Home The effect of fibre surface treatment and coupling agents to improve the performance of natural fibres in PLA composites
Article
Licensed
Unlicensed Requires Authentication

The effect of fibre surface treatment and coupling agents to improve the performance of natural fibres in PLA composites

  • Aruan Efendy Mohd Ghazali EMAIL logo and Kim L. Pickering
Published/Copyright: October 7, 2021
Become an author with De Gruyter Brill

Abstract

This paper describes work carried out to assess the effect of fibre treatments and coupling agent on the mechanical performance of PLA composites reinforced with 20 wt% fibre. The chemically-treated harakeke and hemp fibres used to produce fibre mats. Maleic anhydride (MA) grafted PLA (MA-g-PLA) was used as a coupling agent. Composites with fibre treated with silane and dicumyl peroxide (DCP) and composites using MA-g-PLA were characterised by swelling testing, scanning electron microscopy (SEM), tensile testing, dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA). It was found that the interfacial bonding for composites with fibres treated using silane and peroxide and composites coupled with MA-g-PLA noticeably improved supported by lower swelling indices, higher tensile strengths and lower tan δ compared to those composites with fibres treated using alkali only, with the highest tensile strength of about 11% higher obtained from composites treated with MA-g-PLA followed by silane and then peroxide. However, using silane, peroxide and MA-g-PLA as additional composite treatments increased significantly the composite failure strain by up 11, 19 and 30%, respectively for harakeke composites and by 13, 24 and 30%, respectively for hemp composites.


Corresponding author: Aruan Efendy Mohd Ghazali, College of Engineering, Universiti Teknologi MARA, Shah Alam, Malaysia, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors. However, the author would like to thank to the Composites Research Group, University of Waikato for their support and the Ministry of Higher Education and Universiti Teknologi Mara Malaysia for the scholarship.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Zini, E., Scandola, M. Green composites: an overview. Polym. Compos. 2011, 32, 1905–1915; https://doi.org/10.1002/pc.21224.Search in Google Scholar

2. Badouard, C., Traon, F., Denoual, C., Mayer-Laigle, C., Paës, G., Bourmaud, A. Exploring mechanical properties of fully compostable flax reinforced composite filaments for 3D printing applications. Ind. Crop. Prod. 2019, 135, 246–250; https://doi.org/10.1016/j.indcrop.2019.04.049.Search in Google Scholar

3. Di Giorgio, L., Salgado, P. R., Dufresne, A., Mauri, A. N. Nanocelluloses from phormium (Phormium tenax) fibers. Cellulose 2020; 27, 4975–4990. https://doi.org/10.1007/s10570-020-03120-x.Search in Google Scholar

4. Sawpan, M. A. Polyurethanes from vegetable oils and applications: a review. J. Polym. Res. 2018, 25, 184; https://doi.org/10.1007/s10965-018-1578-3.Search in Google Scholar

5. Khan, M. Z. R., Srivastava, S. K., Gupta, M. A state-of-the-art review on particulate wood polymer composites: processing, properties and applications. Polym. Test. 2020, 106721; https://doi.org/10.1016/j.polymertesting.2020.106721.Search in Google Scholar

6. Adeniyi, A. G., Ighalo, J. O., Onifade, D. V. Banana and plantain fiber-reinforced polymer composites. J. Polym. Eng. 2019, 39, 597–611; https://doi.org/10.1515/polyeng-2019-0085.Search in Google Scholar

7. Krishnaiah, P., Manickam, S., Ratnam, C. T., Raghu, M., Parashuram, L., Prashantha, K., Jeon, B. H. Surface-treated short sisal fibers and halloysite nanotubes for synergistically enhanced performance of polypropylene hybrid composites. J. Thermoplast. Compos. Mater. 2020; https://doi.org/10.1177/0892705720946063.Search in Google Scholar

8. Alkbir, M., Sapuan, S., Nuraini, A., Ishak, M. Fibre properties and crashworthiness parameters of natural fibre-reinforced composite structure: a literature review. Compos. Struct. 2016, 148, 59–73; https://doi.org/10.1016/j.compstruct.2016.01.098.Search in Google Scholar

9. Tanasă, F., Zănoagă, M., Teacă, C. A., Nechifor, M., Shahzad, A. Modified hemp fibers intended for fiber‐reinforced polymer composites used in structural applications—a review. I. Methods of modification. Polym. Compos. 2019, 41, 5–31; https://doi.org/10.1002/pc.25354.Search in Google Scholar

10. Neis, F. A., de Costa, F., de Araújo, A. T.Jr, Fett, J. P., Fett-Neto, A. G. Multiple industrial uses of non-wood pine products. Ind. Crop. Prod. 2019, 130, 248–258; https://doi.org/10.1016/j.indcrop.2018.12.088.Search in Google Scholar

11. Barczewski, M., Matykiewicz, D., Mysiukiewicz, O., Maciejewski, P. Evaluation of polypropylene hybrid composites containing glass fiber and basalt powder. J. Polym. Eng. 2018, 38, 281–289; https://doi.org/10.1515/polyeng-2017-0019.Search in Google Scholar

12. Beckermann, G. Performance of Hemp-Fibre Reinforced Polypropylene Composite Materials; The University of Waikato, 2007.Search in Google Scholar

13. Hamdan, M., Siregar, J., Rejab, M., Bachtiar, D., Jamiluddin, J., Tezara, C. Effect of maleated anhydride on mechanical properties of rice husk filler reinforced PLA matrix polymer composite. Int. J. Precis. Eng. Manuf. Green Technol. 2019, 6, 113–124; https://doi.org/10.1007/s40684-019-00017-4.Search in Google Scholar

14. Pappu, A., Pickering, K. L., Thakur, V. K. Manufacturing and characterization of sustainable hybrid composites using sisal and hemp fibres as reinforcement of poly (lactic acid) via injection moulding. Ind. Crop. Prod. 2019, 137, 260–269; https://doi.org/10.1016/j.indcrop.2019.05.040.Search in Google Scholar

15. Kanai, N., Honda, T., Yoshihara, N., Oyama, T., Naito, A., Ueda, K., Kawamura, I. Structural characterization of cellulose nanofibers isolated from spent coffee grounds and their composite films with poly(vinyl alcohol): a new non-wood source. Cellulose 2020, 27, 5017–5028; https://doi.org/10.1007/s10570-020-03113-w.Search in Google Scholar

16. Lourenço, A. F., Gamelas, J. A. F., Sarmento, P., Ferreira, P. J. T. A comprehensive study on nanocelluloses in papermaking: the influence of common additives on filler retention and paper strength. Cellulose 2020, 27, 5297–5309; https://doi.org/10.1007/s10570-020-03105-w.Search in Google Scholar

17. Kabir, M., Wang, H., Lau, K., Cardona, F. Chemical treatments on plant-based natural fibre reinforced polymer composites: an overview. Compos. B Eng. 2012, 43, 2883–2892; https://doi.org/10.1016/j.compositesb.2012.04.053.Search in Google Scholar

18. Lu, J. Z., Wu, Q., Negulescu, I. I. Wood‐fiber/high‐density‐polyethylene composites: coupling agent performance. J. Appl. Polym. Sci. 2005, 96, 93–102; https://doi.org/10.1002/app.21410.Search in Google Scholar

19. Li, X., Tabil, L. G., Panigrahi, S. Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J. Polym. Environ. 2007, 15, 25–33; https://doi.org/10.1007/s10924-006-0042-3.Search in Google Scholar

20. Franco-Marquès, E., Méndez, J., Pèlach, M., Vilaseca, F., Bayer, J., Mutjé, P. Influence of coupling agents in the preparation of polypropylene composites reinforced with recycled fibers. Chem. Eng. J. 2011, 166, 1170–1178; https://doi.org/10.1016/j.cej.2010.12.031.Search in Google Scholar

21. Pickering, K., Abdalla, A., Ji, C., McDonald, A., Franich, R. The effect of silane coupling agents on radiata pine fibre for use in thermoplastic matrix composites. Compos. Appl. Sci. Manuf. 2003, 34, 915–926; https://doi.org/10.1016/s1359-835x(03)00234-3.Search in Google Scholar

22. Efendy, M. A., Pickering, K. Comparison of harakeke with hemp fibre as a potential reinforcement in composites. Composites Part A: Appl. Sci. Manuf. 2016, 67, 259–267; https://doi.org/10.1016/j.compositesa.2014.08.023.Search in Google Scholar

23. Pickering, K. L., Efendy, M. A. Preparation and mechanical properties of novel bio-composite made of dynamically sheet formed discontinuous harakeke and hemp fibre mat reinforced PLA composites for structural applications. Ind. Crop. Prod. 2016, 84, 139–150; https://doi.org/10.1016/j.indcrop.2016.02.005.Search in Google Scholar

24. John, M. J., Francis, B., Varughese, K., Thomas, S. Effect of chemical modification on properties of hybrid fiber biocomposites. Compos. Appl. Sci. Manuf. 2008, 39, 352–363; https://doi.org/10.1016/j.compositesa.2007.10.002.Search in Google Scholar

25. Luyt, A., Mokhothu, T., Guduri, B. Kenaf-Fiber-Reinforced Copolyester Biocomposites; Polymer Composites, 2011; pp. 2001–2009.10.1002/pc.21233Search in Google Scholar

26. Goriparthi, B. K., Suman, K., Rao, N. M. Effect of fiber surface treatments on mechanical and abrasive wear performance of polylactide/jute composites. Compos. Appl. Sci. Manuf. 2012, 43, 1800–1808; https://doi.org/10.1016/j.compositesa.2012.05.007.Search in Google Scholar

27. Zou, H., Wang, L., Gan, H., Yi, C. Effect of fiber surface treatments on the properties of short sisal fiber/poly (lactic acid) biocomposites. Polym. Compos. 2012, 33, 1659–1666; https://doi.org/10.1002/pc.22295.Search in Google Scholar

28. Choi, H. Y., Lee, J. S. Effects of surface treatment of ramie fibers in a ramie/poly (lactic acid) composite. Fibers Polym. 2012, 13, 217–223; https://doi.org/10.1007/s12221-012-0217-6.Search in Google Scholar

29. Rytlewski, P., Moraczewski, K., Malinowski, R., Żenkiewicz, M. Assessment of dicumyl peroxide ability to improve adhesion between polylactide and flax or hemp fibres. Compos. Interfac. 2014, 21, 671–683; https://doi.org/10.1080/15685543.2014.927262.Search in Google Scholar

30. Razak, N. I. A., Ibrahim, N. A., Zainuddin, N., Rayung, M., Saad, W. Z. The influence of chemical surface modification of kenaf fiber using hydrogen peroxide on the mechanical properties of biodegradable kenaf fiber/poly (lactic acid) composites. Molecules 2014, 19, 2957–2968; https://doi.org/10.3390/molecules19032957.Search in Google Scholar PubMed PubMed Central

31. Kim, J. T., Netravali, A. N. Mercerization of sisal fibers: effect of tension on mechanical properties of sisal fiber and fiber-reinforced composites. Compos. Appl. Sci. Manuf. 2010, 41, 1245–1252; https://doi.org/10.1016/j.compositesa.2010.05.007.Search in Google Scholar

32. Kang, J. T., Park, S. H., Kim, S. H. Improvement in the adhesion of bamboo fiber reinforced polylactide composites. J. Compos. Mater. 2013, 48, 2567–77; https://doi.org/10.1177/0021998313501013.Search in Google Scholar

33. Yu, T., Jiang, N., Li, Y. Study on short ramie fiber/poly (lactic acid) composites compatibilized by maleic anhydride. Compos. Appl. Sci. Manuf. 2014, 64, 139–146; https://doi.org/10.1016/j.compositesa.2014.05.008.Search in Google Scholar

34. Lu, T., Liu, S., Jiang, M., Xu, X., Wang, Y., Wang, Z., Gou, J., Hui, D., Zhou, Z. Effects of modifications of bamboo cellulose fibers on the improved mechanical properties of cellulose reinforced poly (lactic acid) composites. Compos. B Eng. 2014, 62, 191–197; https://doi.org/10.1016/j.compositesb.2014.02.030.Search in Google Scholar

35. Ansari, N. M. Influence of maleic anhydride on mechanical properties and morphology of hydroxyapatite/poly-(lactic acid) composites. Regenerative Research. 2012, 1, 32–38.Search in Google Scholar

36. Kim, H.-S., Lee, B.-H., Lee, S., Kim, H.-J., Dorgan, J. R. Enhanced interfacial adhesion, mechanical, and thermal properties of natural flour-filled biodegradable polymer bio-composites. J. Therm. Anal. Calorim. 2010, 104, 331–338; https://doi.org/10.1007/s10973-010-1098-9.Search in Google Scholar

37. Yu, T., Li, Y., Ren, J. Preparation and properties of short natural fiber reinforced poly (lactic acid) composites. Trans. Nonferrous Metals Soc. China 2009, 19, s651–s655; https://doi.org/10.1016/s1003-6326(10)60126-4.Search in Google Scholar

38. Baghaei, B., Skrifvars, M., Salehi, M., Bashir, T., Rissanen, M., Nousiainen, P. Novel aligned hemp fibre reinforcement for structural biocomposites: porosity, water absorption, mechanical performances and viscoelastic behaviour. Compos. Appl. Sci. Manuf. 2014, 61, 1–12; https://doi.org/10.1016/j.compositesa.2014.01.017.Search in Google Scholar

39. Avella, M., Bogoeva‐Gaceva, G., Bužarovska, A., Errico, M. E., Gentile, G., Grozdanov, A. Poly (lactic acid)‐based biocomposites reinforced with kenaf fibers. J. Appl. Polym. Sci. 2008, 108, 3542–3551; https://doi.org/10.1002/app.28004.Search in Google Scholar

40. Tabi, T., Sajó, I., Szabo, F., Luyt, A., Kovács, J. Crystalline structure of annealed polylactic acid and its relation to processing. Express Polym. Lett. 2010, 4, 659–668; https://doi.org/10.3144/expresspolymlett.2010.80.Search in Google Scholar

41. Song, Y., Liu, J., Chen, S., Zheng, Y., Ruan, S., Bin, Y. Mechanical properties of poly (lactic acid)/hemp fiber composites prepared with a novel method. J. Polym. Environ. 2013, 21, 1117–1127; https://doi.org/10.1007/s10924-013-0569-z.Search in Google Scholar

42. Yu, T., Ren, J., Li, S., Yuan, H., Li, Y. Effect of fiber surface-treatments on the properties of poly (lactic acid)/ramie composites. Compos. Appl. Sci. Manuf. 2010, 41, 499–505; https://doi.org/10.1016/j.compositesa.2009.12.006.Search in Google Scholar

43. Shih, Y.-F., Huang, C.-C. Polylactic acid (PLA)/banana fiber (BF) biodegradable green composites. J. Polym. Res. 2011, 18, 2335–2340; https://doi.org/10.1007/s10965-011-9646-y.Search in Google Scholar

44. Lee, B.-H., Kim, H.-S., Lee, S., Kim, H.-J., Dorgan, J. R. Bio-composites of kenaf fibers in polylactide: role of improved interfacial adhesion in the carding process. Compos. Sci. Technol. 2009, 69, 2573–2579; https://doi.org/10.1016/j.compscitech.2009.07.015.Search in Google Scholar

45. Hwang, S. W., Lee, S. B., Lee, C. K., Lee, J. Y., Shim, J. K., Selke, S. E., Soto-Valdez, H., Matuana, L., Rubino, M., Auras, R. Grafting of maleic anhydride on poly (L-lactic acid). Effects on physical and mechanical properties. Polym. Test. 2012, 31, 333–344; https://doi.org/10.1016/j.polymertesting.2011.12.005.Search in Google Scholar

46. Muenprasat, D., Suttireungwong, S., Tongpin, C. Functionalization of Poly (lactic acid) with maleic anhydride for biomedical application. J. Metals Mater. Miner. 2010, 20, 189–192.Search in Google Scholar

47. Krishnaiah, P., Manickam, S., Ratnam, C. T., Raghu, M., Parashuram, L., Prasanna Kumar, S., Jeon, B. H. Mechanical, thermal and dynamic-mechanical studies of functionalized halloysite nanotubes reinforced polypropylene composites. Polym. Polym. Compos. 2020; https://doi.org/10.1177/0967391120965115.Search in Google Scholar

48. Bhattacharya, A., Rawlins, J. W., Ray, P. Polymer Grafting and Crosslinking; John Wiley & Sons, 2009.10.1002/9780470414811Search in Google Scholar

49. Jacob, M., Thomas, S., Varughese, K. Novel woven sisal fabric reinforced natural rubber composites: tensile and swelling characteristics. J. Compos. Mater. 2006, 40, 1471–1485; https://doi.org/10.1177/0021998306059731.Search in Google Scholar

Received: 2021-04-16
Accepted: 2021-08-16
Published Online: 2021-10-07
Published in Print: 2021-11-25

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2021-0120/html
Scroll to top button