Abstract
This paper describes work carried out to assess the effect of fibre treatments and coupling agent on the mechanical performance of PLA composites reinforced with 20 wt% fibre. The chemically-treated harakeke and hemp fibres used to produce fibre mats. Maleic anhydride (MA) grafted PLA (MA-g-PLA) was used as a coupling agent. Composites with fibre treated with silane and dicumyl peroxide (DCP) and composites using MA-g-PLA were characterised by swelling testing, scanning electron microscopy (SEM), tensile testing, dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA). It was found that the interfacial bonding for composites with fibres treated using silane and peroxide and composites coupled with MA-g-PLA noticeably improved supported by lower swelling indices, higher tensile strengths and lower tan δ compared to those composites with fibres treated using alkali only, with the highest tensile strength of about 11% higher obtained from composites treated with MA-g-PLA followed by silane and then peroxide. However, using silane, peroxide and MA-g-PLA as additional composite treatments increased significantly the composite failure strain by up 11, 19 and 30%, respectively for harakeke composites and by 13, 24 and 30%, respectively for hemp composites.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors. However, the author would like to thank to the Composites Research Group, University of Waikato for their support and the Ministry of Higher Education and Universiti Teknologi Mara Malaysia for the scholarship.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Zini, E., Scandola, M. Green composites: an overview. Polym. Compos. 2011, 32, 1905–1915; https://doi.org/10.1002/pc.21224.Search in Google Scholar
2. Badouard, C., Traon, F., Denoual, C., Mayer-Laigle, C., Paës, G., Bourmaud, A. Exploring mechanical properties of fully compostable flax reinforced composite filaments for 3D printing applications. Ind. Crop. Prod. 2019, 135, 246–250; https://doi.org/10.1016/j.indcrop.2019.04.049.Search in Google Scholar
3. Di Giorgio, L., Salgado, P. R., Dufresne, A., Mauri, A. N. Nanocelluloses from phormium (Phormium tenax) fibers. Cellulose 2020; 27, 4975–4990. https://doi.org/10.1007/s10570-020-03120-x.Search in Google Scholar
4. Sawpan, M. A. Polyurethanes from vegetable oils and applications: a review. J. Polym. Res. 2018, 25, 184; https://doi.org/10.1007/s10965-018-1578-3.Search in Google Scholar
5. Khan, M. Z. R., Srivastava, S. K., Gupta, M. A state-of-the-art review on particulate wood polymer composites: processing, properties and applications. Polym. Test. 2020, 106721; https://doi.org/10.1016/j.polymertesting.2020.106721.Search in Google Scholar
6. Adeniyi, A. G., Ighalo, J. O., Onifade, D. V. Banana and plantain fiber-reinforced polymer composites. J. Polym. Eng. 2019, 39, 597–611; https://doi.org/10.1515/polyeng-2019-0085.Search in Google Scholar
7. Krishnaiah, P., Manickam, S., Ratnam, C. T., Raghu, M., Parashuram, L., Prashantha, K., Jeon, B. H. Surface-treated short sisal fibers and halloysite nanotubes for synergistically enhanced performance of polypropylene hybrid composites. J. Thermoplast. Compos. Mater. 2020; https://doi.org/10.1177/0892705720946063.Search in Google Scholar
8. Alkbir, M., Sapuan, S., Nuraini, A., Ishak, M. Fibre properties and crashworthiness parameters of natural fibre-reinforced composite structure: a literature review. Compos. Struct. 2016, 148, 59–73; https://doi.org/10.1016/j.compstruct.2016.01.098.Search in Google Scholar
9. Tanasă, F., Zănoagă, M., Teacă, C. A., Nechifor, M., Shahzad, A. Modified hemp fibers intended for fiber‐reinforced polymer composites used in structural applications—a review. I. Methods of modification. Polym. Compos. 2019, 41, 5–31; https://doi.org/10.1002/pc.25354.Search in Google Scholar
10. Neis, F. A., de Costa, F., de Araújo, A. T.Jr, Fett, J. P., Fett-Neto, A. G. Multiple industrial uses of non-wood pine products. Ind. Crop. Prod. 2019, 130, 248–258; https://doi.org/10.1016/j.indcrop.2018.12.088.Search in Google Scholar
11. Barczewski, M., Matykiewicz, D., Mysiukiewicz, O., Maciejewski, P. Evaluation of polypropylene hybrid composites containing glass fiber and basalt powder. J. Polym. Eng. 2018, 38, 281–289; https://doi.org/10.1515/polyeng-2017-0019.Search in Google Scholar
12. Beckermann, G. Performance of Hemp-Fibre Reinforced Polypropylene Composite Materials; The University of Waikato, 2007.Search in Google Scholar
13. Hamdan, M., Siregar, J., Rejab, M., Bachtiar, D., Jamiluddin, J., Tezara, C. Effect of maleated anhydride on mechanical properties of rice husk filler reinforced PLA matrix polymer composite. Int. J. Precis. Eng. Manuf. Green Technol. 2019, 6, 113–124; https://doi.org/10.1007/s40684-019-00017-4.Search in Google Scholar
14. Pappu, A., Pickering, K. L., Thakur, V. K. Manufacturing and characterization of sustainable hybrid composites using sisal and hemp fibres as reinforcement of poly (lactic acid) via injection moulding. Ind. Crop. Prod. 2019, 137, 260–269; https://doi.org/10.1016/j.indcrop.2019.05.040.Search in Google Scholar
15. Kanai, N., Honda, T., Yoshihara, N., Oyama, T., Naito, A., Ueda, K., Kawamura, I. Structural characterization of cellulose nanofibers isolated from spent coffee grounds and their composite films with poly(vinyl alcohol): a new non-wood source. Cellulose 2020, 27, 5017–5028; https://doi.org/10.1007/s10570-020-03113-w.Search in Google Scholar
16. Lourenço, A. F., Gamelas, J. A. F., Sarmento, P., Ferreira, P. J. T. A comprehensive study on nanocelluloses in papermaking: the influence of common additives on filler retention and paper strength. Cellulose 2020, 27, 5297–5309; https://doi.org/10.1007/s10570-020-03105-w.Search in Google Scholar
17. Kabir, M., Wang, H., Lau, K., Cardona, F. Chemical treatments on plant-based natural fibre reinforced polymer composites: an overview. Compos. B Eng. 2012, 43, 2883–2892; https://doi.org/10.1016/j.compositesb.2012.04.053.Search in Google Scholar
18. Lu, J. Z., Wu, Q., Negulescu, I. I. Wood‐fiber/high‐density‐polyethylene composites: coupling agent performance. J. Appl. Polym. Sci. 2005, 96, 93–102; https://doi.org/10.1002/app.21410.Search in Google Scholar
19. Li, X., Tabil, L. G., Panigrahi, S. Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J. Polym. Environ. 2007, 15, 25–33; https://doi.org/10.1007/s10924-006-0042-3.Search in Google Scholar
20. Franco-Marquès, E., Méndez, J., Pèlach, M., Vilaseca, F., Bayer, J., Mutjé, P. Influence of coupling agents in the preparation of polypropylene composites reinforced with recycled fibers. Chem. Eng. J. 2011, 166, 1170–1178; https://doi.org/10.1016/j.cej.2010.12.031.Search in Google Scholar
21. Pickering, K., Abdalla, A., Ji, C., McDonald, A., Franich, R. The effect of silane coupling agents on radiata pine fibre for use in thermoplastic matrix composites. Compos. Appl. Sci. Manuf. 2003, 34, 915–926; https://doi.org/10.1016/s1359-835x(03)00234-3.Search in Google Scholar
22. Efendy, M. A., Pickering, K. Comparison of harakeke with hemp fibre as a potential reinforcement in composites. Composites Part A: Appl. Sci. Manuf. 2016, 67, 259–267; https://doi.org/10.1016/j.compositesa.2014.08.023.Search in Google Scholar
23. Pickering, K. L., Efendy, M. A. Preparation and mechanical properties of novel bio-composite made of dynamically sheet formed discontinuous harakeke and hemp fibre mat reinforced PLA composites for structural applications. Ind. Crop. Prod. 2016, 84, 139–150; https://doi.org/10.1016/j.indcrop.2016.02.005.Search in Google Scholar
24. John, M. J., Francis, B., Varughese, K., Thomas, S. Effect of chemical modification on properties of hybrid fiber biocomposites. Compos. Appl. Sci. Manuf. 2008, 39, 352–363; https://doi.org/10.1016/j.compositesa.2007.10.002.Search in Google Scholar
25. Luyt, A., Mokhothu, T., Guduri, B. Kenaf-Fiber-Reinforced Copolyester Biocomposites; Polymer Composites, 2011; pp. 2001–2009.10.1002/pc.21233Search in Google Scholar
26. Goriparthi, B. K., Suman, K., Rao, N. M. Effect of fiber surface treatments on mechanical and abrasive wear performance of polylactide/jute composites. Compos. Appl. Sci. Manuf. 2012, 43, 1800–1808; https://doi.org/10.1016/j.compositesa.2012.05.007.Search in Google Scholar
27. Zou, H., Wang, L., Gan, H., Yi, C. Effect of fiber surface treatments on the properties of short sisal fiber/poly (lactic acid) biocomposites. Polym. Compos. 2012, 33, 1659–1666; https://doi.org/10.1002/pc.22295.Search in Google Scholar
28. Choi, H. Y., Lee, J. S. Effects of surface treatment of ramie fibers in a ramie/poly (lactic acid) composite. Fibers Polym. 2012, 13, 217–223; https://doi.org/10.1007/s12221-012-0217-6.Search in Google Scholar
29. Rytlewski, P., Moraczewski, K., Malinowski, R., Żenkiewicz, M. Assessment of dicumyl peroxide ability to improve adhesion between polylactide and flax or hemp fibres. Compos. Interfac. 2014, 21, 671–683; https://doi.org/10.1080/15685543.2014.927262.Search in Google Scholar
30. Razak, N. I. A., Ibrahim, N. A., Zainuddin, N., Rayung, M., Saad, W. Z. The influence of chemical surface modification of kenaf fiber using hydrogen peroxide on the mechanical properties of biodegradable kenaf fiber/poly (lactic acid) composites. Molecules 2014, 19, 2957–2968; https://doi.org/10.3390/molecules19032957.Search in Google Scholar PubMed PubMed Central
31. Kim, J. T., Netravali, A. N. Mercerization of sisal fibers: effect of tension on mechanical properties of sisal fiber and fiber-reinforced composites. Compos. Appl. Sci. Manuf. 2010, 41, 1245–1252; https://doi.org/10.1016/j.compositesa.2010.05.007.Search in Google Scholar
32. Kang, J. T., Park, S. H., Kim, S. H. Improvement in the adhesion of bamboo fiber reinforced polylactide composites. J. Compos. Mater. 2013, 48, 2567–77; https://doi.org/10.1177/0021998313501013.Search in Google Scholar
33. Yu, T., Jiang, N., Li, Y. Study on short ramie fiber/poly (lactic acid) composites compatibilized by maleic anhydride. Compos. Appl. Sci. Manuf. 2014, 64, 139–146; https://doi.org/10.1016/j.compositesa.2014.05.008.Search in Google Scholar
34. Lu, T., Liu, S., Jiang, M., Xu, X., Wang, Y., Wang, Z., Gou, J., Hui, D., Zhou, Z. Effects of modifications of bamboo cellulose fibers on the improved mechanical properties of cellulose reinforced poly (lactic acid) composites. Compos. B Eng. 2014, 62, 191–197; https://doi.org/10.1016/j.compositesb.2014.02.030.Search in Google Scholar
35. Ansari, N. M. Influence of maleic anhydride on mechanical properties and morphology of hydroxyapatite/poly-(lactic acid) composites. Regenerative Research. 2012, 1, 32–38.Search in Google Scholar
36. Kim, H.-S., Lee, B.-H., Lee, S., Kim, H.-J., Dorgan, J. R. Enhanced interfacial adhesion, mechanical, and thermal properties of natural flour-filled biodegradable polymer bio-composites. J. Therm. Anal. Calorim. 2010, 104, 331–338; https://doi.org/10.1007/s10973-010-1098-9.Search in Google Scholar
37. Yu, T., Li, Y., Ren, J. Preparation and properties of short natural fiber reinforced poly (lactic acid) composites. Trans. Nonferrous Metals Soc. China 2009, 19, s651–s655; https://doi.org/10.1016/s1003-6326(10)60126-4.Search in Google Scholar
38. Baghaei, B., Skrifvars, M., Salehi, M., Bashir, T., Rissanen, M., Nousiainen, P. Novel aligned hemp fibre reinforcement for structural biocomposites: porosity, water absorption, mechanical performances and viscoelastic behaviour. Compos. Appl. Sci. Manuf. 2014, 61, 1–12; https://doi.org/10.1016/j.compositesa.2014.01.017.Search in Google Scholar
39. Avella, M., Bogoeva‐Gaceva, G., Bužarovska, A., Errico, M. E., Gentile, G., Grozdanov, A. Poly (lactic acid)‐based biocomposites reinforced with kenaf fibers. J. Appl. Polym. Sci. 2008, 108, 3542–3551; https://doi.org/10.1002/app.28004.Search in Google Scholar
40. Tabi, T., Sajó, I., Szabo, F., Luyt, A., Kovács, J. Crystalline structure of annealed polylactic acid and its relation to processing. Express Polym. Lett. 2010, 4, 659–668; https://doi.org/10.3144/expresspolymlett.2010.80.Search in Google Scholar
41. Song, Y., Liu, J., Chen, S., Zheng, Y., Ruan, S., Bin, Y. Mechanical properties of poly (lactic acid)/hemp fiber composites prepared with a novel method. J. Polym. Environ. 2013, 21, 1117–1127; https://doi.org/10.1007/s10924-013-0569-z.Search in Google Scholar
42. Yu, T., Ren, J., Li, S., Yuan, H., Li, Y. Effect of fiber surface-treatments on the properties of poly (lactic acid)/ramie composites. Compos. Appl. Sci. Manuf. 2010, 41, 499–505; https://doi.org/10.1016/j.compositesa.2009.12.006.Search in Google Scholar
43. Shih, Y.-F., Huang, C.-C. Polylactic acid (PLA)/banana fiber (BF) biodegradable green composites. J. Polym. Res. 2011, 18, 2335–2340; https://doi.org/10.1007/s10965-011-9646-y.Search in Google Scholar
44. Lee, B.-H., Kim, H.-S., Lee, S., Kim, H.-J., Dorgan, J. R. Bio-composites of kenaf fibers in polylactide: role of improved interfacial adhesion in the carding process. Compos. Sci. Technol. 2009, 69, 2573–2579; https://doi.org/10.1016/j.compscitech.2009.07.015.Search in Google Scholar
45. Hwang, S. W., Lee, S. B., Lee, C. K., Lee, J. Y., Shim, J. K., Selke, S. E., Soto-Valdez, H., Matuana, L., Rubino, M., Auras, R. Grafting of maleic anhydride on poly (L-lactic acid). Effects on physical and mechanical properties. Polym. Test. 2012, 31, 333–344; https://doi.org/10.1016/j.polymertesting.2011.12.005.Search in Google Scholar
46. Muenprasat, D., Suttireungwong, S., Tongpin, C. Functionalization of Poly (lactic acid) with maleic anhydride for biomedical application. J. Metals Mater. Miner. 2010, 20, 189–192.Search in Google Scholar
47. Krishnaiah, P., Manickam, S., Ratnam, C. T., Raghu, M., Parashuram, L., Prasanna Kumar, S., Jeon, B. H. Mechanical, thermal and dynamic-mechanical studies of functionalized halloysite nanotubes reinforced polypropylene composites. Polym. Polym. Compos. 2020; https://doi.org/10.1177/0967391120965115.Search in Google Scholar
48. Bhattacharya, A., Rawlins, J. W., Ray, P. Polymer Grafting and Crosslinking; John Wiley & Sons, 2009.10.1002/9780470414811Search in Google Scholar
49. Jacob, M., Thomas, S., Varughese, K. Novel woven sisal fabric reinforced natural rubber composites: tensile and swelling characteristics. J. Compos. Mater. 2006, 40, 1471–1485; https://doi.org/10.1177/0021998306059731.Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Material properties
- The effects of ZnO nanoparticle reinforcement on thermostability, mechanical, and optical properties of the biodegradable PBAT film
- The effect of fibre surface treatment and coupling agents to improve the performance of natural fibres in PLA composites
- Effects of infill pattern and density on wear performance of FDM-printed acrylonitrile-butadiene-styrene parts
- Preparation and assembly
- Study on the thermal insulation performance of the core–shell skeleton graphene oxide/carbon composite aerogel
- Engineering and processing
- Design criteria for the pin-foot ratio for joining adhesion-incompatible polymers using pin-like structures in vibration welding process
- Numerical investigation of tubular expansion and swelling elastomers in oil wells
Articles in the same Issue
- Frontmatter
- Material properties
- The effects of ZnO nanoparticle reinforcement on thermostability, mechanical, and optical properties of the biodegradable PBAT film
- The effect of fibre surface treatment and coupling agents to improve the performance of natural fibres in PLA composites
- Effects of infill pattern and density on wear performance of FDM-printed acrylonitrile-butadiene-styrene parts
- Preparation and assembly
- Study on the thermal insulation performance of the core–shell skeleton graphene oxide/carbon composite aerogel
- Engineering and processing
- Design criteria for the pin-foot ratio for joining adhesion-incompatible polymers using pin-like structures in vibration welding process
- Numerical investigation of tubular expansion and swelling elastomers in oil wells