Startseite Study on bubble morphology at interface of laser direct joint between carbon fiber reinforced thermoplastic (CFRTP) and titanium alloy
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Study on bubble morphology at interface of laser direct joint between carbon fiber reinforced thermoplastic (CFRTP) and titanium alloy

  • Hongyan Yang , Xiaohong Zhan EMAIL logo , Hengchang Bu , Wanping Ma und Feiyun Wang
Veröffentlicht/Copyright: 16. September 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Laser direct joining of carbon fiber reinforced thermoplastic (CFRTP) composite plate and titanium alloy plate with a thickness of 2 mm was performed with swing laser. Numerous air bubble of submillimeter size were observed inside the fusion zone of CFRTP and titanium alloy at the cross section of the joints. The air bubble characteristics were analyzed based on the morphology and size, while the formation mechanism of air bubble was further elucidated according to the nucleation mode, nucleation site and nucleation position. The results demonstrated that the nucleation modes of air bubble are substantially divided into homogeneous nucleation and heterogeneous nucleation, which is related to the nucleation sites. The nucleation mode presents a crucial factor influencing the position and morphology of air bubble. In addition, the air bubble characteristics are also determined by the clamp pressure and resin flow. The final morphology of air bubble is primarily represented by four typical types.


Corresponding author: Xiaohong Zhan, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China, E-mail:

Award Identifier / Grant number: NP2018461

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research is financially supported by the Fundamental Research Funds for the Central Universities, no. NP2018461.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Zhou, Y., Zeng, W. D., Yu, H. Mater. Sci. Eng. A-Struct. Mater. Properties Microstruct. Processing 2005, 393, 204–212; https://doi.org/10.1016/j.msea.2004.10.016.Suche in Google Scholar

2. Zhisho, Z. J. Aeronautical Mater. 2014, 34, 44–50. https://doi.org/10.11868/j.issn.1005-5053.2014.4.00.Suche in Google Scholar

3. Molitor, P., Barron, V., Young, T. M. Int. J. Adhesion Adhes. 2001, 21, 129–136; https://doi.org/10.1016/s0143-7496(00)00044-0.Suche in Google Scholar

4. Gao, Q., Li, Y., Wang, H. Appl. Compos. Mater. 2019, 26, 1087–1099; https://doi.org/10.1007/s10443-019-09768-4.Suche in Google Scholar

5. Lionetto, F., Mele, C., Leo, P. Compos. B Eng. 2018, 144, 134–42; https://doi.org/10.1016/j.compositesb.2018.02.026.Suche in Google Scholar

6. Lionetto, F., Morillas, M. D., Pappada, S. Compos. Appl. Sci. Manuf. 2018, 104, 32–40; https://doi.org/10.1016/j.compositesa.2017.10.021.Suche in Google Scholar

7. Nagatsuka, K. Q. J. Jpn. Weld. Soc. 2018, 87, 33–38; https://doi.org/10.2207/jjws.87.33.Suche in Google Scholar

8. Buffa, G., Baffari, D., Campanella, D. Procedia Manuf. 2016, 5, 319–331; https://doi.org/10.1016/j.promfg.2016.08.028.Suche in Google Scholar

9. Tanaka, K., Teramura, T., Katayama, T. WIT Trans. Built Environ. 2016, 391–401. https://doi.org/10.2495/HPSM160371.Suche in Google Scholar

10. Arai, S., Kawahito, Y., Katayama, S. Mater. Des. 2014, 59, 448–453; https://doi.org/10.1016/j.matdes.2014.03.018.Suche in Google Scholar

11. Jung, K., Kawahito, Y., Katayama, S. Int. J. Precis. Eng. Manuf.-Green Technol. 2014, 1, 43–48; https://doi.org/10.1007/s40684-014-0007-2.Suche in Google Scholar

12. Hussein, F. I., Akman, E., Oztoprak, B. G. Optic Laser Technol. 2013, 49, 143–152; https://doi.org/10.1016/j.optlastec.2012.12.028.Suche in Google Scholar

13. Jung, K., Kawahito, Y., Takahashi, M. Mater. Des. 2013, 47, 179–188; https://doi.org/10.1016/j.matdes.2012.12.015.Suche in Google Scholar

14. Lambiase, F., Genna, S., Lambiase, F., Genna, S. Optic Laser Technol. 2017, 88, 205–214; https://doi.org/10.1016/j.optlastec.2016.09.028.Suche in Google Scholar

15. Rodriguez-vidal, E., Sanz, C., Lambarri, J. Optic Laser Technol. 2018, 104, 73–82; https://doi.org/10.1016/j.optlastec.2018.02.003.Suche in Google Scholar

16. Jiao, J., Xu, Z., Wang, Q. Optic Laser Technol. 2018, 103, 170–176; https://doi.org/10.1016/j.optlastec.2018.01.023.Suche in Google Scholar

17. Huang, Y., Meng, X., Xie, Y. Compos. Appl. Sci. Manuf. 2018, 112, 328–336; https://doi.org/10.1016/j.compositesa.2018.06.027.Suche in Google Scholar

18. Feistauer, E., Santos, J., Amancio, F. Welding in the world Le Soudage Dans Le Monde, 2020, 1–15. https://doi.org/10.1007/s40194-020-00927-x.Suche in Google Scholar

19. Kawahito, Y., Niwa, Y., Katayama, S. Weld. Int. 2014, 28, 107–113; https://doi.org/10.1080/09507116.2012.715883.Suche in Google Scholar

20. Wahba, M., Kawahito, Y., Katayama, S. J. Mater. Process. Technol. 2011, 211, 1166–1174; https://doi.org/10.1016/j.jmatprotec.2011.01.021.Suche in Google Scholar

21. Jiao, J., Jia, S., Xu, Z. Compos. B Eng. 2019. https://doi.org/10.1016/j.compositesb.2019.106911.Suche in Google Scholar

22. Li, Y., Bu, H., Yang, H. J. Manuf. Process. 2020, 50, 366–379; https://doi.org/10.1016/j.jmapro.2019.12.023.Suche in Google Scholar

23. Yan, M., Tian, X., Peng, G. Compos. Sci. Technol. 2018, 165, 140–147; https://doi.org/10.1016/j.compscitech.2018.06.023.Suche in Google Scholar

24. Katayama, S., Kawahito, Y. Scripta Mater. 2008, 59, 1247–1250; https://doi.org/10.1016/j.scriptamat.2008.08.026.Suche in Google Scholar

25. Wang, H., Chen, Y., Guo, Z. Appl. Sci. 2019, 9. https://doi.org/10.3390/app9030411.Suche in Google Scholar

26. Fu, T., Ma, Y., Funfschilling, D. Chem. Eng. Sci. 2009, 64, 2392–2400; https://doi.org/10.1016/j.ces.2009.02.022.Suche in Google Scholar

27. Li, X., Lu, F., Cui, H. Int. J. Adv. Manuf. Technol. 2014, 72, 241–254; https://doi.org/10.1007/s00170-014-5609-x.Suche in Google Scholar

28. Zhang, Q., Wang, T., Yao, Z. Materialia. 2018. https://doi.org/10.1016/j.mtla.2018.09.030.Suche in Google Scholar

Received: 2020-05-08
Accepted: 2020-07-25
Published Online: 2020-09-16
Published in Print: 2020-11-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 24.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2020-0112/html?lang=de
Button zum nach oben scrollen