Recent progress on improving the mechanical, thermal and electrical conductivity properties of polyimide matrix composites from nanofillers perspective for technological applications
Abstract
The adoption of polymer nanocomposites in the design/manufacturing of parts for engineering and technological applications showcases their outstanding properties. Among the polymer nanocomposites, polyimide (PI) nanocomposites have attracted much attention as a composite material capable of withstanding mechanical, thermal and electrical stresses, hence engineered for use in harsh environments. However, the nanocomposites are limited to the application area that demands conduction polymer and polymer composites due to the low electrical conductivity of PI. Although, there has been advancement in improving the mechanical, thermal and electrical properties of PI nanocomposites. Thus, the review focuses on recent progress on improving the mechanical, thermal and electrical conductivity properties of PI nanocomposites via the incorporation of carbon nanotubes (CNTs), graphene and graphene oxide (GO) fillers into the PI matrix. The review summarises the influence of CNTs, graphene and GO on the mechanical and conductivity properties of PI nanocomposites. The authors ended the review with advancement, challenges and recommendations for future improvement of PI reinforced conductive nanofillers composites. Therefore, the review study proffers an understanding of the improvement and selection of PI nanocomposites material for mechanical, thermal and electrical conductivity applications. Additionally, in the area of conductive polymer nanocomposites, this review will also pave way for future study.
Funding source: Tshwane University of Technology
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: The authors wish to thank the Centre for Energy and Electric Power, Tshwane University of Technology (TUT) South Africa for financial support in the course of this study.
-
Conflict of interest statement: The authors declare that they have no conflicts of interest regarding this article.
References
1. Lai, R., Rathore, B. S., Gaur, M. S. Structural and polarization properties of polyimide/TiO2 nanocomposites. Ionics 2012, 18, 565–572.10.1007/s11581-011-0649-9Suche in Google Scholar
2. Adanur, S., Zheng, H. Synthesis and characterization of sulfonated polyimide based membranes for proton exchange membrane fuel cells. J. Fuel Cell Sci. Technol. 2013, 10, 1–5; https://doi.org/10.1115/1.4024564.Suche in Google Scholar
3. Zhou, J., Sun, K., Huang, S., He, X., Cai, W., Zhao, Y., Li, W. Facile fabrication of polyimide-alumina composite coatings by liquid flame spray. Coatings 2020, 10, 857; https://doi.org/10.3390/coatings10090857.Suche in Google Scholar
4. Zhou, Y., Chen, Y., Wang, H., Wong, C. P. Creation of a multilayer aluminum coating structure nanoparticles polyimide filler for electronic applications. Mater. Lett. 2014, 119, 64–67; https://doi.org/10.1016/j.matlet.2014.01.009.Suche in Google Scholar
5. Gouzman, I., Grossman, E., Verker, R., Atar, N., Bolker, A., Eliaz, N. Advances in polyimide-based materials for space applications. Adv. Mater. 2019, 31, 1807738; https://doi.org/10.1002/adma.201807738.Suche in Google Scholar PubMed
6. Eiichi, S., Nitto, D. Corporation applications of polyimide films to the electrical and electronic industries in Japan. IEEE Electr. Insul. Mag. 1989, 5, 15–23.10.1109/57.16949Suche in Google Scholar
7. Ayesha, K. Holistic insights on polyimide nanocomposite nanofiber. Polym. Plast. Technol. Mater. 2020, 59, 1621–1639.10.1080/25740881.2020.1759635Suche in Google Scholar
8. Monsef, K., Homayoonfal, M., Davar, F. Engineering arrangement of nanoparticles within nanocomposite membranes matrix: a suggested way to enhance water flux. Polym. Plast. Technol. Mater. 2020, 59, 733–752; https://doi.org/10.1080/25740881.2019.1695264.Suche in Google Scholar
9. Zha, J.-W., Liu, X.-J., Tian, Y., Dang, Z.-M., Chen, G. High-Temperature Polyimide Dielectric Materials for Energy Storage, Polyimide for Electronic and Electrical Engineering Applications; Intech Open: UK, 2020.10.5772/intechopen.92260Suche in Google Scholar
10. Gao, X.-Y., Zhou, Y., Cao, Y., Chong, L., Ding, W., Choi, H., Won, J. A copper/polyimide fabrication process for fabricating high-inductance microinductor. IEEE Trans. Electron. Packag. Manuf. 2007, 30, 123–127; https://doi.org/10.1109/tepm.2007.899134.Suche in Google Scholar
11. Takakazu, M., Naoki, K., Yasutaka, N., Tsuyoshi, A., Tomohiro, K., Yusuke, N., Masahiro, K., Masayuki, K., Nobutaka, F., Noriyuki, H., Shohei, F., Toshihiko, K Dielectric and insulation properties of polyimide based boehmite nanocomposite material. In Electrical Insulation Conference (EIC); IEEE: Calgary, Alberta, Canada, 2019.Suche in Google Scholar
12. Chen, M., Zhou, W., Zhang, J., Chen, Q. Dielectric property and space charge behavior of polyimide/silicon nitride nanocomposite films. Polymers 2020, 12, 322; https://doi.org/10.3390/polym12020322.Suche in Google Scholar PubMed PubMed Central
13. Li, M. K., Fan, M. W., Zhang, Y. F., Liang, H., Yang, L., Yu, T. Q., Yang, J., Huang, J., Fan, K. J., Xiong, Y. Q., Qi, W., Zuo, C., Zhang, L. G., Liu, T A novel design of insulated core transformer high voltage power supply. In Proceedings of RuPAC2016; JACoW: St. Petersburg, Russia, 2016.Suche in Google Scholar
14. Rusu, R.-D., Constantin, C.-P., Drobota, M., Gradinaru, L.-M., Butnaru, M., Pislaru, M. Polyimide films tailored by UV irradiation: surface evaluation and structure-properties relationship. Polym. Degrad. Stabil. 2020, 177, 109182; https://doi.org/10.1016/j.polymdegradstab.2020.109182.Suche in Google Scholar
15. Smith, J. G., Connell, J. W., Delozier, D. M., Lillehei, P. T., Waston, K. A., Lin, Y., Zhou, B., Sun, Y.-P. Space durable polymer/carbon nanotube films for electrostatic charge mitigation. Polymers 2004, 45, 825–836; https://doi.org/10.1016/j.polymer.2003.11.024.Suche in Google Scholar
16. Smith, J. G., Delozier, D. M., Connell, J. W., Waston, K. A. Carbon nanotube-conductive additive-space durable polymer nanocomposite films for electrostatic charge dissipation. Polymers 2004, 45, 6133–6142; https://doi.org/10.1016/j.polymer.2004.07.004.Suche in Google Scholar
17. Ounaies, Z. Electrical properties of single wall carbon nanotube reinforced polyimide composites. Compos. Sci. Technol. 2003, 63, 1637–1646; https://doi.org/10.1016/s0266-3538(03)00067-8.Suche in Google Scholar
18. Izzati, W. A., Arief, Y. Z., Adzis, Z., Shafanizam, M. Partial discharge characteristics of polymer nanocomposite materials in electrical insulation: a review of sample preparation techniques, analysis methods, potential applications, and future trends. Sci. World J. 2014, 2014, 1–14; https://doi.org/10.1155/2014/735070.Suche in Google Scholar PubMed PubMed Central
19. Shen, Y., Lin, H., Nan, C. W. Interfacial effect on dielectric properties of polymer nanocomposites filled with core/shell - structured particles. Adv. Funct. Mater. 2007, 17, 2405–2410; https://doi.org/10.1002/adfm.200700200.Suche in Google Scholar
20. Song, Z., Zhan, H., Zhou, Y. Polyimides: promising energy-storage materials. Angew. Chem. 2010, 49, 8444–8448; https://doi.org/10.1002/anie.201002439.Suche in Google Scholar PubMed
21. Yoonessi, M., Shi Y Scheiman, D. A., Lebron-Colon, M., Tigelaar, D. M., Weiss, R. A., Meador, M. A. Graphene polyimide nanocomposites; thermal, mechanical, and high-temperature shape memory effects. ACS Nano 2012, 6, 7644–7655; https://doi.org/10.1021/nn302871y.Suche in Google Scholar PubMed
22. Wilson, D., Stenzenberger, H. D., Hergenrother, P. M. Polyimides; Springer: Berlin, Germany, 1990.10.1007/978-94-010-9661-4Suche in Google Scholar
23. Thuau, D., Koutsos, V., Cheung, R. Electrical and mechanical properties of carbon nanotube-polyimide composites. J. Vac. Sci. Technol. B 2009, 27, 3139–3144; https://doi.org/10.1116/1.3250192.25 and 86.Suche in Google Scholar
24. Ha, H. W., Choudhury, A., Kamal, T., Kim, D.-H., Park, S.-Y. Effect of chemical modification of graphene on mechanical, electrical, and thermal properties of polyimide/graphene nanocomposites. ACS Appl. Mater. Interfaces 2012, 4, 4623–4630; https://doi.org/10.1021/am300999g.Suche in Google Scholar
25. Li, T.-L., Hsu, S. L.-C. Enhanced thermal conductivity of polyimide films via a hybrid of micro- and nano-sized boron nitride. J. Phys. Chem. B 2010, 114, 6825–6829; https://doi.org/10.1021/jp101857w.Suche in Google Scholar
26. MacDermott, C. Selecting Thermoplastic for Engineering Applications; Marcel Dekker: Reinhold, USA, 1994.Suche in Google Scholar
27. Mathews, A. S., Kim, I., Ha, C. S. Synthesis, characterization, and properties of fully aliphatic polyimides and their derivatives for microelectronics and optoelectronics applications. Macromol. Res. 2007, 15, 114–128; https://doi.org/10.1007/bf03218762.Suche in Google Scholar
28. Li, X.-D., Zhong, Z.-X., Jin, G., Lee, S. H., Lee, M.-H. Liquid crystal photoalignment by soluble photosensitive polyimide with methylene cinnamate side units. Macromol. Res. 2006, 14, 257–260; https://doi.org/10.1007/bf03219080.Suche in Google Scholar
29. Wahab, M. A., Kim, I., Ha, C.-S. Microstructure and properties of polyimide/poly (vinylsilsesquioxane) hybrid composite films. Polymers 2003, 44, 4705–4713; https://doi.org/10.1016/s0032-3861(03)00429-4.Suche in Google Scholar
30. Anton, G., Dean, D., Erinche, S., Jacob, A., Peter, D., Grencho, D. Chemical and Physical Properties of Polyimides: Biomedical and Engineering Applications; IntechOpen: UK, 2012.Suche in Google Scholar
31. Xu, Y., Chen, C., Li, J. Experimental study on physical properties and pervaporation performances of polyimide membranes. Chem. Eng. Sci. 2007, 62, 2466–2473; https://doi.org/10.1016/j.ces.2007.01.019.Suche in Google Scholar
32. Yang, H., Liu, J., Ji, M., Yang, S. Novel thermoplastic polyimide composite materials; Intech Open: UK, 2012; pp. 1–12.10.5772/34945Suche in Google Scholar
33. Dianham, S., Locatelli, M., Khazaka, R. BPDA-PDA Polyimide: synthesis, characterizations, aging and semiconductor device passivation In High Performance Polymers-Polyimides Based – From Chemistry to Application; Abadie, M. J. M., Ed.; IntechOpen: UK, 2012.10.5772/53994Suche in Google Scholar
34. Kreisler, S. Y. L. High-Performance Polyimides and High Temperature Resistant Polymers. Handbook of Thermoset Plastics, 3rd ed.; William Andrew: San Diego, USA, 2014; pp. 297–424.10.1016/B978-1-4557-3107-7.00010-5Suche in Google Scholar
35. Ree, M. High performance polyimides for applications in microelectronics and flat panel display. Macromol. Res. 2006, 14, 1–33; https://doi.org/10.1007/bf03219064.Suche in Google Scholar
36. Ha, C. S., Mathews, A. S. Polyimides and high performance organic polymers. In Advanced Functional Materials; Springer: Berlin, Heidelberg, 2011.10.1007/978-3-642-19077-3_1Suche in Google Scholar
37. Mouritz, P., Gibson, A. G. In Fire Properties of Polymer Composite Materials; Springer: Dordrecht, 2006; pp 394.Suche in Google Scholar
38. Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58; https://doi.org/10.1038/354056a0.Suche in Google Scholar
39. Ujah, C. O., Popoola, P., Popoola, O., Ajenifuja, E. Effect of CNTs on the tribology and thermal behaviours of al nano-powder fabricated with SPS for industrial application. In Conference on Diversification of Developing Economies: Imperatives for Sustainable Environment and Technological Innovations; OAU: Osun, State, Nigeria, 2020.Suche in Google Scholar
40. Inderbir, S., Ashish, K. R., Pradeep, K., Manoj, K., Hassan, Y. A. Carbon nanotubes: synthesis, properties and pharmaceutical applications. Fullerenes, Nanotub. Carbon Nanostruct. 2009, 17, 361–377.10.1080/15363830903008018Suche in Google Scholar
41. Lei, X., Qiao, M., Tian, L., Chen, Y., Zhang, Q. Tunable permittivity in high-performance hyperbranched polyimide films by adjusting backbone rigidity. J. Phys. Chem. C 2016, 120, 2548–2561; https://doi.org/10.1021/acs.jpcc.5b11667.Suche in Google Scholar
42. Dai, W., Yu, J., Liu, Z., Wang, Y., Song, Y., Lyu, J., Bai, H., Nishimura, K., Jiang, N. Enhanced thermal conductivity and retained electrical insulation for polyimide composites with SiC nanowires grown on graphene hybrid fillers. Compos. Appl. Sci. Manuf. 2015, 76, 73–81; https://doi.org/10.1016/j.compositesa.2015.05.017.Suche in Google Scholar
43. Zuo, L., Fan, W., Zhang, Y., Zhang, L., Gao, W., Huang, Y., Liu, T. Graphene/montmorillonite hybrid synergistically reinforced polyimide composite aerogels with enhanced flame-retardant performance. Compos. Sci. Technol. 2017, 139, 57–63; https://doi.org/10.1016/j.compscitech.2016.12.008.Suche in Google Scholar
44. Zhang, T., Zhao, Y., Wang, K. Polyimide aerogels crosslinked with aminated Ag nanowires: mechanically strong and tough. Polymers 2017, 9, 530; https://doi.org/10.3390/polym9100530.Suche in Google Scholar PubMed PubMed Central
45. Song, Y., Yao, H., Tan, H., Zhu, S., Dong, B., Guan, S., Liu, H. Synthesis and memory characteristics of highly organo-soluble hyperbranched polyimides with various electron acceptors. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 2281–2288; https://doi.org/10.1002/pola.28550.Suche in Google Scholar
46. Li, X., Wang, J., Zhao, Y., Zhang, X. Template-free self assembly of fluorine-free hydrophobic polyimide aerogels with lotus or petal effect. ACS Appl. Mater. Interfaces 2018, 10, 16901–16910; https://doi.org/10.1021/acsami.8b04081.Suche in Google Scholar PubMed
47. Qin, Y., Peng, Q., Ding, Y., lin, Z., Wang, C., Li, Y., Xu, F., Li, J., Yuan, Y., He, X., Li, Y. Lightweight, superelastic, and mechanically flexible graphene/polyimide nanocomposite foam for strain sensor application. ACS Nano 2015, 9, 8933–8941; https://doi.org/10.1021/acsnano.5b02781.Suche in Google Scholar PubMed
48. Chao, M., Li, Y., Wu, G., Zhou, Z., Yan, L. Functionalized multiwalled carbon nanotube-reinforced polyimide composite films with enhanced mechanical and thermal properties. Int. J. Polym. Sci. 2019, 1, 12; https://doi.org/10.1155/2019/9302803.Suche in Google Scholar
49. Ansari, R., Hassanzadeh-Aghdam, M. K., Darvizeh, A. Coefficients of thermal expansion of carbon nanotube-reinforced polyimide nanocomposites: a micromechanical analysis. J. Mater. Des. Appl. 2016, 0, 1–11; https://doi.org/10.1177/1464420716666106.Suche in Google Scholar
50. Su, C., Xue, F., Li, T., Xin, Y., Wang, M., Tang, J., Ma, Y. Fabrication and multifunctional properties of polyimide based hierarchical composites with in situ grown carbon nanotubes. RSC Adv. 2017, 7, 29686–29696; https://doi.org/10.1039/c7ra00436b.Suche in Google Scholar
51. Jia, X., Zhang, Q., Zhao, M-Q., Xu, G.-H., Huang, J.-Q., Qian, W., Lu, Y., Wei, F. Dramatic enhancements in toughness of polyimide nanocomposite via long-CNT-induced long-range creep. J. Mater. Chem. 2012, 22, 7050–7056; https://doi.org/10.1039/c2jm15359a.Suche in Google Scholar
52. Launey, M. E., Ritchie, R. O. On the fracture toughness of advanced materials. Adv. Mater. 2009, 21, 2103–2110; https://doi.org/10.1002/adma.200803322.Suche in Google Scholar
53. Nayak, L., Rahaman, M., Aldalbahi, A., Chaki, T. P., Khastgir, D. Polyimide-carbon nanotubes nanocomposites: electrical conduction behavior under cryogenic condition. Polym. Eng. Sci. 2017, 57, 291–298; https://doi.org/10.1002/pen.24412.Suche in Google Scholar
54. Ree, M., Kim, K., Woo, S. H., Chang, H. Structure, chain orientation, and properties in thin films of aromatic polyimides with various chain rigidities. J. Appl. Phys. 1997, 81, 698–708; https://doi.org/10.1063/1.364210.Suche in Google Scholar
55. Li, F., Fang, S., Ge, J. J., Honigfort, P. S., Chen, J.-C., Harris, W., Cheng, S. Z. D. Diamine architecture effects on glass transitions, relaxation processes and other material properties in organo-soluble aromatic polyimide films. Polymers 1999, 40, 4571–4583; https://doi.org/10.1016/s0032-3861(99)00066-x.Suche in Google Scholar
56. Li, S., Feng, Y., Li, Y., Feng, W., Yoshimo, K. Transparent and flexible films of horizontally aligned carbon nanotube/polyimide composites with highly anisotropic mechanical, thermal, and electrical properties. Carbon 2016, 109, 131–140; https://doi.org/10.1016/j.carbon.2016.07.052.Suche in Google Scholar
57. Li, Q., Luo, S., Wang, Y., Wang, Q.-M. Carbon based polyimide nanocomposites thin film strain sensors fabricated by ink-jet printing method. Sens. Actuators, A 2019, 300, 111664; https://doi.org/10.1016/j.sna.2019.111664.Suche in Google Scholar
58. Seetala, N. V., Hendon, C. R., Tull-Walker, N., Behr, J. V., Hester, B., Lebron-Colon, M. K., Meador, M. Synthesis and characterization of polyimide-carbon nanotube composites. World J. Eng. 2014, 11, 193–198; https://doi.org/10.1260/1708-5284.11.3.193.Suche in Google Scholar
59. Park, O.-K., Owuor, P. S., Jaques, Y. M., Jaques, Y. M., Galvao, D. S., Kim, N. H., Lee, J. H., Tiwary, C. S., Ajayan, P. M. Hexagonal boron nitride-carbon nanotube hybrid network structure for enhanced thermal, mechanical and electrical properties of polyimide nanocomposites. Compos. Sci. Technol. 2019, 188, 107977.10.1016/j.compscitech.2019.107977Suche in Google Scholar
60. Jiang, Q., Tallury, S. S., Qiu, Y., Pasquinelli, M. A. Interfacial characteristics of a carbon nanotube-polyimide nanocomposite by molecular dynamics simulation. Nanotechnol. Rev. 2020, 9, 136–145; https://doi.org/10.1515/ntrev-2020-0012.Suche in Google Scholar
61. Heidarhaei, M., Shariati, M., Eipakchi, H. R. Analytical investigation of interfacial debonding in graphene-reinforced polymer nanocomposites with cohesive zone interface. Mech. Adv. Mater. Struct. 2019, 26, 1008–1017; https://doi.org/10.1080/15376494.2018.1430260.Suche in Google Scholar
62. Chen, X., Zhang, L., Park, C., Fay, C. C., Wang, X., Ke, C. Mechanical strength of boron nitride nanotube-polymer interfaces. Appl. Phys. Lett. 2015, 107, 253105; https://doi.org/10.1063/1.4936755.Suche in Google Scholar
63. Jiang, Q., Tallury, S. S., Qiu, Y., Pasquinelli, M. A. Molecular dynamics simulations of the effect of the volume fraction on unidirectional polyimide–carbon nanotube nanocomposites. Carbon 2014, 67, 440–448; https://doi.org/10.1016/j.carbon.2013.10.016.Suche in Google Scholar
64. Jiang, Q., Wu, L. Property enhancement of aligned carbon nanotube/polyimide composite by strategic prestraining. J. Reinforc. Plast. Compos. 2016, 35, 287–294; https://doi.org/10.1177/0731684415614086.Suche in Google Scholar
65. Kareem, A. A. Preparation and electrical properties of polyimide/carbon nanotubes composites. Mater. Sci. Pol. 2017, 35, 755–759; https://doi.org/10.1515/msp-2017-0096.Suche in Google Scholar
66. Yuan, W., Che, J., Chan-Park, M. B. A novel polyimide dispersing matrix for highly electrically conductive solution-cast carbon nanotube-based composite. Chem. Mater. 2011, 23, 4149–4157; https://doi.org/10.1021/cm200909x.Suche in Google Scholar
67. Boland, C. S., Khan, U., Ryan, G., Barwich, S., Charifou, R., Harvey, A., Backes, C., Li, Z., Ferreira, M. S., Mobius, M. E. Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites. Science 2016, 354, 1257–1260; https://doi.org/10.1126/science.aag2879.Suche in Google Scholar PubMed
68. Amjadi, M., Pichitpajongkit, A., Lee, S., Ryu, S., Park, I. Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite. ACS Nano 2014, 8, 5154–5163; https://doi.org/10.1021/nn501204t.Suche in Google Scholar PubMed
69. Alamusi, Hu, N., Fukunaga, H., Atobe, S., Liu, Y., Li, J. Piezoresistive strain sensors made from carbon nanotubes based polymer nanocomposites. Sensors 2011, 11, 10691–10723; https://doi.org/10.3390/s111110691.Suche in Google Scholar PubMed PubMed Central
70. Larin, S. V., Nazarychev, V. M., Dobrovskiy, A. Y., Yu, A., Lyulin, A. V., Lyulin, S. Structural ordering in SWCNT-polyimide nanocomposites and its influence on their mechanical properties. Polymers 2018, 10, 1245; https://doi.org/10.3390/polym10111245.Suche in Google Scholar PubMed PubMed Central
71. Paton, K. R., Varrla, E., Backes, C., Smith, R. J., Khan, U., O’Neill, A., Boland, C., Lotya, M., Istrate, O. M., King, P., Higgins, T., Barwich, S., May, P., Puczkarski, P., Ahmed, I., Moebius, M., Pettersson, H., Long, E., Coelho, J., O’Brien, S. E., McGuire, E. K., Sanchez, B.M., Duesberg, G. S., McEvoy, N., Pennycook, T. J., Downing, C., Crossley, A., Nicolosi, V., Coleman, J. N. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 2014, 13, 624–630; https://doi.org/10.1038/nmat3944.Suche in Google Scholar PubMed
72. El-Kady, M. F., Kaner, R. B. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 2013, 4, 1475; https://doi.org/10.1038/ncomms2446.Suche in Google Scholar PubMed
73. El-Kady, M. F., Strong, V., Dubin, S., Dubin, S., Kaner, R. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 2012, 335, 1326–1330; https://doi.org/10.1126/science.1216744.Suche in Google Scholar PubMed
74. Schniepp, H. C., Kudin, K. N., Li, J.-L., Prud’homme, R. K., Car, R., Saville, D. A., Aksay, I. A. Bending properties of single functionalized graphene sheets probed by atomic force microscopy. ACS Nano 2008, 2, 2577–2584; https://doi.org/10.1021/nn800457s.Suche in Google Scholar PubMed
75. Schniepp, H. C., Li, J.-L., McAllister, M. J., Sai, H., Herrera-Alonso, M., adamson, D. H., Prud’homme, R. K., Car, R., Saville, D. A., Aksay, I. A. Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 2006, 110, 8535–8539; https://doi.org/10.1021/jp060936f.Suche in Google Scholar PubMed
76. Yang, Y., Kaner, R. B., Tung, C.-C., Allen, M. J. High-Throughput Solution Processing of Large Scale Graphene and Device Application. U.S. Patent 9,105,403 B2, August 11, 2015.Suche in Google Scholar
77. Lawal, A. T. Recent progress in graphene based polymer nanocomposites. Cogent Chem. 2020, 6, 1833476; https://doi.org/10.1080/23312009.2020.1833476.Suche in Google Scholar
78. Yoonessi, M., Gaier, J. R., Sahimi, M., Daulton, T., Kaner, R. B., Meador, M. A. Fabrication of graphene−polyimide nanocomposites with superior electrical conductivity. ACS Appl. Mater. Interfaces 2017, 9, 43230–43238; https://doi.org/10.1021/acsami.7b12104.Suche in Google Scholar PubMed
79. Ogbonna, V. E., Popoola, A. P. I., Popoola, O. M., Adeosun, S. O. A review on polyimide reinforced nanocomposites for mechanical, thermal, and electrical insulation application: challenges and recommendations for future improvement. Polym. Bull. 2020, 1–33; https://doi.org/10.1007/s00289-020-03487-.Suche in Google Scholar
80. Huang, T., Xin, Y., Li, T., Nutt, S., Su, C., Chen, H., Liu, P., Lai, Z. Modified graphene/polyimide nanocomposites: reinforcing and tribological effects. ACS Appl. Mater. Interfaces 2013, 5, 4878–4891; https://doi.org/10.1021/am400635x.Suche in Google Scholar PubMed
81. Ha, Y.-M., Kim, Y. N., Kim, Y.-O., So, C., Lee, J.-S., Kim, J., Jung, Y. C. Enhanced mechanical properties and thermal conductivity of polyimide nanocomposites incorporating individualized boron-doped graphene. Carbon Lett. 2020, 30, 457–464; https://doi.org/10.1007/s42823-019-00115-y.Suche in Google Scholar
82. Xu, Z., Liu, Y., Zhao, X., Peng, L., Sun, H., Xu, Y., Ren, X., Jin, C., Xu, P., Wang, M., Gao, C. Ultrastiff and strong graphene fibers via full-scale synergetic defect engineering. Adv. Mater. 2016, 28, 6449–6456; https://doi.org/10.1002/adma.201506426.Suche in Google Scholar PubMed
83. Ji, X., Xu, Y., Zhang, W., Cui, L., Liu, J. Review of functionalization, structure and properties of graphene/polymer composite fibers. Compos. Appl. Sci. Manuf. 2016, 87, 29–45; https://doi.org/10.1016/j.compositesa.2016.04.011.Suche in Google Scholar
84. Gong, J., Liu, Z., Yu, J., Dai, D., Dai, W., Du, S., Li, C., Jiang, N., Zhan, Z., Lin, C,-T. Graphene woven fabric-reinforced polyimide films with enhanced and anisotropic thermal conductivity. Compos. Appl. Sci. Manuf. 2016, 87, 290–296; https://doi.org/10.1016/j.compositesa.2016.05.010.Suche in Google Scholar
85. Chen, Y., Li, D., Yang, W., Xiao, C., Wei, M. Effects of different amine functionalized graphene on the mechanical, thermal, and tribological properties of polyimide nanocomposites synthesized by in situ polymerization. Polymers 2018, 140, 56–72; https://doi.org/10.1016/j.polymer.2018.02.017.Suche in Google Scholar
86. Lim, J., Yeo, H., Kim, S. G., Park, O.-K., Yu, J., Hwang, J. Y., Goh, M., Ku, B.-C., Lee, H. S., You, N.-H. Pyridine-functionalized graphene/polyimide nanocomposites; mechanical, gas barrier, and catalytic effects. Compos. B Eng. 2017, 114, 280–288; https://doi.org/10.1016/j.compositesb.2016.12.057.Suche in Google Scholar
87. Li, X., Fang, X., Zhang, P., Yan, J., Chen, Y., Chen, X. Preparation and properties of reduced graphene oxide/polyimide composite films. High Perform. Polym. 2020, 32, 65–72; https://doi.org/10.1177/0954008319852665.Suche in Google Scholar
88. Ma, L., Wang, G., Dai, J. Preparation and properties of graphene oxide/polyimide composites by in situ polymerization and thermal imidization process. High Perform. Polym. 2017, 29, 187–196; https://doi.org/10.1177/0954008316634177.Suche in Google Scholar
89. Ma, L., Wang, G., Dai, J. Preparation of functional reduced graphene oxide and its influence on the properties of polyimide composites. J. Appl. Polym. Sci. 2017, 134, 45119; https://doi.org/10.1002/app.45119.Suche in Google Scholar
90. Lu, Y., Hao, J., Xiao, G., Chen, L., Wang, T., Hu, Z. Preparation and properties of in situ amino-functionalized graphene oxide/polyimide composite films. Appl. Surf. Sci. 2017, 422, 710–719; https://doi.org/10.1016/j.apsusc.2017.06.087.Suche in Google Scholar
91. Wang, J. Y., Yang, S. Y., Huang, Y. L., Tien, H.-W., Chin, W.-K., Ma, C.-C. M. Preparation and properties of graphene oxide/polyimide composite films with low dielectric constant and ultrahigh strength via in situ polymerization. J. Mater. Chem. 2011, 21, 13569; https://doi.org/10.1039/c1jm11766a.Suche in Google Scholar
92. Zhang, L.-B., Wang, J.-Q., Wang, H.-G., Xu, Y., Wang, Z.-F., Li, Z.-P., Mi, Y.-J., Yang, S.-R. Preparation, mechanical and thermal properties of functionalized graphene/polyimide nanocomposites. Compos. Appl. Sci. Manuf. 2012, 43, 1537–1545; https://doi.org/10.1016/j.compositesa.2012.03.026.Suche in Google Scholar
93. Qin, S., Qiu, S., Cui, M., Dai, Z., Zhao, H., Wang, L. Synthesis and properties of polyimide nanocomposite containing dopamine-modified graphene oxide. High Perform. Polym. 2019, 31, 331–340; https://doi.org/10.1177/0954008318768857.Suche in Google Scholar
94. Wang, C., Lan, Y., Yu, W., Li, X., Qian, Y., Liu, H. Preparation of amino-functionalized graphene oxide/polyimide composite films with improved mechanical, thermal and hydrophobic properties. Appl. Surf. Sci. 2016, 362, 11–19; https://doi.org/10.1016/j.apsusc.2015.11.201.Suche in Google Scholar
95. Wu, X., Zhang, Y., Du, P., Jin, Z., Zhao, H., Wang, L. Synthesis, characterization and properties of graphene-reinforced polyimide coatings. New J. Chem. 2019, 43, 5697–5705; https://doi.org/10.1039/c9nj00216b.Suche in Google Scholar
96. Zhang, L., Tu, S., Wang, H., Du, Q. Preparation of polymer/graphene oxide nanocomposites by two-step strategy composed of in situ polymerization and melt processing. Compos. Sci. Technol. 2018, 154, 1–7; https://doi.org/10.1016/j.compscitech.2017.10.030.Suche in Google Scholar
97. Salom, C., Prolongo, M., Toribio, A., Martinez-Martinez, A., de Carcer, I. A., Prolongo, S. Mechanical properties and adhesive behaviour of epoxy-graphene nanocomposites. Int. J. Adhesion Adhes., 84, 119–125.10.1016/j.ijadhadh.2017.12.004Suche in Google Scholar
98. Chen, S., Li, J., Wei, L., Jin, Y., Shang, H., Hua, M., Duan, H. Tribological properties of polyimide-modified UHMWPE for bushing materials of seawater lubricated sliding bearings. Tribol. Int. 2017, 115, 470–476; https://doi.org/10.1016/j.triboint.2017.06.011.Suche in Google Scholar
99. Chang, J.-H. Polyimide nanocomposites with functionalized graphene sheets: thermal property, morphology, gas permeation, and electroconductivity. J. Thermoplast. Compos. Mater. 2017, 31, 837–861; https://doi.org/10.1177/0892705717720970.Suche in Google Scholar
100. Lau, K. S. Y. High-performance polyimides and high temperature resistant polymers. In Handbook of Thermoset Plastics, 3rd ed.; Dodiuk, H., Goodman, S. H., Eds.; William Andrew Publishing: Norwich, NY, 2014, pp. 297–424.10.1016/B978-1-4557-3107-7.00010-5Suche in Google Scholar
101. Fazil, S., Saeed, S., Waseem, M., Rehman, W., Bangesh, M., Liaqat, K. Improving mechanical, thermal, and electrical of polyimide by incorporating vinyltriethoxysilane functionalized graphene oxide. Polym. Compos. 2018, 39, E1635–E1642; https://doi.org/10.1002/pc.24581.Suche in Google Scholar
102. Shao, T., Zhang, C., Long, K. Surface modification of polyimide films using unipolar nanosecond-pulse DBD in atmospheric air. Appl. Surf. Sci. 2010, 256, 3888–3894; https://doi.org/10.1016/j.apsusc.2010.01.045.Suche in Google Scholar
103. Advani, S. G., Hsaio, K. T. Introduction to composites and manufacturing processes. In Woodhead Publishing Series in Composites Science and Engineering, Manufacturing Techniques for Polymer Composites (PMCs); Woodhead Publisher, 2012; pp. 1–12.10.1533/9780857096258.1.1Suche in Google Scholar
104. Praseetha, P. N., George, K. E., Jayakrishnan, N. Studies on mechanical behavior high impact polystyrene/vinyl clay nanocomposites: comparison between in situ polymerization and melt mixing. Polym. Compos. 2017, 38, 68–76.10.1002/pc.23561Suche in Google Scholar
105. Gururaja, S., Taya, M., Nakayama, H., Kang, Y. S., Kawasaki, A., Sutou, Y. Effective magnetic properties of Fe-NiTi (FSMA) particulate composites. In Proceedings of SPIE 5761, Smart Structures and Materials: Active Materials: Behaviour and Mechanics; SPIE: San Diego, California, USA, 2005.10.1117/12.600194Suche in Google Scholar
106. Schwertz, M., Sebastien, L., Elodie, B., Carrado, A., Vallat, M.-F., Nardin, M. Consolidation by spark plasma sintering of polyimide and polyetheretherketone. J. Appl. Polym. Sci. 2014, 131, 40783; https://doi.org/10.1002/app.40783.Suche in Google Scholar
107. Tanaka, A., Umeda, K., Yudasaka, M., Suzuki, M., Ohana, T., Yumura, M., Iijima, S. Friction and wear of carbon nanohorn-containing polyimide composites. Tribol. Lett. 2005, 19, 35–142; https://doi.org/10.1007/s11249-005-5094-3.Suche in Google Scholar
108. Adesina, O. T., Sadiku, E. R., Jamiru, T., Ogunbiyi, O. F., Beneke, L. W., Adegbola, A. T. Optimization of SPS processing parameters on the density and hardness properties of graphene reinforced polylactic acid nanocomposite. Int. J. Adv. Manuf. Technol. 2019, 102, 4047–4058; https://doi.org/10.1007/s00170-019-03530-7.Suche in Google Scholar
109. Schwertz, M., Lemonnier, S., Elodie, B., Carrado, A., Vallat, M.-F., Nardin, M. Spark plasma sintering technology applied to polymer-based composites for structural light weighting. Powder Metall. 2015, 58, 87–90; https://doi.org/10.1179/0032589914z.000000000212.Suche in Google Scholar
110. Watanabe, Y., Iwasa, Y., Sato, H., Teramoto, A., Abe, K., Miura-Fujiwara, E. Microstructures and mechanical properties of titanium/biodegradable-polymer FGM for bone tissue fabricated by spark plasma sintering method. J. Mater. Process. Technol. 2011, 211, 1919–1926; https://doi.org/10.1016/j.jmatprotec.2011.05.024.Suche in Google Scholar
111. Omori, M. Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS). Mater. Sci. Eng., A 2000, 287, 183–188; https://doi.org/10.1016/s0921-5093(00)00773-5.Suche in Google Scholar
112. Omori, M., Okubo, A., Kang, G. H., Hirai, T. Preparation and properties of polyimide/Cu functionally graded material’. In Functionally Graded Materials 1996; Ichiro, S., Yoshinari, M., Eds.; Elsevier Science: Amsterdam, 1997, pp. 767–772.10.1016/B978-044482548-3/50125-6Suche in Google Scholar
113. Schwartz, M., Ranque, P., Sebastien, L., Elodie, B., Carrado, A., Vallat, M.-F., Nardin, M. Optimization of the spark plasma sintering processing parameters affecting the properties of polyimide. J. Appl. Polym. Sci. 2015, 132, 41542.10.1002/app.41542Suche in Google Scholar
114. Naghd, S., Rhee, K. Y., Hui, D., Park, S. J. A review of conductive metal nanomaterials as conductive, transparent, and flexible coatings, thin films, and conductive fillers: different deposition methods and applications. Coatings 2018, 8, 278.10.3390/coatings8080278Suche in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Material properties
- Study on the properties of composite superabsorbent resin doped with starch and cellulose
- Thermal stability, mechanical properties, and gamma radiation shielding performance of polyvinyl chloride/Pb(NO3)2 composites
- Effects of talc, kaolin and calcium carbonate as fillers in biopolymer packaging materials
- Tribological properties of organotin compound modified UHMWPE
- Recent progress on improving the mechanical, thermal and electrical conductivity properties of polyimide matrix composites from nanofillers perspective for technological applications
- Rheological and thermal stability of interpenetrating polymer network hydrogel based on polyacrylamide/hydroxypropyl guar reinforced with graphene oxide for application in oil recovery
- Characterization of polymeric biomedical balloon: physical and mechanical properties
- Preparation and assembly
- Preparation and properties of poly (vinyl alcohol)/sodium caseinate blend films crosslinked with glutaraldehyde and glyoxal
- Lignin reinforced, water resistant, and biodegradable cassava starch/PBAT sandwich composite pieces
- A simple and green approach to the preparation of super tough IIR/SWCNTs nanocomposites with tunable and strain responsive electrical conductivity
Artikel in diesem Heft
- Frontmatter
- Material properties
- Study on the properties of composite superabsorbent resin doped with starch and cellulose
- Thermal stability, mechanical properties, and gamma radiation shielding performance of polyvinyl chloride/Pb(NO3)2 composites
- Effects of talc, kaolin and calcium carbonate as fillers in biopolymer packaging materials
- Tribological properties of organotin compound modified UHMWPE
- Recent progress on improving the mechanical, thermal and electrical conductivity properties of polyimide matrix composites from nanofillers perspective for technological applications
- Rheological and thermal stability of interpenetrating polymer network hydrogel based on polyacrylamide/hydroxypropyl guar reinforced with graphene oxide for application in oil recovery
- Characterization of polymeric biomedical balloon: physical and mechanical properties
- Preparation and assembly
- Preparation and properties of poly (vinyl alcohol)/sodium caseinate blend films crosslinked with glutaraldehyde and glyoxal
- Lignin reinforced, water resistant, and biodegradable cassava starch/PBAT sandwich composite pieces
- A simple and green approach to the preparation of super tough IIR/SWCNTs nanocomposites with tunable and strain responsive electrical conductivity