Abstract
The adhesive properties of a self-prepared bio-based epoxy resin with native cellulose nanocrystals (CNCs) are evaluated in this article. The porosity of actual CNCs is high. The most promising finding is the acquisition of high tensile modulus. The addition of CNC composites significantly increased the tensile modulus at lower wt.%, and the maximum crystallinity of CNCs was obtained. Bearing in mind the advantages of CNCs, scanning electron microscopy (SEM) showed a uniform distribution of concentrated CNCs. Clusters were formed at higher CNCs ratios, and the composite matrix content with high CNCs produced good expansion, low crystallinity, and increased elongation. Our analysis showed that the original CNCs were more evenly distributed in the self-prepared bio-based epoxy resin, which enhanced transformation, supported by improved dispersion of native CNCs. The presence of native CNCs greatly improved and enhanced the bonding performance of the bio-based epoxy resin in the interface area. Enhancing the mechanical properties of native CNCs has broad application prospects in environmental areas. This suggests that the widespread use of native CNCs in environmental engineering applications is feasible, especially in terms of adhesives properties.
Acknowledgments
The authors wish to thank Fazal Haq and Mudassir Iqbal from their parent institute for helping them with the preparation of the manuscript.
Research funding: This research was funded by State Key Laboratory of Chemical Engineering, Zhejiang University, China.
Conflict of interest statement: The authors declare no conflicts of interest.
References
[1] Basnet S, Otsuka M, Sasaki C, Asada C, Nakamura Y. Ind. Crop Prod. 2015, 73, 63–72.10.1016/j.indcrop.2015.03.091Suche in Google Scholar
[2] Rosu D, Mustata F, Tudorachi N, Musteata VE, Rosu L, Varganici CD. RSC Adv. 2015, 5, 45679–45687.10.1039/C5RA05610ASuche in Google Scholar
[3] Shen XB, Liu XQ, Wang JG, Dai JY, Zhu J. Ind. Eng. Chem. Res. 2017, 56, 8508–8516.10.1021/acs.iecr.7b01624Suche in Google Scholar
[4] Masoodi R, El-Hajjar RF, Pillai KM, Sabo R. Mater. Des. 2012, 36, 570–576.10.1016/j.matdes.2011.11.042Suche in Google Scholar
[5] Cao LJ, Liu XQ, Na HN, Wu YG, Zheng WG, Zhu J. J. Mater. Chem. A 2013, 1, 5081–5088.10.1039/c3ta01700aSuche in Google Scholar
[6] Gogoi P, Boruah M, Bora C, Dolui SK. Prog. Org. Coat. 2014, 77, 87–93.10.1016/j.porgcoat.2013.08.006Suche in Google Scholar
[7] Aziz T, Fan H, Haq F, Khan FU, Numan A, Ullah A, Wazir N. Iran Polym. J. 2019, 28, 707–724.10.1007/s13726-019-00734-2Suche in Google Scholar
[8] Riaz U, Ashraf SM, Sharma HO. Polym. Degrad. Stabil. 2011, 96, 33–42.10.1016/j.polymdegradstab.2010.11.007Suche in Google Scholar
[9] Chrysanthos M, Galy J, Pascault JP. Polymer 2011, 52, 3611–3620.10.1016/j.polymer.2011.06.001Suche in Google Scholar
[10] Deng J, Liu XQ, Li C, Jiang YH, Zhu J. RSC Adv. 2015, 5, 15930–15939.10.1039/C5RA00242GSuche in Google Scholar
[11] Esmaeili N, Salimi A, Zohuriaan-Mehr MJ, Vafayan M, Meyer W. J. Hazard. Mater. 2018, 357, 30–39.10.1016/j.jhazmat.2018.05.045Suche in Google Scholar PubMed
[12] Ferdosian F, Zhang YS, Yuan ZS, Anderson M, Xu CB. Eur. Polym. J. 2016, 82, 153–165.10.1016/j.eurpolymj.2016.07.014Suche in Google Scholar
[13] Ma SQ, Liu XQ, Jiang YH, Tang ZB, Zhang CZ, Zhu J. Green Chem. 2013, 15, 245–254.10.1039/C2GC36715GSuche in Google Scholar
[14] Sahoo SK, Mohanty S, Nayak SK. RSC Adv. 2015, 5, 13674–13691.10.1039/C4RA11965GSuche in Google Scholar
[15] Li C, Fan H, Aziz T, Bittencourt C, Wu LB, Wang DY, Dubois P. ACS Sustain. Chem. Eng. 2018, 6, 8856–8867.10.1021/acssuschemeng.8b01212Suche in Google Scholar
[16] Menard R, Negrell C, Fache M, Ferry L, Sonnier R, David G. RSC Adv 2015, 5, 70856–70867.10.1039/C5RA12859ESuche in Google Scholar
[17] Nikafshar S, Zabihi O, Hamidi S, Moradi Y, Barzegar S, Ahmadi M, Naebe M. RSC Adv. 2017, 7, 8694–8701.10.1039/C6RA27283ESuche in Google Scholar
[18] Paramarta A, Webster DC. React. Funct. Polym. 2016, 105, 140–149.10.1016/j.reactfunctpolym.2016.06.008Suche in Google Scholar
[19] Qi M, Xu YJ, Rao WH, Luo X, Chen L, Wang YZ. RSC Adv. 2018, 8, 26948–26958.10.1039/C8RA03874KSuche in Google Scholar
[20] Shibata M, Enjoji M, Sakazume K, Ifuku S. Carbohydr. Polym. 2016, 144, 89–97.10.1016/j.carbpol.2016.02.033Suche in Google Scholar PubMed
[21] Shibata M, Ishigami N, Shibita A. React. Funct. Polym. 2017, 118, 35–41.10.1016/j.reactfunctpolym.2017.07.003Suche in Google Scholar
[22] Shibata M, Fujigasaki J, Enjoji M, Shibita A, Teramoto N, Ifuku S. Eur. Polym. J. 2018, 98, 216–225.10.1016/j.eurpolymj.2017.11.024Suche in Google Scholar
[23] Xiong Z, Ma SQ, Fan LB, Tang ZB, Zhang RY, Na HN, Zhu J. Compos. Sci. Technol. 2014, 94, 16–22.10.1016/j.compscitech.2014.01.007Suche in Google Scholar
[24] Yang XJ, Wang CP, Li SH, Huang K, Li M, Mao W, Cao S, Xia JL. RSC Adv. 2017, 7, 238–247.10.1039/C6RA24818GSuche in Google Scholar
[25] Hernandez ED, Bassett AW, Sadler JM, La Scala JJ, Stanzione JF. ACS Sustain. Chem. Eng. 2016, 4, 4328–4339.10.1021/acssuschemeng.6b00835Suche in Google Scholar
[26] Zhang E, Yang J, Liu W. Z. Phys. Chem. 2018, 232, 9–11.10.1515/zpch-2018-1133Suche in Google Scholar
[27] Watermann T, Sebastiani D. Z. Phys. Chem. 2018, 232, 989–1002.10.1515/zpch-2017-1011Suche in Google Scholar
[28] Jamshaid A, Iqbal J, Hamid A, Ghauri M, Muhammad N, Nasrullah A, Rafiq S, Samad N. Z. Phys. Chem. 2019, 233, 1351–1375.10.1515/zpch-2018-1287Suche in Google Scholar
[29] Tachibana Y, Torii J, Kasuya K, Funabashi M, Kunioka M. RSC Adv. 2014, 4, 55723–55731.10.1039/C4RA11636DSuche in Google Scholar
[30] Benítez AJ, Torres-Rendon J, Poutanen M, Walther A. Biomacromolecules 2013, 14, 4497–4506.10.1021/bm401451mSuche in Google Scholar PubMed
[31] Medina L, Ansari F, Carosio F, Salajkova M, Berglund LA. ACS Appl. Nano Mater. 2019, 2, 3117–3126.10.1021/acsanm.9b00459Suche in Google Scholar
[32] Wetterling J, Sahlin K, Mattsson T, Westman G, Theliander H. Cellulose 2018, 25, 2321–2329.10.1007/s10570-018-1733-3Suche in Google Scholar
[33] Gui C, Wang G, Wu D, Zhu J, Liu X. Int. J. Adhes. Adhes. 2013, 44, 237–242.10.1016/j.ijadhadh.2013.03.011Suche in Google Scholar
[34] Wan J, Gan B, Li C, Molina-Aldareguia J, Kalali EN, Wang X, Wang D-Y. Chem. Eng. J. 2016, 284, 1080–1093.10.1016/j.cej.2015.09.031Suche in Google Scholar
[35] Wu GM, Liu D, Liu GF, Chen J, Huo SP, Kong ZW. Carbohydr. Polym. 2015, 127, 229–235.10.1016/j.carbpol.2015.03.078Suche in Google Scholar PubMed
[36] Lu P, Hsieh YL. Carbohydr. Polym. 2010, 82, 329–336.10.1016/j.carbpol.2010.04.073Suche in Google Scholar
[37] Kumar A, Negi YS, Choudhary V, Bhardwaj NK. J. Mater. Phys. Chem. 2014, 2, 1–8.Suche in Google Scholar
[38] Soo Hyun S, Yoonjee C, Jaejoon H. Carbohydr. Polym. 2017, 169, 495–503.10.1016/j.carbpol.2017.04.037Suche in Google Scholar PubMed
[39] de Almeida Mesquita RG, Mendes LM, Sanadi AR, de Sena Neto AR, Cunha Claro PI, Correa AC, Marconcini JM. J. Polym. Environ. 2018, 26, 3040–3050.10.1007/s10924-018-1189-4Suche in Google Scholar
[40] Chen R, Hou S, Wang J, Xiang L. Crystals 2017, 7, 28.10.3390/cryst7010028Suche in Google Scholar
[41] Yue L, Maiorana A, Khelifa F, Patel A, Raquez JM, Bonnaud L, Gross R, Dubois P, Manas-Zloczower I. Polymer 2018, 134, 155–162.10.1016/j.polymer.2017.11.051Suche in Google Scholar
[42] Lu YH, Jiang N, Li XW, Xu S. RSC Adv. 2017, 7, 46486–46498.10.1039/C7RA09193ASuche in Google Scholar
[43] Peng SX, Shrestha S, Yoo Y, Youngblood JP. Polymer 2017, 112, 359–368.10.1016/j.polymer.2017.02.016Suche in Google Scholar
[44] Lu YH, Zhang WP, Li XW, Xu SA. RSC Adv. 2017, 7, 31628–31640.10.1039/C7RA03692BSuche in Google Scholar
[45] Al-Turaif HA. Prog. Org. Coat. 2013, 76, 477–481.10.1016/j.porgcoat.2012.11.001Suche in Google Scholar
[46] Ferreira JAM, Reis PNB, Costa JDM, Capela C. Fibers Polym. 2014, 15, 1677–1684.10.1007/s12221-014-1677-7Suche in Google Scholar
[47] Ma IAW, Shafaamri A, Kasi R, Zaini FN, Balakrishnan V, Subramaniam R, Arof AK. Bioresources 2017, 12, 2912–2929.10.15376/biores.12.4.7084-7095Suche in Google Scholar
[48] Yuan W, Cui J, Xu S. J. Mater. Sci. Technol. 2016, 32, 1352–1360.10.1016/j.jmst.2016.05.016Suche in Google Scholar
[49] Gwon JG, Cho HJ, Chun SJ, Lee S, Wu Q, Li MC, Lee SY. RSC Adv. 2016, 6, 73879–73886.10.1039/C6RA10993DSuche in Google Scholar
[50] Bai LM, Bossa N, Qu FS, Winglee J, Li GB, Sun K, Liang H, Wiesner MR. Environ. Sci. Technol. 2017, 51, 253–262.10.1021/acs.est.6b04280Suche in Google Scholar PubMed
[51] Mustapha R, Rahmat AR, Majid RA, Mustapha SNH. Mater. Today Proc. 2018, 5, 21964–21972.10.1016/j.matpr.2018.07.057Suche in Google Scholar
©2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Material properties
- Interface properties of carbon fiber reinforced cyanate/epoxy resin composites at cryogenic temperature
- A new method to calculate the surface haze
- Structure and properties of particles/rubber composites applied on functionally graded lapping and polishing plate
- Adhesive properties of bio-based epoxy resin reinforced by cellulose nanocrystal additives
- Preparation and assembly
- Encapsulation of anion-cation organo-montmorillonite in terpolymer microsphere: structure, morphology, and properties
- Preparation and characterization of chitosan grafted poly(lactic acid) films for biomedical composites
- Preparation and characterization of polyvinylpyrrolidone/cobalt ferrite functionalized chitosan graphene oxide (CoFe2O4@CS@GO-PVP) nanocomposite
- Clay/(PEG-CMC) biocomposites as a novel delivery system for ibuprofen
- Engineering and processing
- Multi-objective optimization of injection-molded plastic parts using entropy weight, random forest, and genetic algorithm methods
Artikel in diesem Heft
- Frontmatter
- Material properties
- Interface properties of carbon fiber reinforced cyanate/epoxy resin composites at cryogenic temperature
- A new method to calculate the surface haze
- Structure and properties of particles/rubber composites applied on functionally graded lapping and polishing plate
- Adhesive properties of bio-based epoxy resin reinforced by cellulose nanocrystal additives
- Preparation and assembly
- Encapsulation of anion-cation organo-montmorillonite in terpolymer microsphere: structure, morphology, and properties
- Preparation and characterization of chitosan grafted poly(lactic acid) films for biomedical composites
- Preparation and characterization of polyvinylpyrrolidone/cobalt ferrite functionalized chitosan graphene oxide (CoFe2O4@CS@GO-PVP) nanocomposite
- Clay/(PEG-CMC) biocomposites as a novel delivery system for ibuprofen
- Engineering and processing
- Multi-objective optimization of injection-molded plastic parts using entropy weight, random forest, and genetic algorithm methods