Abstract
Owing to the existence of the cone angle, the size of a conical counter-rotating twin screw continuously changes along the axis, so it is not easy to model using SolidWorks. In this study, the parametric design of the modeling process is completed based on the Visual Basic language and a program-driven method. Finally, the SolidWorks program plug-in and user interface are developed to complete the automatic generation of the three-dimensional model of a conical counter-rotating twin screw.
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: None declared.
Conflict of interest statement: The authors declare they have no conflicts of interest regarding this article.
References
1. Hyvärinen, M., Jabeen, R., Kärki, T. The modelling of extrusion processes for polymers—a review. Polymers-Basel 2020, 12, 1306.10.3390/polym12061306Suche in Google Scholar PubMed PubMed Central
2. Martin, C. Twin screw extruders as continuous mixers for thermal processing: a technical and historical perspective. AAPS PharmSciTech 2016, 17, 3–19.10.1208/s12249-016-0485-3Suche in Google Scholar PubMed PubMed Central
3. Haberstroh, E., Schlüter, M. The use of modern technologies in the development of simulation software. J. Polym. Eng. 2001, 21, 209–224.10.1515/POLYENG.2001.21.2-3.209Suche in Google Scholar
4. Sikora, J. W. Increasing the efficiency of the extrusion process. Polym. Eng. Sci. 2008, 48, 1678–1682.10.1002/pen.20998Suche in Google Scholar
5. Potente, H. Single and twin-screw extrusion: problems solved and unsolved. J. Polym. Eng. 1993, 12, 297–330.10.1515/POLYENG.1993.12.4.297Suche in Google Scholar
6. Jiang, Q. Modeling Flow, Melting, Solid Conveying and Global Behavior in Intermeshing Counter-Rotating Twin Screw Extruders. Ph.D. Thesis, Polymer Engineering, University of Akron, 2008.Suche in Google Scholar
7. Lewandowski, A., Wilczyński, K. Global modeling for single screw extrusion of viscoplastics. Int. Polym. Proc. 2020, 35, 26–36.10.3139/217.3866Suche in Google Scholar
8. Ershov, S., Trufanova, N. Numerical studies of the polymer melt flow in the extruder screw channel and the forming tool. MS&E 2017, 208, 12–18.10.1088/1757-899X/208/1/012018Suche in Google Scholar
9. Goger, A. Modelling of Counter Rotating Twin Screw Extrusion. M.S. Thesis, Chemical Engineering, McMaster University, 2013.Suche in Google Scholar
10. Zeng, X. L., Sun, B. S., Shu, X. D., Peng, W. F., Sun, P. Crampoon parametrization design based on further development of SolidWorks. Appl. Mech. Mater. 2012, 201-202, 317–320.10.4028/www.scientific.net/AMM.201-202.317Suche in Google Scholar
11. Seifert, S. Comparison of parallel and conical twin screw extruders from the processing point of view. Plast. Rubber Compos. 2005, 34, 134–142.10.1179/174328905X55515Suche in Google Scholar
12. Schneider, H. P. Conical and counter-rotating: the length makes the difference. Kunststoffe Int. 2012, 102, 39–41.Suche in Google Scholar
13. Stasiek, J. Engineering design of counter-rotating twin-screw extruders. J. Eng. Design 2000, 11, 133–148.10.1080/09544820050034231Suche in Google Scholar
14. Stasiek, J., Nieszporek, T. Problems of engineering design and production of screws in counter-rotating twin-screw extruders. Int. Polym. Sci. Technol. 2003, 30, 69–77.10.1177/0307174X0303000111Suche in Google Scholar
15. Schneider, H. P. The historical development of the counter-rotating twin-screw extruder. Kunstoffe Plast. Eur. 2005, 1, 1–6.Suche in Google Scholar
16. White, J. L., Szydlowski, W., Min, K., Kim, M. H. Twin screw extruders; development of technology and analysis of flow. Adv. Polym. Technol. 1987, 7, 295–332.10.1002/adv.1987.060070306Suche in Google Scholar
17. Lewandowski, A., Wilczyński, K. J., Nastaj, A., Wilczyński, K. A composite model for an intermeshing counter‐rotating twin‐screw extruder and its experimental verification. Polym. Eng. Sci. 2015, 55, 2838–2848.10.1002/pen.24175Suche in Google Scholar
18. Jiang, Q., Yang, J., White, J. L. Simulation of screw pumping characteristics for intermeshing counter‐rotating twin screw extruders. Polym. Eng. Sci. 2011, 51, 37–42.10.1002/pen.21789Suche in Google Scholar
19. White, J. L. Twin screw extrusion. Plast. Rubber Compos. Process. Appl. 1992, 17, 199–201.Suche in Google Scholar
20. White, J., Adewale, A. A unified view of modeling flow in counter-rotating twin screw extruders. Int. Polym. Proc. 1993, 8, 210–217.10.3139/217.930210Suche in Google Scholar
21. Liu, Y., Liu, X. Y., Lv, B. Y. Research on spiral engagement cold feeding rubber extruder. Key Eng. Mater. 2012, 501, 283–288.10.4028/www.scientific.net/KEM.501.283Suche in Google Scholar
22. Avalosse, T., Rubin, Y., Fondin, L. Non-isothermal modeling of co-rotating and contra-rotating twin screw extruders. J. Reinf. Plast. Compos. 2002, 21, 419–429.10.1177/0731684402021005442Suche in Google Scholar
23. Kühnle, H. Calculation and optimization of melt extruders. J. Polym. Eng. 1986, 6, 51–78.10.1515/POLYENG.1986.6.1-4.51Suche in Google Scholar
24. Wilczyński, K., Lewandowski, A. Study on the polymer melt flow in a closely intermeshing counter-rotating twin screw extruder. Int. Polym. Proc. 2014, 29, 649–659.10.3139/217.2962Suche in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Material properties
- Research and application progress of lignin-based composite membrane
- Effect of new metal–organic framework (zeolitic imidazolate framework [ZIF-12]) in mixed matrix membranes on structure, morphology, and gas separation properties
- Preparation and assembly
- Ultraviolet blocking and antioxidant polyvinyl alcohol films incorporated with baicalin extraction from Scutellaria baicalensis Georgi
- Investigation on the effect of supported synergistic catalyst with intumescent flame retardant in polypropylene
- Roll-over-web coating analysis of micropolar-Casson fluid: a theoretical investigation
- Engineering and processing
- Applicability of different powder and polymer recipes in a new design powder injection molding system
- Analysis of the skin wrinkling in out-of-plane joints of CFRP hat-shaped structure
- Development of program-driven plug-in for conical counter-rotating twin screw based on SolidWorks
- Effects of gas-assisted extrusion on slip in the cable coating process
Artikel in diesem Heft
- Frontmatter
- Material properties
- Research and application progress of lignin-based composite membrane
- Effect of new metal–organic framework (zeolitic imidazolate framework [ZIF-12]) in mixed matrix membranes on structure, morphology, and gas separation properties
- Preparation and assembly
- Ultraviolet blocking and antioxidant polyvinyl alcohol films incorporated with baicalin extraction from Scutellaria baicalensis Georgi
- Investigation on the effect of supported synergistic catalyst with intumescent flame retardant in polypropylene
- Roll-over-web coating analysis of micropolar-Casson fluid: a theoretical investigation
- Engineering and processing
- Applicability of different powder and polymer recipes in a new design powder injection molding system
- Analysis of the skin wrinkling in out-of-plane joints of CFRP hat-shaped structure
- Development of program-driven plug-in for conical counter-rotating twin screw based on SolidWorks
- Effects of gas-assisted extrusion on slip in the cable coating process