Home Thermal stability, mechanical properties, and gamma radiation shielding performance of polyvinyl chloride/Pb(NO3)2 composites
Article
Licensed
Unlicensed Requires Authentication

Thermal stability, mechanical properties, and gamma radiation shielding performance of polyvinyl chloride/Pb(NO3)2 composites

  • Sayed A. Waly , Ahmed M. Abdelreheem , Mohamed M. Shehata ORCID logo EMAIL logo , Omayma A. Ghazy and Zakaria I. Ali
Published/Copyright: September 2, 2021
Become an author with De Gruyter Brill

Abstract

Radiation shielding composites based on polyvinyl chloride (PVC) reinforced with different weight ratios of Pb(NO3)2 (5, 10, and 20 wt%) were prepared using the solution-casting technique. Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy, and tensile testing method were used to characterize the PVC composite films. FTIR and XRD investigations illustrate the structural change and modification of the as-prepared PVC composites. The morphological analysis of the composite revealed that Pb(NO3)2 was dispersed uniformly within PVC polymer matrix. TGA revealed that the incorporation of Pb(NO3)2 improved the thermal stability of the investigated composites, whereas adding Pb(NO3)2 to the polymer matrix worsened its tensile properties. The as-prepared composite films were investigated for radiation-shielding of gamma-rays radioactive point sources (241Am, 133Ba, 137Cs, and 60Co). Linear attenuation coefficient (μ, cm−1), mass attenuation coefficient (μ/ρ, cm2/g), and half-value layer (HVL, cm) have been estimated from the obtained data using the MicroShield program. Reasonable agreement was attended between theoretical and experimental results. The deviation between the experiment and theoretical values of mass attenuation coefficient is being to be lower than 9%, and this can be correlated to the good distribution of Pb(NO3)2. The results revealed that adding Pb(NO3)2 to PVC polymer composites improved their mass attenuation coefficient.


Corresponding author: Mohamed M. Shehata, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), P.O. 11787, Cairo, Egypt, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Al-Buriahi, M. S., Singh, V. P., Arslan, H., Awasarmol, V. V., Tonguc, B. T. Gamma-ray attenuation properties of some NLO materials: potential use in dosimetry. Radiat. Environ. Biophys. 2020, 59, 145–150; https://doi.org/10.1007/s00411-019-00824–y.10.1007/s00411-019-00824-ySearch in Google Scholar PubMed

2. Singh, V. P., Badiger, N. M., Kaewkhao, J. Radiation shielding competence of silicate and borate heavy metal oxide glasses: comparative study. J. Non-Cryst. Solids 2014, 404, 167–173; https://doi.org/10.1016/j.jnoncrysol.2014.08.003.Search in Google Scholar

3. Levet, A., Kavaz, E., Özdemir, Y. An experimental study on the investigation of nuclear radiation shielding characteristics in iron-boron alloys. J. Alloys Compd. 2020, 819, 152946; https://doi.org/10.1016/j.jallcom.2019.152946.Search in Google Scholar

4. Singh, V. P., Badiger, N. M., Chanthima, N., Kaewkhao, J. Evaluation of gamma-ray exposure buildup factors and neutron shielding for bismuth borosilicate glasses. Radiat. Phys. Chem. 2014, 98, 14–21; https://doi.org/10.1016/j.radphyschem.2013.12.029.Search in Google Scholar

5. More, C. V., Alavian, H., Pawar, P. P. Evaluation of gamma-ray attenuation characteristics of some thermoplastic polymers: experimental, WinXCom and MCNPX studies. J. Non-Cryst. Solids 2020, 546, 120277; https://doi.org/10.1016/j.jnoncrysol.2020.120277.Search in Google Scholar

6. Rani, N., Vermani, Y. K., Singh, T. Gamma radiation shielding properties of some Bi-Sn-Zn alloys. J. Radiol. Prot. 2020, 40, 296–310; https://doi.org/10.1088/1361-6498/ab6aaf.Search in Google Scholar PubMed

7. More, C. V., Pawar, P. P., Badawi, M. S., Thabet, A. A. Extensive theoretical study of gamma ray shielding parameters using epoxy resin-metal chloride mixtures. Nucl. Technol. Radiat. Protect. 2020, 35, 138–149; https://doi.org/10.2298/ntrp2002138m.Search in Google Scholar

8. Mahmoud, K. A., Tashlykov, O. L., El Wakil, A. F., El Aassy, I. E. Aggregates grain size and press rate dependence of the shielding parameters for some concretes. Prog. Nucl. Energy 2020, 118, 103092; https://doi.org/10.1016/j.pnucene.2019.103092.Search in Google Scholar

9. Zhou, Y. L., Zhu, X. N., Li, Y. J., Zheng, S. T., Li, L. Study on preparation and performance of γ ray protection coating. Adv. Mater. Res. Trans. Tech. Publ. 2011, 418-420, 835–839; https://doi.org/10.4028/www.scientific.net/amr.418-420.835.Search in Google Scholar

10. Licheng, D., Ping, H., Yuanlin, Z., Kaiping, S., Kuihua, Y. Study on preparation of ultrafine lead tungstate for radiation protection and γ-ray shielding of the gloves. Radiat. Protect. 2012, 32, 160–164.Search in Google Scholar

11. Abu El-soad, A. M., Sayed, M. I., Mahmoud, K. A., Şakar, E. S., Kovaleva, E. G. Simulation studies for gamma ray shielding properties of Halloysite nanotubes using MCNP-5 code. Appl. Radiat. Isot. 2019, 154, 108882; https://doi.org/10.1016/j.apradiso.2019.108882.Search in Google Scholar PubMed

12. Ambika, M. R., Nagaiah, N., Suman, S. K. Role of bismuth oxide as a reinforcer on gamma shielding ability of unsaturated poly-ester based polymer composites. J. Appl. Polym. Sci. 2017, 134, 1; https://doi.org/10.1002/app.44657.Search in Google Scholar

13. Alavian, H., Samie, A., Tavakoli-Anbaran, H. Experimental and Monte Carlo investigations of gamma ray transmission and buildup factors for inorganic nanoparticle/epoxy composites. Radiat. Phys. Chem. 2020, 174, 108960; https://doi.org/10.1016/j.radphyschem.2020.108960.Search in Google Scholar

14. Muzaffar, A., Ahamed, M. B., Deshmukh, K., Khadheer Pasha, S. K. Dielectric properties and electromagnetic interference shielding studies of nickel oxide and tungsten oxide reinforced polyvinylchloride nanocomposites. Polym. Plast. Technol. Mater. 2020, 59, 15, 1667–1678. https://doi.org/10.1080/25740881.2020.1759634.Search in Google Scholar

15. Atashi, P., Rahmani, S., Ahadi, B., Rahmati, A. Effcient, flexible and lead-free composite based on room temperature vulcanizing silicone rubber/W/Bi2O3for gamma ray shielding application. J. Mater. Sci. Mater. Electron. 2018, 29, 10; https://doi.org/10.1007/s10854-018-9344-1.Search in Google Scholar

16. Joshi, G. M., Deshmukh, K. Optimized quality factor of graphene oxide-reinforced PVC nanocomposite. J. Electron. Mater. 2014, 43; https://doi.org/10.1007/s11664-014-3010-z.Search in Google Scholar

17. Mann, K. S., Rani, A., Heer, M. S. Shielding behaviors of some polymer and plastic materials for gamma-rays. Radiat. Phys. Chem. 2015, 106, 247–254; https://doi.org/10.1016/j.radphyschem.2014.08.005.Search in Google Scholar

18. Bel, T., Arslan, C., Baydogan, N. Radiation shielding properties of poly (methyl methacrylate)/colemanite composite for the use in mixed irradiation fields of neutrons and gamma rays. Mater. Chem. Phys. 2019, 221, 58–67.10.1016/j.matchemphys.2018.09.014Search in Google Scholar

19. Ambika, M., Nagaiah, N., Harish, V., Lokanath, N., Sridhar, M., Renukappa, N., Suman, S. Preparation and characterization of isophthalic-Bi2O3 polymer composite gamma radiation shields. Radiat. Phys. Chem. 2017, 130, 351–358; https://doi.org/10.1016/j.radphyschem.2016.09.022.Search in Google Scholar

20. Chang, L., Zhang, Y., Liu, Y., Fang, J., Luan, W., Yang, X., Zhang, W. Preparation and characterization of tungsten/epoxy composites for γ-rays radiation shielding. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2015, 356, 88–93; https://doi.org/10.1016/j.nimb.2015.04.062.Search in Google Scholar

21. Muzaffar, A., Ahamed, M. B., Deshmukh, K., Faisal, M. Electromagnetic interference shielding properties of polyvinylchloride (PVC), barium titanate (BaTiO3) and nickel oxide (NiO) based nanocomposites. Polym. Test. 2019, 77, 105925; https://doi.org/10.1016/j.polymertesting.2019.105925.Search in Google Scholar

22. Taha, T. A., Azab, A. A. Thermal, optical, and dielectric investigations of PVC/La0.95Bi0.05FeO3 nanocomposites. J. Mol. Struct. 2019, 1178, 39–44; https://doi.org/10.1016/j.molstruc.2018.10.018.Search in Google Scholar

23. Elashmawi, I. S., Hakeem, N. A., Marei, L. K., Hanna, F. F. Structure and performance of ZnO/PVC nanocomposites. Phys. B Phys. Condens. Matter. 2010, 405, 4163–4169; https://doi.org/10.1016/j.physb.2010.07.006.Search in Google Scholar

24. Taha, T. A., Hendawy, N., El-Rabaie, S., Esmat, A., El-Mansy, M. K. Effect of NiO NPs doping on the structure and optical properties of PVC polymer films. Polym. Bull. 2019, 76, 4769–4784; https://doi.org/10.1007/s00289-018-2633-2.Search in Google Scholar

25. Mallakpour, S., Abdolmaleki, A., Tabebordbar, H. Production of PVC/αMnO2-KH550 nanocomposite films: morphology, thermal, mechanical and Pb(II) adsorption properties. Eur. Polym. J. 2016, 78, 141–152; https://doi.org/10.1016/j.eurpolymj.2016.03.022.Search in Google Scholar

26. Mansour, S. A., Elsad, R. A., Izzularab, M. A. Dielectric properties enhancement of PVC nanodielectrics based on synthesized ZnO nanoparticles. J. Polym. Res. 2016, 23, 85; https://doi.org/10.1007/s10965-016-0978-5.Search in Google Scholar

27. Waly, E. A., Al-Qous, G. S., Bourham, M. A. Shielding properties of glasses with different heavy elements additives for radiation shielding in the energy range 15–300keV. Radiat. Phys. Chem. 2018, 150, 120–124; https://doi.org/10.1016/j.radphyschem.2018.04.029.Search in Google Scholar

28. Waly, E. A., Fusco, M. A., Bourham, M. A. Gamma-ray mass attenuation coefficient and half value layer factor of some oxide glass shielding materials. Ann. Nucl. Energy 2016, 96, 26–30; https://doi.org/10.1016/j.anucene.2016.05.028.Search in Google Scholar

29. Waly, E. A., Bourham, M. A. Comparative study of different concrete composition as gamma-ray shielding materials. Ann. Nucl. Energy 2015, 85, 306–310; https://doi.org/10.1016/j.anucene.2015.05.011.Search in Google Scholar

30. Gaikwad, D. K., Sayyed, M. I., Obaid, S. S., Issa, S. A. M., Pawar, P. P. Gamma ray shielding properties of TeO2-ZnF2-As2O3-Sm2O3 glasses. J. Alloys Compd 2018, 6, https://doi.org/10.1016/j.jallcom.2018.06.240.Search in Google Scholar

31. Sayed, M. I., Akman, F., Kumar, A., Kaçal, M. R. Evaluation of radioprotection properties of some selected ceramic samples. Results Phys. 2018, 11, 1100–1104; https://doi.org/10.1016/j.rinp.2018.11.028.Search in Google Scholar

32. Bel, T., Arslan, C., Baydogan, N. Radiation shielding properties of poly (methyl methacrylate)/colemanite composite for the use in mixed irradiation fields of neutrons and gamma rays. Mater. Chem. Phys. 2018, 221, https://doi.org/10.1016/j.matchemphys.2018.09.014.Search in Google Scholar

33. Nadimicherla, R., Kalla, R., Muchakayala, R., Guo, X. Effects of potassium iodide (KI) on crystallinity, thermal stability, and electrical properties of polymer blend electrolytes (PVC/PEO:KI). Solid State Ionics 2015, 278, 260–267; https://doi.org/10.1016/j.ssi.2015.07.002.Search in Google Scholar

34. Karthika, P., Selvi, R., Prasadh, P. Structural and complex formation of PVC–LiNO3–CdO. Mech., Mater. Sci. Eng. MMSE J. Open Access 2017, 9, hal-01504680; https://doi.org/10.2412/mmse.65.100.626.Search in Google Scholar

35. Reddy, Y. G., Sekar, M. C., Chary, A. S., Reddy, S. N. Ion dynamic studies through AC conductivity spectra on Pb(NO3)2:Al2O3 composite solid electrolytes. AIP Conf. Proc. 2017, 1832, 110049; https://doi.org/10.1063/1.4980673.Search in Google Scholar

36. Mahmoud, M. E., El-Khatib, A. M., Badawi, M. S., Rashed, A. R., El-Sharkawy, R. M., Thabet, A. A. Fabrication, characterization and gamma rays shielding properties of nano and micro lead oxide-dispersed-high density polyethylene composites. Radiat. Phys. Chem. 2018, 145, 160–173; https://doi.org/10.1016/j.radphyschem.2017.10.017.Search in Google Scholar

37. Kumagai, S., Hasegawa, I., Grause, G., Kameda, T., Yoshioka, T. Thermal decomposition of individual and mixed plastics in the presence of CaO or Ca(OH)2. J. Anal. Appl. Pyrol. 2015, 113, 584–590; https://doi.org/10.1016/j.jaap.2015.04.004.Search in Google Scholar

38. Pawar, R. P. Study of thermal decomposition and instrumental analysis of synthesised polyvinyl alcohol polymer. Ultra Chem. 2015, 11, 1–6.Search in Google Scholar

39. El-Gamal, S., Elsayed, M. Synthesis, structural, thermal, mechanical, and nanoscale free volume properties of novel PbO/PVC/PMMA nanocomposites. Polymer 2020, 206, 122911; https://doi.org/10.1016/j.polymer.2020.122911.Search in Google Scholar

40. Rostam, S., Ali, A. K., Muhammad, F. H. A. Experimental investigation of mechanical properties of PVC polymer under different heating and cooling conditions. J. Eng. 2016, 1-5. Article ID 3791417; https://doi.org/10.1155/2016/3791417.Search in Google Scholar

41. Al Naim, A., Alnaim, N., Ibrahim, S. S., Metwally, S. M. Effect of gamma irradiation on the mechanical properties of PVC/ZnO polymer nanocomposite. J. Radiat. Res. Appl. Sci. 2017, 10, 165–171; https://doi.org/10.1016/j.jrras.2017.03.004.Search in Google Scholar

42. Kiani, M., Parvaneh, V., Abbasi, M., Dadrasi, A. Fabrication and investigation of the mechanical properties of PVC/carbon fiber/grapheme nanocomposite pipes for oil and gas applications. J. Thermoplast. Compos. Mater. 2020, 1–16; https://doi.org/10.1177/0892705720930792.Search in Google Scholar

43. Sayyed, M. I., Al Zaatreh, M. Y., Matori, K. A., Sidek, H. A. A., Zaid, M. H. M. Comprehensive study on estimation of gamma-ray exposure buildup factors for smart polymers as a potent application in nuclear industries. Results Phys. 2018, 9, 585–592; https://doi.org/10.1016/j.rinp.2018.01.057.Search in Google Scholar

44. Mahmoud, K. A., Lacomme, E., Sayed, M. I., Ozpolat, O. F., Tashlykov, O. L. Investigation of the gamma ray shielding properties for polyvinyl chloride reinforced with chalcocite and hematite minerals. Heliyon 2020, 6, e03560; https://doi.org/10.1016/j.heliyon.2020.e03560.Search in Google Scholar PubMed PubMed Central

Received: 2021-03-23
Accepted: 2021-06-21
Published Online: 2021-09-02
Published in Print: 2021-10-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2021-0067/pdf?lang=en
Scroll to top button