ultraviolet B radiation skin damage in hairless mice. J. Photochem. Photobiol. B Biol. 2017, 171, 139–146; https://doi.org/10.1016/j.jphotobiol.2017.05.002.Search in Google Scholar PubMed
9. Karimi-Sales, E., Ebrahimi-Kalan, A., Alipour, M. R. Preventive effect of trans-chalcone on non-alcoholic steatohepatitis: improvement of hepatic lipid metabolism. Biomed. Pharmacother. 2019, 109, 1306–1312; https://doi.org/10.1016/j.biopha.2018.10.196.Search in Google Scholar PubMed
10. Staurengo-Ferrari, L., Ruiz-Miyazawa, K. W., Pinho-Ribeiro, F. A., Fattori, V., Zaninelli, T. H., Badaro-Garcia, S., Borghi, S. M., Carvalho, T. T., Alves-Filho, J. C., Cunha, T. M., Cunha, F. Q., Casagrande, R., Verri, W. A. Trans-chalcone attenuates pain and inflammation in experimental acute gout arthritis in mice. Front. Pharmacol. 2018, 9, 1123; https://doi.org/10.3389/fphar.2018.01123.Search in Google Scholar PubMed PubMed Central
11. Lamoke, F., Labazi, M., Montemari, A., Parisi, G., Varano, M., Bartoli, M. Trans-chalcone prevents vegf expression and retinal neovascularization in the ischemic retina. Exp. Eye Res. 2011, 93, 350–354; https://doi.org/10.1016/j.exer.2011.02.007.Search in Google Scholar PubMed
12. Zhu, C., Wang, R., Zheng, W., Chen, D., Yue, X., Cao, Y., Qin, W., Sun, H., Wang, Y., Liu, Z., Li, B., Du, J., Bu, X., Zhou, B. Synthesis and evaluation of anticancer activity of BOC26P, an ortho-aryl chalcone sodium phosphate as water-soluble prodrugs in vitro and in vivo. Biomed. Pharmacother. 2017, 96, 551–562; https://doi.org/10.1016/j.biopha.2017.10.006.Search in Google Scholar PubMed
13. Jayaraman, P., Gandhimathi, C., Venugopal, J. R., Becker, D. L., Ramakrishna, S., Srinivasan, D. K. Controlled release of drugs in electrosprayed nanoparticles for bone tissue engineering. Adv. Drug Deliv. Rev. 2015, 94, 77–95; https://doi.org/10.1016/j.addr.2015.09.007.Search in Google Scholar PubMed
14. Ibraheem, D., Iqbal, M., Agusti, G., Fessi, H., Elaissari, A. Effects of process parameters on the colloidal properties of polycaprolactone microparticles prepared by double emulsion like process. Colloids Surf., A 2014, 445, 79–91; https://doi.org/10.1016/j.colsurfa.2014.01.012.Search in Google Scholar
15. Hsiao, C. J., Lin, J. F., Wen, H. Y., Lin, Y. M., Yang, C. H., Huang, K. S., Shaw, J. F. Enhancement of the stability of chlorophyll using chlorophyll-encapsulated polycaprolactone microparticles based on droplet microfluidics. Food Chem. 2020, 306, 125300; https://doi.org/10.1016/j.foodchem.2019.125300.Search in Google Scholar PubMed
16. Jiang, P., Jacobs, K. M., Ohr, M. P., Swindle-Reilly, K. E. Chitosan–polycaprolactone core–shell microparticles for sustained delivery of bevacizumab. Mol. Pharm. 2020, 17, 2570–2584; https://doi.org/10.1021/acs.molpharmaceut.0c00260.Search in Google Scholar PubMed
17. Bonilla, C. E. P., Trujillo, S., Demirdögen, B., Perilla, J. E., Murat Elcin, Y., Gómez Ribelles, J. L. New porous polycaprolactone–silica composites for bone regeneration. Mater. Sci. Eng. C 2014, 40, 418–426; https://doi.org/10.1016/j.msec.2014.04.024.Search in Google Scholar PubMed
18. Kang, Y. G., Wei, J., Shin, J. W., Wu, Y. R., Su, J., Park, Y. S., Shin, J. W. Enhanced biocompatibility and osteogenic potential of mesoporous magnesium silicate/polycaprolactone/wheat protein composite scaffolds. Int. J. Nanomed. 2018, 13, 1107–1117; https://doi.org/10.2147/ijn.s157921.Search in Google Scholar PubMed PubMed Central
19. Akkulak, M., Kaptan, Y., Aydin, Y. A., Guvenilir, Y. A. Lipase mediated synthesis of polycaprolactone and its silica nanohybrid. Pure Appl. Chem. 2019, 91, 957–965; https://doi.org/10.1515/pac-2018-1011.Search in Google Scholar
20. Kaptan, Y., Guvenilir, Y. A. Enzymatic synthesis of polycaprolactone: effect of immobilization mechanism of calb on polycaprolactone synthesis. J. Renewable Mater. 2018, 6, 619–629; https://doi.org/10.32604/jrm.2018.00142.Search in Google Scholar
21. Kim, H. J., Kim, T. H., Kang, K. C., Pyo, H. B., Jeong, H. H. Microencapsulation of rosmarinic acid using polycaprolactone and various surfactants. Int. J. Cosmet. Sci. 2010, 32, 185–191; https://doi.org/10.1111/j.1468-2494.2010.00526.x.Search in Google Scholar PubMed
22. Pérez, M. H., Zinutti, C., Lamprecht, A., Ubrich, N., Astier, A., Hoffman, M., Bodmeier, R., Maincent, P. The preparation and evaluation of poly(ϵ-caprolactone) microparticles containing both a lipophilic and a hydrophilic drug. J. Controlled Release 2000, 65, 429–438; https://doi.org/10.1016/s0168-3659(99)00253-9.Search in Google Scholar PubMed
23. Fu, X., Ping, Q., Gao, Y. Effects of formulation factors on encapsulation efficiency and release behaviour in vitro of huperzine A-PLGA microspheres. J. Microencapsul. 2005, 22, 705–714; https://doi.org/10.1080/02652040400026509.Search in Google Scholar PubMed
24. Agroui, K., Collins, G. Determination of thermal properties of crosslinked EVA encapsulant material in outdoor exposure by TSC and DSC methods. Renew. Energy 2014, 63, 741–746; https://doi.org/10.1016/j.renene.2013.10.013.Search in Google Scholar
25. Gunaratne, L. M. W. K., Shanks, R. A., Amarasinghe, G. Thermal history effects on crystallisation and melting of poly(3-hydroxybutyrate). Thermochim. Acta 2004, 423, 127–135; https://doi.org/10.1016/j.tca.2004.05.003.Search in Google Scholar
26. Xia, S., Liu, Q., Shen, Y., Yao, P., Deng, B. Poly(ɛ-caprolactone)/polyhedral oligomeric silsesquioxane hybrids: crystallization behavior and thermal degradation. J. Appl. Polym. Sci. 2016, 133, 1–11; https://doi.org/10.1002/app.44113.Search in Google Scholar
27. De Bustamante Monteiro, M. S. D. S., Neto, R. P. C., Santos, I. C. S., Da Silva, E. O., Tavares, M. I. B. Inorganic-organic hybrids based on poly (ε-caprolactone) and silica oxide and characterization by relaxometry applying low-field NMR. Mater. Res. 2012, 15, 825–832; https://doi.org/10.1590/s1516-14392012005000121.Search in Google Scholar
28. Grohganz, H., Löbmann, K., Priemel, P., Tarp Jensen, K., Graeser, K., Strachan, C., Rades, T. Amorphous drugs and dosage forms. J. Drug Deliv. Sci. Technol. 2013, 23, 403–408; https://doi.org/10.1016/s1773-2247(13)50057-8.Search in Google Scholar
29. Lepoittevin, B., Pantoustier, N., Alexandre, M., Calberg, C., Jérôme, R., Dubois, P. Polyester layered silicate nanohybrids by controlled grafting polymerization. J. Mater. Chem. 2002, 12, 3528–3532; https://doi.org/10.1039/b205787e.Search in Google Scholar
30. Santasnachok, C., Kurniawan, W., Salim, C., Hinode, H. The utility of rice husk ash from biomass power plant: synthesis of Na-A and Na-X zeolites using the two step method hydrothermal. J. Adv. Agric. Technol. 2014, 1, 75–81; https://doi.org/10.12720/joaat.1.2.75-81.Search in Google Scholar
31. Huang, W., Tsui, C. P., Tang, C. Y., Gu, L. Effects of compositional tailoring on drug delivery behaviours of silica xerogel/polymer core-shell composite nanoparticles. Sci. Rep. 2018, 8, 13002; https://doi.org/10.1038/s41598-018-31070-9.Search in Google Scholar PubMed PubMed Central
32. Tirado, D. F., Latini, A., Calvo, L. The encapsulation of hydroxytyrosol-rich olive oil in Eudraguard® protect via supercritical fluid extraction of emulsions. J. Food Eng. 2021, 290, 110215; https://doi.org/10.1016/j.jfoodeng.2020.110215.Search in Google Scholar
33. Yang, Z., Liu, L., Su, L., Wu, X., Wang, Y., Liu, L., Lin, X. Design of a zero-order sustained release PLGA microspheres for palonosetron hydrochloride with high encapsulation efficiency. Int. J. Pharm. 2020, 575, 119006; https://doi.org/10.1016/j.ijpharm.2019.119006.Search in Google Scholar PubMed
34. Karamzadeh, Y., Ansari Asl, A., Rahmani, S. PCL microsphere/PEG-based composite hydrogels for sustained release of methadone hydrochloride. J. Appl. Polym. Sci. 2020, 137, 48967; https://doi.org/10.1002/app.48967.Search in Google Scholar
35. El-Bary, A. A., Aboelwafa, A. A., Al Sharabi, I. M. Influence of some formulation variables on the optimization of pH-dependent, colon-targeted, sustained-release mesalamine microspheres. AAPS PharmSciTech 2012, 13, 75–84; https://doi.org/10.1208/s12249-011-9721-z.Search in Google Scholar PubMed PubMed Central
36. Jeong, J. C., Lee, J., Cho, K. Effects of crystalline microstructure on drug release behavior of poly(ε-caprolactone) microspheres. J. Controlled Release 2003, 92, 249–258; https://doi.org/10.1016/s0168-3659(03)00367-5.Search in Google Scholar PubMed
37. Follmann, H. D. M., Oliveira, O. N., Martins, A. C., Lazarin-Bidóia, D., Nakamura, C. V., Rubira, A. F., Silva, R., Asefa, T. Nanofibrous silica microparticles/polymer hybrid aerogels for sustained delivery of poorly water-soluble camptothecin. J. Colloid Interface Sci. 2020, 567, 92–102; https://doi.org/10.1016/j.jcis.2020.01.110.Search in Google Scholar PubMed
38. Genta, I., Perugini, P., Pavanetto, F. Different molecular weight chitosan microspheres: influence on drug loading and drug release. Drug Dev. Ind. Pharm. 1998, 24, 779–784; https://doi.org/10.3109/03639049809082726.Search in Google Scholar PubMed
39. Ochi, M., Wan, B., Bao, Q., Burgess, D. J. Influence of PLGA molecular weight distribution on leuprolide release from microspheres. Int. J. Pharm. 2021, 599, 120450; https://doi.org/10.1016/j.ijpharm.2021.120450.Search in Google Scholar PubMed
40. Flamini, M. D., Lima, T., Corkum, K., Alvarez, N. J., Beachley, V. Annealing post-drawn polycaprolactone (PCL) nanofibers optimizes crystallinity and molecular alignment and enhances mechanical properties and drug release profiles. Mater. Adv. 2022, 3, 3303–3315; https://doi.org/10.1039/d1ma01183a.Search in Google Scholar
41. Wang, G., Ren, H., Chen, Q., Zhou, M., Xie, F., Yan, M., Wang, Q., Bi, H. Eco-friendly PCL@CDs biomaterials via phytic acid, CDs-cocatalyzed polymerization for rifapentin delivery. J. Appl. Polym. Sci. 2022, 139, 51984.; https://doi.org/10.1002/app.51984.Search in Google Scholar
42. Singh, A. K. Engineered Nanoparticles Structure, Properties and Mechanisms of Toxicity: Nanoparticle Pharmacokinetics and Toxicokinetics; Elsevier: USA, 2016.10.1016/B978-0-12-801406-6.00006-6Search in Google Scholar
43. Gao, W., Chan, J. M., Farokhzad, O. C. ph-responsive nanoparticles for drug delivery. Mol. Pharm. 2010, 7, 1913–1920; https://doi.org/10.1021/mp100253e.Search in Google Scholar PubMed PubMed Central
44. Wang, G., Zhao, D., Li, N., Wang, X., Ma, Y. Drug-loaded poly (ε-caprolactone)/fe3o4 composite microspheres for magnetic resonance imaging and controlled drug delivery. J. Magn. Magn. Mater. 2018, 456, 316–323; https://doi.org/10.1016/j.jmmm.2018.02.053.Search in Google Scholar
45. Unagolla, J. M., Jayasuriya, A. C. Drug transport mechanisms and in vitro release kinetics of vancomycin encapsulated chitosan-alginate polyelectrolyte microparticles as a controlled drug delivery system. Eur. J. Pharm. Sci. 2018, 114, 199–209; https://doi.org/10.1016/j.ejps.2017.12.012.Search in Google Scholar PubMed PubMed Central
46. Permanadewi, I., Kumoro, A. C., Wardhani, D. H., Aryanti, N. Modelling of controlled drug release in gastrointestinal tract simulation. J. Phys.: Conf. Ser. 2019, 1295, 012063; https://doi.org/10.1088/1742-6596/1295/1/012063.Search in Google Scholar
47. O’Donnell, P. B., McGinity, J. W. Preparation of microspheres by the solvent evaporation technique. Adv. Drug Deliv. Rev. 1997, 28, 25–42; https://doi.org/10.1016/s0169-409x(97)00049-5.Search in Google Scholar PubMed
48. Gaonkar, S. L., Vignesh, U. N. Synthesis and pharmacological properties of chalcones: a review. Res. Chem. Intermed. 2017, 43, 6043–6077; https://doi.org/10.1007/s11164-017-2977-5.Search in Google Scholar
49. Gouveia, J. R., Garcia, G. E. S., Antonino, L. D., Tavares, L. B., Dos Santos, D. J. Epoxidation of kraft lignin as a tool for improving the mechanical properties of epoxy adhesive. Molecules 2020, 25, 2513; https://doi.org/10.3390/molecules25112513.Search in Google Scholar PubMed PubMed Central
50. Passerini, N., Albertini, B., González-Rodríguez, M. L., Cavallari, C., Rodriguez, L. Preparation and characterisation of ibuprofen-poloxamer 188 granules obtained by melt granulation. Eur. J. Pharm. Sci. 2002, 15, 71–78; https://doi.org/10.1016/s0928-0987(01)00210-x.Search in Google Scholar PubMed
51. Forster, A., Hempenstall, J., Rades, T. Characterization of glass solutions of poorly water-soluble drugs produced by melt extrusion with hydrophilic amorphous polymers. J. Pharm. Pharmacol. 2010, 53, 303–315; https://doi.org/10.1211/0022357011775532.Search in Google Scholar PubMed
52. Jog, R., Burgess, D. J. Pharmaceutical amorphous nanoparticles. J. Pharm. Sci. 2017, 106, 39–65; https://doi.org/10.1016/j.xphs.2016.09.014.Search in Google Scholar PubMed
53. Honary, S., Zahir, F. Effect of zeta potential on the properties of nano-drug delivery systems – a review. Trop. J. Pharm. Res. 2013, 12, 255–264.10.4314/tjpr.v12i2.19Search in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/polyeng-2021-0343).
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Material Properties
- The effect of filler loading and APTES treatment on the performance of PSf/SBA-15 mixed matrix membranes
- Artificial intelligence based prediction models for rubber compounds
- Synthesis and memory properties of a series of novel asymmetric soluble polyimides
- Preparation and Assembly
- Fabrication of high strength and functional GO/PVA/PAN ternary composite fibers by gel spinning
- Polycaprolactone/epoxide-functionalized silica composite microparticles for long-term controlled release of trans-chalcone
- Rapid incorporation of gold nanoparticles onto graphene oxide-polymer nanofiber membranes for photothermally-accelerated water purification
- Sustained oxygen release of hydrogen peroxide-acrylic resin inclusion complex for aquaculture
- Engineering and Processing
- Reducing component stress during encapsulation of electronics: a simulative examination of thermoplastic foam injection molding
- Influence of production process-induced surface topologies at varying roughness depths on the tribological properties of polyamide steel contact
Articles in the same Issue
- Frontmatter
- Material Properties
- The effect of filler loading and APTES treatment on the performance of PSf/SBA-15 mixed matrix membranes
- Artificial intelligence based prediction models for rubber compounds
- Synthesis and memory properties of a series of novel asymmetric soluble polyimides
- Preparation and Assembly
- Fabrication of high strength and functional GO/PVA/PAN ternary composite fibers by gel spinning
- Polycaprolactone/epoxide-functionalized silica composite microparticles for long-term controlled release of trans-chalcone
- Rapid incorporation of gold nanoparticles onto graphene oxide-polymer nanofiber membranes for photothermally-accelerated water purification
- Sustained oxygen release of hydrogen peroxide-acrylic resin inclusion complex for aquaculture
- Engineering and Processing
- Reducing component stress during encapsulation of electronics: a simulative examination of thermoplastic foam injection molding
- Influence of production process-induced surface topologies at varying roughness depths on the tribological properties of polyamide steel contact