Startseite Compatibility of energetic plasticizers with the triblock copolymer of polypropylene glycol-glycidyl azide polymer-polypropylene glycol (PPG-GAP-PPG)
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Compatibility of energetic plasticizers with the triblock copolymer of polypropylene glycol-glycidyl azide polymer-polypropylene glycol (PPG-GAP-PPG)

  • Fahimeh Ghoroghchian , Yadollah Bayat ORCID logo EMAIL logo und Fatemeh Abrishami
Veröffentlicht/Copyright: 16. September 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Glycidyl azide polymer (GAP) is well known as an energetic prepolymer, but its application as a binder in propellants is limited due to its relatively high glass transition temperature and relatively poor mechanical properties. Copolymerization of GAP with polypropylene glycol (PPG) has been shown to improve GAPs properties because of the good thermal and mechanical properties of PPG. In this research we synthesized triblock copolymer of PPG-GAP-PPG and the compatibilities of this copolymer were investigated with energetic plasticizers (20% w/w) n-butyl nitroxyethylnitramine (BuNENA), trimethylolethane trinitrate (TMETN), and butanetriol trinitrate (BTTN) by solubility parameter, differential scanning calorimetry (DSC), rheological analysis, scanning electron microscopy (SEM) and vacuum stability test (VST). The DSC results showed that BuNENA had better compatibility with the triblock copolymer in comparison to TMETN and BTTN. It reduced the Tg of PPG-GAP-PPG from −58 to −63 °C. The rheological analysis was in good agreement with the DSC results obtained for the compatibility of the plasticizers. In the case of the addition of 20% w/w BuNENA, the viscosity of copolymer/plasticizer decreased from 550 to 128 mPa s, indicating appropriate compatibility of plasticizer with the copolymer. SEM images showed a better distribution of BuNENA in the copolymer matrix.


Corresponding author: Yadollah Bayat, Faculty of Chemistry and Chemical Engineering, Malek‐Ashtar University of Technology, Lavizan Shabanloo, Tehran, o21, Iran, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Cheng, T. Des. Monomers Polym. 2019, 22, 54–65; https://doi.org/10.1080/15685551.2019.1575652.Suche in Google Scholar

2. Takita, K., Shiraki, K., Miyake, A., Ogawa, T. Prop. Explos. Pyrotech. 1999, 24, 291–294; https://doi.org/10.1002/(sici)1521-4087(199910)24:5<291::aid-prep291>3.0.co;2-o.10.1002/(SICI)1521-4087(199910)24:5<291::AID-PREP291>3.0.CO;2-OSuche in Google Scholar

3. Kubota, N., Sonobe, T. Prop. Explos. Pyrotech. 1988, 13, 172–177; https://doi.org/10.1002/prep.19880130604.Suche in Google Scholar

4. Gaur, B., Lochab, B., Choudhary, V., Varma, I. J. Macromol. Sci. Polym. Rev. 2003, 43, 505–545; https://doi.org/10.1081/mc-120025976.Suche in Google Scholar

5. Hori, K. A Paper Presented at: 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2012.Suche in Google Scholar

6. Deng, J., Li, G., Xia, M., Lan, Y., Luo, Y. J. Appl. Polym. Sci. 2016, 133, 43840; https://doi.org/10.1002/app.43840.Suche in Google Scholar

7. Zhang, Z., Wang, G., Wang, Z., Zhang, Y., Ge, Z., Luo, Y. Polym. Bull. 2015, 72, 1835–1847; https://doi.org/10.1007/s00289-015-1375-7.Suche in Google Scholar

8. Ampleman, G. US 5359012, 1993.Suche in Google Scholar

9. Deng, J., Wang, X., Li, G., Luo, Y. Prop. Explos. Pyrotech. 2017, 42, 394–400; https://doi.org/10.1002/prep.201600123.Suche in Google Scholar

10. Bui, V., Ahad, E., Rheaume, D., Raymond, M. J. Appl. Polym. Sci. 1996, 62, 27–32; https://doi.org/10.1002/(sici)1097-4628(19961003)62:1<27::aid-app5>3.0.co;2-u.10.1002/(SICI)1097-4628(19961003)62:1<27::AID-APP5>3.0.CO;2-USuche in Google Scholar

11. Zhao, Y., Xie, W., Qi, X. Appl. Surf. Sci. 2019, 497, 143813; https://doi.org/10.1016/j.apsusc.2019.143813.Suche in Google Scholar

12. Hafner, S., Keicher, T., Klapotke, T. M. Prop. Explos. Pyrotech. 2017, 42, 1–11. https://doi.org/10.1002/prep.201700198.Suche in Google Scholar

13. Bayat, Y., Ghorbani, M., Mossahebi, M. 11th International Seminar on Polymer Science and Technology; Iran Polymer and Petrochemical Institute: Tehran, Iran, 2014.Suche in Google Scholar

14. Bayat, Y., Chizari, M. Polym. Sci. B 2018, 60, 621–628; https://doi.org/10.1134/s1560090418050020.Suche in Google Scholar

15. Kshirsagar, A .D., Mahulikar, P .P. Polym. Bull. 2017, 74, 1727–1742. https://doi.org/10.1007/s00289-016-1801-5.Suche in Google Scholar

16. Filippi, S., Mori, L., Cappello, M., Polacco, G. Prop. Explos. Pyrotech. 2017, 42, 826–835; https://doi.org/10.1002/prep.201600263.Suche in Google Scholar

17. Lemos, M. F., Mendes, L. C., Bohn, M., Keicher, T. J. Therm. Anal. Calorim. 2019, 137, 411–419; https://doi.org/10.1007/s10973-018-7968-2.Suche in Google Scholar

18. Ertem, S. P., Yilgor, E., Kosak, C., Wilkes, G. L., Zhang, M. Yilgor, I. Polymer 2012, 53, 4614–4622. https://doi.org/10.1016/j.polymer.2012.08.020.Suche in Google Scholar

19. Selim, K., Özkar, S., Yilmaz, L. J. Appl. Polym. Sci. 2000, 77, 538–546; https://doi.org/10.1002/(sici)1097-4628(20000718)77:3<538::aid-app9>3.0.co;2-x.10.1002/(SICI)1097-4628(20000718)77:3<538::AID-APP9>3.0.CO;2-XSuche in Google Scholar

20. Johari, G., Hallbrucker, A., Mayer, E. J. Polym. Sci., Polym. Phys. 1988, 26, 1923–1930; https://doi.org/10.1002/polb.1988.090260909.Suche in Google Scholar

21. Herzberger, J., Niederer, K., Pohlit, H. Chem. Rev. 2015, 116, 2170–2243; https://doi.org/10.1021/acs.chemrev.5b00441.Suche in Google Scholar

22. Uyar, T., Hacaloğlu, J. J. Anal. Appl. Pyrol. 2002, 64, 379–393; https://doi.org/10.1016/s0165-2370(02)00036-0.Suche in Google Scholar

23. Barlow, A. J., Erginsav, A. Polymer 1975, 16, 110–114; https://doi.org/10.1016/0032-3861(75)90138-x.Suche in Google Scholar

24. Sikder, A. K., Reddy, S. Prop. Explos. Pyrotech. 2013, 38, 14–28. https://doi.org/10.1039/C9RA05517G.Suche in Google Scholar

25. Mulage, K., Patkar, R., Deuskar, V., Pundlik, S., Kakade, S., Gupta, M. J. Energ. Mater. 2007, 25, 233–245; https://doi.org/10.1080/07370650701205964.Suche in Google Scholar

26. Highsmith, T. K., Doll, D. W., Cannizzo, L. F. US6425966, 2002.Suche in Google Scholar

27. Agrawal, J. P.; John Wiley & Sons: Weinheim, 2010.Suche in Google Scholar

28. Ang, H. G., Pisharath, S.; Wiley-VCH: Weinheim, 2012.Suche in Google Scholar

29. Alkaabi, K.; Dissertation Stellenbosch: South Africa, 2009.Suche in Google Scholar

30. Min, B. S., Park, Y. C. J. Ind. Eng. Chem. 2009, 15, 595–601; https://doi.org/10.1016/j.jiec.2009.01.017.Suche in Google Scholar

31. Sikder, A., Sikder, N. J. Hazard. Mater. 2004, 112, 1–15; https://doi.org/10.1016/j.jhazmat.2004.04.003.Suche in Google Scholar PubMed

32. Goleniewski, J. R., Roberts, J. A. U.S. Patent 5, 1994, 348, 596.Suche in Google Scholar

33. Kojio, K., Nakamura, S., Furukawa, M. J Polym. Sci. Polym. Phys. 2008, 46, 2054–2063; https://doi.org/10.1002/polb.21540.Suche in Google Scholar

34. Chi, M. S. J. Polym. Sci. Polym. Chem. 1981, 19, 1767–1779; https://doi.org/10.1002/pol.1981.170190716.Suche in Google Scholar

35. Gottlieb, L., Bar, S. Prop. Explos. Pyrotech. 2003, 28, 12–17; https://doi.org/10.1002/prep.200390000.Suche in Google Scholar

36. Manu, S. K., Varghese, T. L., Mathew, S., Ninan, K. N. J. Propul. Power 2009, 25, 533–536; https://doi.org/10.2514/1.38145.Suche in Google Scholar

37. Provatas, A.; DSTO Aeronautical and Maritime Research Laboratory: Australia, 2000.Suche in Google Scholar

38. Bhowmik, D., Sadavarte, V. S., Pande, S. M., Saraswat, B. S. Cent. Eur. J Energ Mater. 2015, 12, 145–158.Suche in Google Scholar

39. Pei, J.-F., Zhao, F.-Q., Lu, H.-L. J. Therm. Anal. Cal. 2016, 124, 1301–1307; https://doi.org/10.1007/s10973-016-5302-4.Suche in Google Scholar

40. Bodaghi, A., Shahidzadeh, M. Prop. Explos. Pyrotech. 2018, 43, 364–370; https://doi.org/10.1002/prep.201700219.Suche in Google Scholar

41. Shee, S. K., Shah, P. N., Athar, J. Prop. Explos. Pyrotech. 2017, 42, 167–174; https://doi.org/10.1002/prep.201600058.Suche in Google Scholar

42. Bennett, S. J., Barnes, M. W., Kolonko, K. J. U.S. Patent 051, 1989, 4, 853.Suche in Google Scholar

43. Pei, J.-F., Zhao, F.-Q., Lu, H.-L. J. Therm. Anal. Cal. 2016, 124, 1301–1307; https://doi.org/10.1007/s10973-016-5302-4.Suche in Google Scholar

44. Ou, Y., Sun, Y., Guo, X., Jiao, Q. I. J. Anal. Appl. Pyrol. 2018, 132, 94–101; https://doi.org/10.1016/j.jaap.2018.03.011.Suche in Google Scholar

45. Chizari, M., Bayat, Y. Cent. Eur. J Energ Mater. 2019, 16, 33–48. https://doi.org/10.22211/cejem/104386.Suche in Google Scholar

46. Miao, H., Zhao, H., Jiang, P. P. J. Vinyl Addit. Technol. 2017, 23, 321–328; https://doi.org/10.1002/vnl.21510.Suche in Google Scholar

47. Ge, H., Yang, F., Hao, Y., Wu, G., Zhang, H., Dong, L. J. Appl. Polym. Sci. 2013, 127, 2832–2839; https://doi.org/10.1002/app.37620.Suche in Google Scholar

48. Liu, Y., Wang, L., Tuo, X., Li, S. J. Serb. Chem. Soc. 2010, 75, 369–376; https://doi.org/10.2298/jsc090326007l.Suche in Google Scholar

49. Chizari, M., Bayat, Y. Cent. Eur. J Energ Mater. 2018, 15, 243–257. https://doi.org/10.22211/cejem/92075.Suche in Google Scholar

50. Hildebrand, J., Scott, R. Annu. Rev. Phys. Chem. 1950, 1, 75–92; https://doi.org/10.1146/annurev.pc.01.100150.000451.Suche in Google Scholar

51. Honary, S., Orafai, H., Shojaei, A. H. Drug Dev. Ind. Pharm. 2000, 26, 1019–1024; https://doi.org/10.1081/ddc-100101332.Suche in Google Scholar PubMed

52. Dong, Q., Li, H., Liu, X., Huang, C. Prop. Explos. Pyrotech. 2018, 43, 294–299. https://doi.org/10.1002/prep.201700201.Suche in Google Scholar

53. Singh, A., Kumar, R., Soni, P. K., Singh, V. J. Therm. Anal. Calorim. 2020, 3, 1–13. https://doi.org/10.1007/s10973-020-09377-5.Suche in Google Scholar

54. Myburgh, A. J. Therm. Anal. Calorim. 2006, 85, 135–139; https://doi.org/10.1007/s10973-005-7357-5.Suche in Google Scholar

55. Forster, A., Hempenstall, J., Tucker, I., Rades, T. Int. J. Pharm. 2001, 226, 147–161; https://doi.org/10.1016/s0378-5173(01)00801-8.Suche in Google Scholar

56. Rao, K. P., Sikder, A. K., Kulkarni, M. A., Bhalerao, M. M., Gandhe, R. B. Prop. Explos. Pyrotech. 2004, 29, 93–98; https://doi.org/10.1002/prep.200400035.Suche in Google Scholar

57. Straessler, N. A., Paraskos, A. J., Kramer, M. P. US 8658818, 2014.Suche in Google Scholar

58. Gouranlou, F., Kohsary, I. Asian J. Chem. 2010, 22, 4221–4228.Suche in Google Scholar

59. Gupta, J., Nunes, C., Vyas, S., Jonnalagadda, S. J. Phys. Chem. B 2011, 115, 2014–2023; https://doi.org/10.1021/jp108540n.Suche in Google Scholar PubMed

60. Min, B. S, Ko, S. W. Macromol. Res. 2007, 15, 225–233; https://doi.org/10.1007/bf03218780.Suche in Google Scholar

61. Singh, A., Radhakrishnan, S., Vijayalakshmi, R., Talawar, M., Kumar, A., Kumar, D. J. Energ. Mater. 2019, 37, 1–13; https://doi.org/10.1080/07370652.2019.1615581.Suche in Google Scholar

62. Qi, X., Li, H., Zhao, Y., Yan, N. J. Hazard. Mater. 2019, 362, 303–310; https://doi.org/10.1016/j.jhazmat.2018.09.033.Suche in Google Scholar PubMed

63. https://polymerdatabase.com/polymers/polypropyleneglycol.html.Suche in Google Scholar

64. Wingborg, N., Eldsäter, C. Prop. Explos. Pyrotech. 2002, 27, 314–319; https://doi.org/10.1002/prep.200290000.Suche in Google Scholar

65. Chi, M. S. H. J. Polym. Sci.Pol. Chem. 1981, 19, 1767–1779; https://doi.org/10.1002/pol.1981.170190716.Suche in Google Scholar

66. Hussein, A. K., Elbeih, A., Zeman, S. RSC Adv. 2018, 8, 17272–17278; https://doi.org/10.1039/c8ra02994f.Suche in Google Scholar PubMed PubMed Central

67. NATO, STANAG-4556; NATO Standardization Agreements: Washington, DC, USA, 1999.Suche in Google Scholar

68. Vogelsanger, B. Chimia 2004, 58, 401–408; https://doi.org/10.2533/000942904777677740.Suche in Google Scholar

Received: 2020-03-05
Accepted: 2020-08-08
Published Online: 2020-09-16
Published in Print: 2020-11-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 26.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2020-0051/html
Button zum nach oben scrollen