Startseite Highly porous, fast responding acrylamide hydrogels through emulsion polymerization using coconut oil
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Highly porous, fast responding acrylamide hydrogels through emulsion polymerization using coconut oil

  • Mihisirini Bhagya Dharmasiri und Thilini Kuruwita Mudiyanselage ORCID logo EMAIL logo
Veröffentlicht/Copyright: 21. Februar 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Conventional acrylamide hydrogel exhibits a slow swelling rate which limits its potential for novel applications. It is a formidable challenge to increase the rate of swelling and if addressed successfully, this paves new paths for significant advanced applications. Fast responding polyacrylamide hydrogels with microporous structures and an interconnected network of capillary channels have been successfully synthesized by free radical emulsion-templated polymerization (a 2.5 m acrylamide monomer solution was crosslinked with 1% N,N-methylenebisacrylamide using 5% potassium persulfate as the initiator). Virgin coconut oil (70% v/v) was used as the pore forming agent, which was dispersed in the aqueous monomer solution by using 5% non-ionic surfactant (Tween 80®). Developed porous acrylamide hydrogel displayed approximately 600 wt% water absorptivity compared to the dry weight of the sample in 15 s at 30°C. Swelling ratio and scanning electron microscopy studies uncovered the characteristic microporous structure of the hydrogel. Pores of the hydrogel are interconnected to form capillary channels and thus they are responsible for the higher swelling rate of the hydrogel.

Acknowledgments

The Center for Advanced Material Research and Instrument Center of the Faculty of Applied Sciences, University of Sri Jayewardenepura facilitated the instrumental analysis for this study.

References

[1] Kabiri K, Faraji-Dana S, Zohuriaan-Mehr MJ. Polym. Adv. Technol. 2005, 16, 659–666.10.1002/pat.637Suche in Google Scholar

[2] Snoeck D, Van Tittelboom K, Steuperaert S, Dubruel P, De Belie N. J. Intell. Mater. Syst. Struct. 2014, 25, 13–24.10.1177/1045389X12438623Suche in Google Scholar

[3] Mudiyanselage TK, Neckers DC. J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 1357–1364.10.1002/pola.22476Suche in Google Scholar

[4] Kaihara S, Matsumura S, Fisher JP. Eur. J. Pharm. Biopharm. 2008, 68, 67–73.10.1016/j.ejpb.2007.05.019Suche in Google Scholar

[5] Zhang L, Li K, Xiao W, Zheng L, Xiao Y, Fan H, Zhang X. Carbohydr. Polym. 2011, 84, 118–125.10.1016/j.carbpol.2010.11.009Suche in Google Scholar

[6] Sikareepaisan P, Ruktanonchai U, Supaphol P. Carbohydr. Polym. 2011, 83, 1457–1469.10.1016/j.carbpol.2010.09.048Suche in Google Scholar

[7] Krsko P, McCann TE, Thach T-T, Laabs TL, Geller HM, Libera MR. Biomaterials 2009, 30, 721–729.10.1016/j.biomaterials.2008.10.011Suche in Google Scholar

[8] Chen X, Martin BD, Neubauer TK, Linhardt RJ, Dordick JS, Rethwisch DG. Carbohydr. Polym. 1995, 28, 15–21.10.1016/0144-8617(95)00082-8Suche in Google Scholar

[9] Ni B, Liu M, Lu S, Xie L, Wang Y. J. Agric. Food Chem. 2011, 59, 10169–10175.10.1021/jf202131zSuche in Google Scholar PubMed

[10] Okazaki M, Hamada T, Fujii H, Kusudo O. Appl. Polym. Sci. 1995, 58, 2243–2249.10.1002/app.1995.070581213Suche in Google Scholar

[11] Ullah F, Othman MB, Javed F, Ahmad Z, Md Akil H. Mater. Sci. Eng. 2015, 57, 414–433.10.1016/j.msec.2015.07.053Suche in Google Scholar

[12] Beebe DJ, Moore JS, Bauer JM, Yu Q, Liu RH, Devadoss C, Jo B-H. Nature 2000, 404, 588.10.1038/35007047Suche in Google Scholar

[13] Zhang X-Z, Xu X-D, Cheng S-X, Zhuo R-X. Soft Matter 2008, 4, 385.10.1039/b713803mSuche in Google Scholar

[14] Zhang X-Z, Zhuo R-X. Eur. Polym. J. 2000, 36, 643–645.10.1016/S0014-3057(99)00089-0Suche in Google Scholar

[15] Zhang X, Zhuo R, Yang Y. Biomaterials 2002, 23, 1313–1318.10.1016/S0142-9612(01)00249-6Suche in Google Scholar

[16] Zhang X-Z, Yang Y-Y, Chung T-S. Langmuir 2002, 18, 2538–2542.10.1021/la011410jSuche in Google Scholar

[17] Laszlo K, Kosik K, Rochas C, Geissler E. Macromolecules 2003, 36, 7771–7776.10.1021/ma034531uSuche in Google Scholar

[18] Zhang X-Z, Yang YY, Wang FJ, Chung TS. Langmuir 2002, 18, 2013–2018.10.1021/la011325bSuche in Google Scholar

[19] Cheng S-X, Zhang J-T, Zhuo R-X. J. Biomed. Mater. Res. 2003, 67A, 96–103.10.1002/jbm.a.10062Suche in Google Scholar PubMed

[20] Zhang JT, Cheng SX, Zhuo RX. Polym. Chem. 2003, 41, 2390–2392.10.1002/pola.10785Suche in Google Scholar

[21] Zhang X-Z, Zhuo R-X. Eur. Polym. J. 2000, 36, 2301–2303.10.1016/S0014-3057(99)00297-9Suche in Google Scholar

[22] Serizawa T, Wakita K, Kaneko T, Akashi M. J. Polym. Sci., Part A: Polym. Chem. 2002, 40, 4228–4235.10.1002/pola.10482Suche in Google Scholar

[23] Kaneko Y, Nakamura S, Sakai K, Aoyagi T, Kikuchi A, Sakurai Y, Okano T. Macromolecules 1998, 31, 6099–6105.10.1021/ma971899gSuche in Google Scholar

[24] Raymond S. Science 1959 1959, 30, 711–713.10.25291/VR/1959-VR-711Suche in Google Scholar

[25] Yang TH. Recent Pat. Mater. Sci. 2008, 1, 29–40.10.2174/1874464810801010029Suche in Google Scholar

[26] Christensen L, Breiting V, Bjarnsholt T, Eickhardt S, Hogdall E, Janssen M, Pallua N, Zaat SA. Clin. Infect. Dis. 2013, 56, 1438–1444.10.1093/cid/cit067Suche in Google Scholar

[27] von Buelow S, von Heimburg D, Pallua N. Plast. Reconstr. Surg. 2005, 116, 1137–1146.10.1097/01.prs.0000179349.14392.a4Suche in Google Scholar

[28] Butler R, Davies CM, Cooper AI. Adv. Matter 2001, 13, 1459–1463.10.1002/1521-4095(200110)13:19<1459::AID-ADMA1459>3.0.CO;2-KSuche in Google Scholar

[29] Wu D, Xu F, Sun B, Fu R, He H, Matyjaszewski K. Chem. Rev. 2012, 112, 3959–4015.10.1021/cr200440zSuche in Google Scholar

[30] Pulko I, Krajnc P. Macromol. Rapid Commun. 2012, 33, 1731–1746.10.1002/marc.201200393Suche in Google Scholar

[31] Szczurek A, Fierro V, Pizzi A, Celzard A. Carbon 2014, 74, 352–362.10.1016/j.carbon.2014.03.047Suche in Google Scholar

[32] Chavda H, Patel C. Int. J. Pharm. Invest. 2011, 1, 17–21.10.4103/2230-973X.76724Suche in Google Scholar PubMed PubMed Central

[33] Lee JH, Bucknall DG. J. Polym. Sci., Part B: Polym. Phys. 2008, 46, 1450–1462.10.1002/polb.21481Suche in Google Scholar

[34] Bajpai SK, Singh S. React. Funct. Polym. 2006, 66, 431–440.10.1016/j.reactfunctpolym.2005.09.003Suche in Google Scholar

[35] Tsukada Y, Hara K, Bando Y, Huang CC, Kousaka Y, Kawashima Y, Morishita R, Tsujimoto H. Int. J. Pharm. 2009, 370, 196–201.10.1016/j.ijpharm.2008.11.019Suche in Google Scholar PubMed

[36] Wei Q, Li J, Qian B, Fang B, Zhao C. J. Membr. Sci. 2009, 337, 266–273.10.1016/j.memsci.2009.03.055Suche in Google Scholar

[37] Rowe EL. J. Pharm. Sci. 1965, 54, 260–264.10.1002/jps.2600540220Suche in Google Scholar PubMed

[38] Aronson MP. Langmuir 1989, 5, 494–501.10.1021/la00086a036Suche in Google Scholar

Received: 2019-09-06
Accepted: 2020-01-23
Published Online: 2020-02-21
Published in Print: 2020-02-25

©2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2019-0290/html?lang=de
Button zum nach oben scrollen