Compatibility of energetic plasticizers with the triblock copolymer of polypropylene glycol-glycidyl azide polymer-polypropylene glycol (PPG-GAP-PPG)
Abstract
Glycidyl azide polymer (GAP) is well known as an energetic prepolymer, but its application as a binder in propellants is limited due to its relatively high glass transition temperature and relatively poor mechanical properties. Copolymerization of GAP with polypropylene glycol (PPG) has been shown to improve GAPs properties because of the good thermal and mechanical properties of PPG. In this research we synthesized triblock copolymer of PPG-GAP-PPG and the compatibilities of this copolymer were investigated with energetic plasticizers (20% w/w) n-butyl nitroxyethylnitramine (BuNENA), trimethylolethane trinitrate (TMETN), and butanetriol trinitrate (BTTN) by solubility parameter, differential scanning calorimetry (DSC), rheological analysis, scanning electron microscopy (SEM) and vacuum stability test (VST). The DSC results showed that BuNENA had better compatibility with the triblock copolymer in comparison to TMETN and BTTN. It reduced the Tg of PPG-GAP-PPG from −58 to −63 °C. The rheological analysis was in good agreement with the DSC results obtained for the compatibility of the plasticizers. In the case of the addition of 20% w/w BuNENA, the viscosity of copolymer/plasticizer decreased from 550 to 128 mPa s, indicating appropriate compatibility of plasticizer with the copolymer. SEM images showed a better distribution of BuNENA in the copolymer matrix.
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: None declared.
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Cheng, T. Des. Monomers Polym. 2019, 22, 54–65; https://doi.org/10.1080/15685551.2019.1575652.Suche in Google Scholar
2. Takita, K., Shiraki, K., Miyake, A., Ogawa, T. Prop. Explos. Pyrotech. 1999, 24, 291–294; https://doi.org/10.1002/(sici)1521-4087(199910)24:5<291::aid-prep291>3.0.co;2-o.10.1002/(SICI)1521-4087(199910)24:5<291::AID-PREP291>3.0.CO;2-OSuche in Google Scholar
3. Kubota, N., Sonobe, T. Prop. Explos. Pyrotech. 1988, 13, 172–177; https://doi.org/10.1002/prep.19880130604.Suche in Google Scholar
4. Gaur, B., Lochab, B., Choudhary, V., Varma, I. J. Macromol. Sci. Polym. Rev. 2003, 43, 505–545; https://doi.org/10.1081/mc-120025976.Suche in Google Scholar
5. Hori, K. A Paper Presented at: 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2012.Suche in Google Scholar
6. Deng, J., Li, G., Xia, M., Lan, Y., Luo, Y. J. Appl. Polym. Sci. 2016, 133, 43840; https://doi.org/10.1002/app.43840.Suche in Google Scholar
7. Zhang, Z., Wang, G., Wang, Z., Zhang, Y., Ge, Z., Luo, Y. Polym. Bull. 2015, 72, 1835–1847; https://doi.org/10.1007/s00289-015-1375-7.Suche in Google Scholar
8. Ampleman, G. US 5359012, 1993.Suche in Google Scholar
9. Deng, J., Wang, X., Li, G., Luo, Y. Prop. Explos. Pyrotech. 2017, 42, 394–400; https://doi.org/10.1002/prep.201600123.Suche in Google Scholar
10. Bui, V., Ahad, E., Rheaume, D., Raymond, M. J. Appl. Polym. Sci. 1996, 62, 27–32; https://doi.org/10.1002/(sici)1097-4628(19961003)62:1<27::aid-app5>3.0.co;2-u.10.1002/(SICI)1097-4628(19961003)62:1<27::AID-APP5>3.0.CO;2-USuche in Google Scholar
11. Zhao, Y., Xie, W., Qi, X. Appl. Surf. Sci. 2019, 497, 143813; https://doi.org/10.1016/j.apsusc.2019.143813.Suche in Google Scholar
12. Hafner, S., Keicher, T., Klapotke, T. M. Prop. Explos. Pyrotech. 2017, 42, 1–11. https://doi.org/10.1002/prep.201700198.Suche in Google Scholar
13. Bayat, Y., Ghorbani, M., Mossahebi, M. 11th International Seminar on Polymer Science and Technology; Iran Polymer and Petrochemical Institute: Tehran, Iran, 2014.Suche in Google Scholar
14. Bayat, Y., Chizari, M. Polym. Sci. B 2018, 60, 621–628; https://doi.org/10.1134/s1560090418050020.Suche in Google Scholar
15. Kshirsagar, A .D., Mahulikar, P .P. Polym. Bull. 2017, 74, 1727–1742. https://doi.org/10.1007/s00289-016-1801-5.Suche in Google Scholar
16. Filippi, S., Mori, L., Cappello, M., Polacco, G. Prop. Explos. Pyrotech. 2017, 42, 826–835; https://doi.org/10.1002/prep.201600263.Suche in Google Scholar
17. Lemos, M. F., Mendes, L. C., Bohn, M., Keicher, T. J. Therm. Anal. Calorim. 2019, 137, 411–419; https://doi.org/10.1007/s10973-018-7968-2.Suche in Google Scholar
18. Ertem, S. P., Yilgor, E., Kosak, C., Wilkes, G. L., Zhang, M. Yilgor, I. Polymer 2012, 53, 4614–4622. https://doi.org/10.1016/j.polymer.2012.08.020.Suche in Google Scholar
19. Selim, K., Özkar, S., Yilmaz, L. J. Appl. Polym. Sci. 2000, 77, 538–546; https://doi.org/10.1002/(sici)1097-4628(20000718)77:3<538::aid-app9>3.0.co;2-x.10.1002/(SICI)1097-4628(20000718)77:3<538::AID-APP9>3.0.CO;2-XSuche in Google Scholar
20. Johari, G., Hallbrucker, A., Mayer, E. J. Polym. Sci., Polym. Phys. 1988, 26, 1923–1930; https://doi.org/10.1002/polb.1988.090260909.Suche in Google Scholar
21. Herzberger, J., Niederer, K., Pohlit, H. Chem. Rev. 2015, 116, 2170–2243; https://doi.org/10.1021/acs.chemrev.5b00441.Suche in Google Scholar
22. Uyar, T., Hacaloğlu, J. J. Anal. Appl. Pyrol. 2002, 64, 379–393; https://doi.org/10.1016/s0165-2370(02)00036-0.Suche in Google Scholar
23. Barlow, A. J., Erginsav, A. Polymer 1975, 16, 110–114; https://doi.org/10.1016/0032-3861(75)90138-x.Suche in Google Scholar
24. Sikder, A. K., Reddy, S. Prop. Explos. Pyrotech. 2013, 38, 14–28. https://doi.org/10.1039/C9RA05517G.Suche in Google Scholar
25. Mulage, K., Patkar, R., Deuskar, V., Pundlik, S., Kakade, S., Gupta, M. J. Energ. Mater. 2007, 25, 233–245; https://doi.org/10.1080/07370650701205964.Suche in Google Scholar
26. Highsmith, T. K., Doll, D. W., Cannizzo, L. F. US6425966, 2002.Suche in Google Scholar
27. Agrawal, J. P.; John Wiley & Sons: Weinheim, 2010.Suche in Google Scholar
28. Ang, H. G., Pisharath, S.; Wiley-VCH: Weinheim, 2012.Suche in Google Scholar
29. Alkaabi, K.; Dissertation Stellenbosch: South Africa, 2009.Suche in Google Scholar
30. Min, B. S., Park, Y. C. J. Ind. Eng. Chem. 2009, 15, 595–601; https://doi.org/10.1016/j.jiec.2009.01.017.Suche in Google Scholar
31. Sikder, A., Sikder, N. J. Hazard. Mater. 2004, 112, 1–15; https://doi.org/10.1016/j.jhazmat.2004.04.003.Suche in Google Scholar PubMed
32. Goleniewski, J. R., Roberts, J. A. U.S. Patent 5, 1994, 348, 596.Suche in Google Scholar
33. Kojio, K., Nakamura, S., Furukawa, M. J Polym. Sci. Polym. Phys. 2008, 46, 2054–2063; https://doi.org/10.1002/polb.21540.Suche in Google Scholar
34. Chi, M. S. J. Polym. Sci. Polym. Chem. 1981, 19, 1767–1779; https://doi.org/10.1002/pol.1981.170190716.Suche in Google Scholar
35. Gottlieb, L., Bar, S. Prop. Explos. Pyrotech. 2003, 28, 12–17; https://doi.org/10.1002/prep.200390000.Suche in Google Scholar
36. Manu, S. K., Varghese, T. L., Mathew, S., Ninan, K. N. J. Propul. Power 2009, 25, 533–536; https://doi.org/10.2514/1.38145.Suche in Google Scholar
37. Provatas, A.; DSTO Aeronautical and Maritime Research Laboratory: Australia, 2000.Suche in Google Scholar
38. Bhowmik, D., Sadavarte, V. S., Pande, S. M., Saraswat, B. S. Cent. Eur. J Energ Mater. 2015, 12, 145–158.Suche in Google Scholar
39. Pei, J.-F., Zhao, F.-Q., Lu, H.-L. J. Therm. Anal. Cal. 2016, 124, 1301–1307; https://doi.org/10.1007/s10973-016-5302-4.Suche in Google Scholar
40. Bodaghi, A., Shahidzadeh, M. Prop. Explos. Pyrotech. 2018, 43, 364–370; https://doi.org/10.1002/prep.201700219.Suche in Google Scholar
41. Shee, S. K., Shah, P. N., Athar, J. Prop. Explos. Pyrotech. 2017, 42, 167–174; https://doi.org/10.1002/prep.201600058.Suche in Google Scholar
42. Bennett, S. J., Barnes, M. W., Kolonko, K. J. U.S. Patent 051, 1989, 4, 853.Suche in Google Scholar
43. Pei, J.-F., Zhao, F.-Q., Lu, H.-L. J. Therm. Anal. Cal. 2016, 124, 1301–1307; https://doi.org/10.1007/s10973-016-5302-4.Suche in Google Scholar
44. Ou, Y., Sun, Y., Guo, X., Jiao, Q. I. J. Anal. Appl. Pyrol. 2018, 132, 94–101; https://doi.org/10.1016/j.jaap.2018.03.011.Suche in Google Scholar
45. Chizari, M., Bayat, Y. Cent. Eur. J Energ Mater. 2019, 16, 33–48. https://doi.org/10.22211/cejem/104386.Suche in Google Scholar
46. Miao, H., Zhao, H., Jiang, P. P. J. Vinyl Addit. Technol. 2017, 23, 321–328; https://doi.org/10.1002/vnl.21510.Suche in Google Scholar
47. Ge, H., Yang, F., Hao, Y., Wu, G., Zhang, H., Dong, L. J. Appl. Polym. Sci. 2013, 127, 2832–2839; https://doi.org/10.1002/app.37620.Suche in Google Scholar
48. Liu, Y., Wang, L., Tuo, X., Li, S. J. Serb. Chem. Soc. 2010, 75, 369–376; https://doi.org/10.2298/jsc090326007l.Suche in Google Scholar
49. Chizari, M., Bayat, Y. Cent. Eur. J Energ Mater. 2018, 15, 243–257. https://doi.org/10.22211/cejem/92075.Suche in Google Scholar
50. Hildebrand, J., Scott, R. Annu. Rev. Phys. Chem. 1950, 1, 75–92; https://doi.org/10.1146/annurev.pc.01.100150.000451.Suche in Google Scholar
51. Honary, S., Orafai, H., Shojaei, A. H. Drug Dev. Ind. Pharm. 2000, 26, 1019–1024; https://doi.org/10.1081/ddc-100101332.Suche in Google Scholar PubMed
52. Dong, Q., Li, H., Liu, X., Huang, C. Prop. Explos. Pyrotech. 2018, 43, 294–299. https://doi.org/10.1002/prep.201700201.Suche in Google Scholar
53. Singh, A., Kumar, R., Soni, P. K., Singh, V. J. Therm. Anal. Calorim. 2020, 3, 1–13. https://doi.org/10.1007/s10973-020-09377-5.Suche in Google Scholar
54. Myburgh, A. J. Therm. Anal. Calorim. 2006, 85, 135–139; https://doi.org/10.1007/s10973-005-7357-5.Suche in Google Scholar
55. Forster, A., Hempenstall, J., Tucker, I., Rades, T. Int. J. Pharm. 2001, 226, 147–161; https://doi.org/10.1016/s0378-5173(01)00801-8.Suche in Google Scholar
56. Rao, K. P., Sikder, A. K., Kulkarni, M. A., Bhalerao, M. M., Gandhe, R. B. Prop. Explos. Pyrotech. 2004, 29, 93–98; https://doi.org/10.1002/prep.200400035.Suche in Google Scholar
57. Straessler, N. A., Paraskos, A. J., Kramer, M. P. US 8658818, 2014.Suche in Google Scholar
58. Gouranlou, F., Kohsary, I. Asian J. Chem. 2010, 22, 4221–4228.Suche in Google Scholar
59. Gupta, J., Nunes, C., Vyas, S., Jonnalagadda, S. J. Phys. Chem. B 2011, 115, 2014–2023; https://doi.org/10.1021/jp108540n.Suche in Google Scholar PubMed
60. Min, B. S, Ko, S. W. Macromol. Res. 2007, 15, 225–233; https://doi.org/10.1007/bf03218780.Suche in Google Scholar
61. Singh, A., Radhakrishnan, S., Vijayalakshmi, R., Talawar, M., Kumar, A., Kumar, D. J. Energ. Mater. 2019, 37, 1–13; https://doi.org/10.1080/07370652.2019.1615581.Suche in Google Scholar
62. Qi, X., Li, H., Zhao, Y., Yan, N. J. Hazard. Mater. 2019, 362, 303–310; https://doi.org/10.1016/j.jhazmat.2018.09.033.Suche in Google Scholar PubMed
63. https://polymerdatabase.com/polymers/polypropyleneglycol.html.Suche in Google Scholar
64. Wingborg, N., Eldsäter, C. Prop. Explos. Pyrotech. 2002, 27, 314–319; https://doi.org/10.1002/prep.200290000.Suche in Google Scholar
65. Chi, M. S. H. J. Polym. Sci.Pol. Chem. 1981, 19, 1767–1779; https://doi.org/10.1002/pol.1981.170190716.Suche in Google Scholar
66. Hussein, A. K., Elbeih, A., Zeman, S. RSC Adv. 2018, 8, 17272–17278; https://doi.org/10.1039/c8ra02994f.Suche in Google Scholar PubMed PubMed Central
67. NATO, STANAG-4556; NATO Standardization Agreements: Washington, DC, USA, 1999.Suche in Google Scholar
68. Vogelsanger, B. Chimia 2004, 58, 401–408; https://doi.org/10.2533/000942904777677740.Suche in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Material properties
- Compatibility of energetic plasticizers with the triblock copolymer of polypropylene glycol-glycidyl azide polymer-polypropylene glycol (PPG-GAP-PPG)
- Simultaneous improvement of mechanical and conductive properties of poly(amide-imide) composites using carbon nano-materials with different morphologies
- Thermal and mechanical behavior of SBR/devulcanized waste tire rubber blends using mechano–chemical and microwave methods
- Preparation and assembly
- Development and characterization of ethyl cellulose nanosponges for sustained release of brigatinib for the treatment of non-small cell lung cancer
- Polysulfone nanofiltration membranes enriched with functionalized graphene oxide for dye removal from wastewater
- Zn(II)-selective poly (vinyl chloride) (PVC) membrane electrode based on Schiff base ligand 2-benzoylpyridine semicarbazone as an ionophore
- Effectiveness assessment of TiO2-Al2O3 nano-mixture as a filler material for improvement of packaging performance of PLA nanocomposite films
- Boron nitride nanoplatelets as two-dimensional thermal fillers in epoxy composites: new scenarios at very low filler loadings
- Engineering and processing
- Study on bubble morphology at interface of laser direct joint between carbon fiber reinforced thermoplastic (CFRTP) and titanium alloy
- Robust parameter search for IC tray injection molding using regrind resin
Artikel in diesem Heft
- Frontmatter
- Material properties
- Compatibility of energetic plasticizers with the triblock copolymer of polypropylene glycol-glycidyl azide polymer-polypropylene glycol (PPG-GAP-PPG)
- Simultaneous improvement of mechanical and conductive properties of poly(amide-imide) composites using carbon nano-materials with different morphologies
- Thermal and mechanical behavior of SBR/devulcanized waste tire rubber blends using mechano–chemical and microwave methods
- Preparation and assembly
- Development and characterization of ethyl cellulose nanosponges for sustained release of brigatinib for the treatment of non-small cell lung cancer
- Polysulfone nanofiltration membranes enriched with functionalized graphene oxide for dye removal from wastewater
- Zn(II)-selective poly (vinyl chloride) (PVC) membrane electrode based on Schiff base ligand 2-benzoylpyridine semicarbazone as an ionophore
- Effectiveness assessment of TiO2-Al2O3 nano-mixture as a filler material for improvement of packaging performance of PLA nanocomposite films
- Boron nitride nanoplatelets as two-dimensional thermal fillers in epoxy composites: new scenarios at very low filler loadings
- Engineering and processing
- Study on bubble morphology at interface of laser direct joint between carbon fiber reinforced thermoplastic (CFRTP) and titanium alloy
- Robust parameter search for IC tray injection molding using regrind resin