Home Highly porous, fast responding acrylamide hydrogels through emulsion polymerization using coconut oil
Article
Licensed
Unlicensed Requires Authentication

Highly porous, fast responding acrylamide hydrogels through emulsion polymerization using coconut oil

  • Mihisirini Bhagya Dharmasiri and Thilini Kuruwita Mudiyanselage ORCID logo EMAIL logo
Published/Copyright: February 21, 2020
Become an author with De Gruyter Brill

Abstract

Conventional acrylamide hydrogel exhibits a slow swelling rate which limits its potential for novel applications. It is a formidable challenge to increase the rate of swelling and if addressed successfully, this paves new paths for significant advanced applications. Fast responding polyacrylamide hydrogels with microporous structures and an interconnected network of capillary channels have been successfully synthesized by free radical emulsion-templated polymerization (a 2.5 m acrylamide monomer solution was crosslinked with 1% N,N-methylenebisacrylamide using 5% potassium persulfate as the initiator). Virgin coconut oil (70% v/v) was used as the pore forming agent, which was dispersed in the aqueous monomer solution by using 5% non-ionic surfactant (Tween 80®). Developed porous acrylamide hydrogel displayed approximately 600 wt% water absorptivity compared to the dry weight of the sample in 15 s at 30°C. Swelling ratio and scanning electron microscopy studies uncovered the characteristic microporous structure of the hydrogel. Pores of the hydrogel are interconnected to form capillary channels and thus they are responsible for the higher swelling rate of the hydrogel.

Acknowledgments

The Center for Advanced Material Research and Instrument Center of the Faculty of Applied Sciences, University of Sri Jayewardenepura facilitated the instrumental analysis for this study.

References

[1] Kabiri K, Faraji-Dana S, Zohuriaan-Mehr MJ. Polym. Adv. Technol. 2005, 16, 659–666.10.1002/pat.637Search in Google Scholar

[2] Snoeck D, Van Tittelboom K, Steuperaert S, Dubruel P, De Belie N. J. Intell. Mater. Syst. Struct. 2014, 25, 13–24.10.1177/1045389X12438623Search in Google Scholar

[3] Mudiyanselage TK, Neckers DC. J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 1357–1364.10.1002/pola.22476Search in Google Scholar

[4] Kaihara S, Matsumura S, Fisher JP. Eur. J. Pharm. Biopharm. 2008, 68, 67–73.10.1016/j.ejpb.2007.05.019Search in Google Scholar

[5] Zhang L, Li K, Xiao W, Zheng L, Xiao Y, Fan H, Zhang X. Carbohydr. Polym. 2011, 84, 118–125.10.1016/j.carbpol.2010.11.009Search in Google Scholar

[6] Sikareepaisan P, Ruktanonchai U, Supaphol P. Carbohydr. Polym. 2011, 83, 1457–1469.10.1016/j.carbpol.2010.09.048Search in Google Scholar

[7] Krsko P, McCann TE, Thach T-T, Laabs TL, Geller HM, Libera MR. Biomaterials 2009, 30, 721–729.10.1016/j.biomaterials.2008.10.011Search in Google Scholar

[8] Chen X, Martin BD, Neubauer TK, Linhardt RJ, Dordick JS, Rethwisch DG. Carbohydr. Polym. 1995, 28, 15–21.10.1016/0144-8617(95)00082-8Search in Google Scholar

[9] Ni B, Liu M, Lu S, Xie L, Wang Y. J. Agric. Food Chem. 2011, 59, 10169–10175.10.1021/jf202131zSearch in Google Scholar PubMed

[10] Okazaki M, Hamada T, Fujii H, Kusudo O. Appl. Polym. Sci. 1995, 58, 2243–2249.10.1002/app.1995.070581213Search in Google Scholar

[11] Ullah F, Othman MB, Javed F, Ahmad Z, Md Akil H. Mater. Sci. Eng. 2015, 57, 414–433.10.1016/j.msec.2015.07.053Search in Google Scholar

[12] Beebe DJ, Moore JS, Bauer JM, Yu Q, Liu RH, Devadoss C, Jo B-H. Nature 2000, 404, 588.10.1038/35007047Search in Google Scholar

[13] Zhang X-Z, Xu X-D, Cheng S-X, Zhuo R-X. Soft Matter 2008, 4, 385.10.1039/b713803mSearch in Google Scholar

[14] Zhang X-Z, Zhuo R-X. Eur. Polym. J. 2000, 36, 643–645.10.1016/S0014-3057(99)00089-0Search in Google Scholar

[15] Zhang X, Zhuo R, Yang Y. Biomaterials 2002, 23, 1313–1318.10.1016/S0142-9612(01)00249-6Search in Google Scholar

[16] Zhang X-Z, Yang Y-Y, Chung T-S. Langmuir 2002, 18, 2538–2542.10.1021/la011410jSearch in Google Scholar

[17] Laszlo K, Kosik K, Rochas C, Geissler E. Macromolecules 2003, 36, 7771–7776.10.1021/ma034531uSearch in Google Scholar

[18] Zhang X-Z, Yang YY, Wang FJ, Chung TS. Langmuir 2002, 18, 2013–2018.10.1021/la011325bSearch in Google Scholar

[19] Cheng S-X, Zhang J-T, Zhuo R-X. J. Biomed. Mater. Res. 2003, 67A, 96–103.10.1002/jbm.a.10062Search in Google Scholar PubMed

[20] Zhang JT, Cheng SX, Zhuo RX. Polym. Chem. 2003, 41, 2390–2392.10.1002/pola.10785Search in Google Scholar

[21] Zhang X-Z, Zhuo R-X. Eur. Polym. J. 2000, 36, 2301–2303.10.1016/S0014-3057(99)00297-9Search in Google Scholar

[22] Serizawa T, Wakita K, Kaneko T, Akashi M. J. Polym. Sci., Part A: Polym. Chem. 2002, 40, 4228–4235.10.1002/pola.10482Search in Google Scholar

[23] Kaneko Y, Nakamura S, Sakai K, Aoyagi T, Kikuchi A, Sakurai Y, Okano T. Macromolecules 1998, 31, 6099–6105.10.1021/ma971899gSearch in Google Scholar

[24] Raymond S. Science 1959 1959, 30, 711–713.10.25291/VR/1959-VR-711Search in Google Scholar

[25] Yang TH. Recent Pat. Mater. Sci. 2008, 1, 29–40.10.2174/1874464810801010029Search in Google Scholar

[26] Christensen L, Breiting V, Bjarnsholt T, Eickhardt S, Hogdall E, Janssen M, Pallua N, Zaat SA. Clin. Infect. Dis. 2013, 56, 1438–1444.10.1093/cid/cit067Search in Google Scholar

[27] von Buelow S, von Heimburg D, Pallua N. Plast. Reconstr. Surg. 2005, 116, 1137–1146.10.1097/01.prs.0000179349.14392.a4Search in Google Scholar

[28] Butler R, Davies CM, Cooper AI. Adv. Matter 2001, 13, 1459–1463.10.1002/1521-4095(200110)13:19<1459::AID-ADMA1459>3.0.CO;2-KSearch in Google Scholar

[29] Wu D, Xu F, Sun B, Fu R, He H, Matyjaszewski K. Chem. Rev. 2012, 112, 3959–4015.10.1021/cr200440zSearch in Google Scholar

[30] Pulko I, Krajnc P. Macromol. Rapid Commun. 2012, 33, 1731–1746.10.1002/marc.201200393Search in Google Scholar

[31] Szczurek A, Fierro V, Pizzi A, Celzard A. Carbon 2014, 74, 352–362.10.1016/j.carbon.2014.03.047Search in Google Scholar

[32] Chavda H, Patel C. Int. J. Pharm. Invest. 2011, 1, 17–21.10.4103/2230-973X.76724Search in Google Scholar PubMed PubMed Central

[33] Lee JH, Bucknall DG. J. Polym. Sci., Part B: Polym. Phys. 2008, 46, 1450–1462.10.1002/polb.21481Search in Google Scholar

[34] Bajpai SK, Singh S. React. Funct. Polym. 2006, 66, 431–440.10.1016/j.reactfunctpolym.2005.09.003Search in Google Scholar

[35] Tsukada Y, Hara K, Bando Y, Huang CC, Kousaka Y, Kawashima Y, Morishita R, Tsujimoto H. Int. J. Pharm. 2009, 370, 196–201.10.1016/j.ijpharm.2008.11.019Search in Google Scholar PubMed

[36] Wei Q, Li J, Qian B, Fang B, Zhao C. J. Membr. Sci. 2009, 337, 266–273.10.1016/j.memsci.2009.03.055Search in Google Scholar

[37] Rowe EL. J. Pharm. Sci. 1965, 54, 260–264.10.1002/jps.2600540220Search in Google Scholar PubMed

[38] Aronson MP. Langmuir 1989, 5, 494–501.10.1021/la00086a036Search in Google Scholar

Received: 2019-09-06
Accepted: 2020-01-23
Published Online: 2020-02-21
Published in Print: 2020-02-25

©2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2019-0290/html
Scroll to top button