Abstract
Recently, due to sustainable development and environmental protection policies, there is increasing interest in the development of new biodegradable polymer-based multifunctional composites. Chitosan is one of the most remarkable and preferred biopolymers, which is environmentally friendly as well as renewable, biocompatible, and inexpensive. Though it has a wide range of potential applications, the major limitation of chitosan – the problem of poor mechanical performance – needs to be solved. In this work, graphene oxide was first produced and then used to manufacture a chitosan/graphene oxide/zinc oxide composite film through a casting method. The properties of the chitosan film and the chitosan/graphene oxide/zinc oxide composite film were investigated using Fourier transform infrared spectroscopy, mechanical, thermal gravimetric, and ultraviolet (UV)-visible spectroscopy analyses. The results showed that the incorporation of graphene oxide and zinc oxide into the chitosan matrix resulted in enhanced mechanical properties and thermal stability of chitosan biocomposite films. The graphene oxide- and zinc oxide-reinforced chitosan film showed 2527 MPa and 55.72 MPa of Young’s modulus and tensile strength, respectively, while neat chitosan showed only 1549 MPa and 37.91 MPa of Young’s modulus and tensile strength, respectively. Conversely, the addition of graphene oxide decreased the transmittance, notably in the UV region.
Acknowledgments
The authors would like to thank Dr. Ertugrul Erkoc from Advanced Micro Reaction Technologies (ADMIRE-TECH) for providing the ZnO nanoparticles.
References
[1] Choi I, Chang Y, Shin SH, Joo E, Song HJ, Eom H, Han J. Int. J. Mol. Sci. 2017, 18, 1278.10.3390/ijms18061278Suche in Google Scholar PubMed PubMed Central
[2] Rhim JW, Ng PKW. Crit. Rev. Food Sci. Nutr. 2007, 47, 411–433.10.1080/10408390600846366Suche in Google Scholar PubMed
[3] Grande CD, Mangadlao J, Fan JJ, De Leon A, Delgado-Ospina J, Rojas JG, Rodrigues DF, Advincula R. Macromol. Symp. 2017, 374, 1600114.10.1002/masy.201600114Suche in Google Scholar
[4] Lim HN, Huang NM, Loo CH. J. Non-Cryst. Solids 2012, 358, 525–530.10.1016/j.jnoncrysol.2011.11.007Suche in Google Scholar
[5] Javadi A, Zheng Q, Payen F, Javadi A, Altin Y, Cai Z, Sabo R, Gong S. ACS Appl. Mater. Interfaces 2013, 5, 5969–5575.10.1021/am400171ySuche in Google Scholar PubMed
[6] Pinto AM, Cabral J, Tanaka DAP, Mendes AM, Magalhaes FD. Polym. Int. 2013, 62, 33–40.10.1002/pi.4290Suche in Google Scholar
[7] Tas M, Altin Y, Celik Bedeloglu A. Diam. Relat. Mater. 2019, 92, 242–247.10.1016/j.diamond.2019.01.009Suche in Google Scholar
[8] Pandele AM, Ionita M, Crica L, Dinescu S, Costache M, Iovu H. Carbohydr. Polym. 2014, 102, 813–820.10.1016/j.carbpol.2013.10.085Suche in Google Scholar PubMed
[9] Ebrahimiasl S, Zakaria A, Kassim A, Basri SN. Int. J. Nanomed. 2015, 10, 217–227.Suche in Google Scholar
[10] Reddy KM, Feris K, Bell J, Wingett DG, Hanley C, Punnoose A. Appl. Phys. Lett. 2007, 90, 213902-1–213902-3.Suche in Google Scholar
[11] Al-Naamani L, Dobretsov S, Dutta J, Burgess JG. Chemosphere 2017, 168, 408–417.10.1016/j.chemosphere.2016.10.033Suche in Google Scholar PubMed
[12] Liu S, Yao F, Oderinde O, Li K, Wang H, Zhang Z, Fu G. Chem. Eng. J. 2017, 321, 502–509.10.1016/j.cej.2017.03.087Suche in Google Scholar
[13] Han Lyn F, Chin Peng T, Ruzniza MZ, Nur Hanani ZA. Food Packag. Shelf Life 2019, 21, 100373.10.1016/j.fpsl.2019.100373Suche in Google Scholar
[14] Xie D, Liu Q, Xu D, Ren D, Wu X. J. Appl. Polym. Sci. 2019, 136, 47748.10.1002/app.47748Suche in Google Scholar
[15] Indumathi MP, Saral Sarojini K, Rajarajeswari GR. Int. J. Biol. Macromol. 2019, 132, 1112–1120.10.1016/j.ijbiomac.2019.03.171Suche in Google Scholar PubMed
[16] Hezma AM, Rajeh A, Mannaa MA. Colloids Surf. A Physicochem. Eng. Asp. 2019, 581, 123821.10.1016/j.colsurfa.2019.123821Suche in Google Scholar
[17] Viorica GP, Musat V, Pimentel A, Calmeiro TR, Carlos E, Baroiu L, Martins B, Fortunato E. J. Alloys Compd. 2019, 803, 922–933.10.1016/j.jallcom.2019.06.373Suche in Google Scholar
[18] Murali S, Kumar S, Koh J, Seena S, Singh P, Ramalho A, Sobral AFJN. Cellulose 2019, 26, 5347–5361.10.1007/s10570-019-02457-2Suche in Google Scholar
[19] Sheshmani S, Nejabat Ghamsari H. Int. J. Environ. Anal. Chem. 2019, 1–10. doi: 10.1080/03067319.2019.1645840.Suche in Google Scholar
[20] Chowdhuri AR, Tripathy S, Chandra S, Roy S, Sahu SK. RSC Adv. 2015, 5, 49420–49428.10.1039/C5RA05393ESuche in Google Scholar
[21] Liu SL, Yao F, Oderinde O, Li KW, Wang HJ, Zhang ZH, Fu G. Chem. Eng. J. 2017, 321, 502–509.10.1016/j.cej.2017.03.087Suche in Google Scholar
[22] Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun ZZ, Slesarev A, Alemany LB, Lu W, Tour JM. ACS Nano 2010, 4, 4806–4814.10.1021/nn1006368Suche in Google Scholar PubMed
[23] Tas M, Altin Y, Bedeloglu A. J. Text Inst. 2019, 110, 67–73.10.1080/00405000.2018.1460039Suche in Google Scholar
[24] Stankovich S, Piner RD, Nguyen ST, Ruoff RS. Carbon N. Y. 2006, 44, 3342–3347.10.1016/j.carbon.2006.06.004Suche in Google Scholar
[25] Layek RK, Samanta S, Nandi AK. Polymer (Guildf) 2012, 53, 2265–2273.10.1016/j.polymer.2012.03.048Suche in Google Scholar
[26] El Achaby M, Essamlali Y, El Miri N, Snik A, Abdelouahdi K, Fihri A, Zahouily M, Solhy A. J. Appl. Polym. Sci. 2014, 131. doi: 10.1002/app.41042.Suche in Google Scholar
[27] Sun LJ, Sun JJ, Chen L, Niu PF, Yang XB, Guo YR. Carbohydr. Polym. 2017, 163, 81–91.10.1016/j.carbpol.2017.01.016Suche in Google Scholar PubMed
[28] Zuo PP, Feng HF, Xu ZZ, Zhang LF, Zhang YL, Xia W, Zhang WQ. Chem. Cent. J. 2013, 7. doi: 10.1186/1752-153x-7-39.Suche in Google Scholar
[29] Rahman PM, Mujeeb VMA, Muraleedharan K, Thomas SK. Arab J. Chem. 2018, 11, 120–127.10.1016/j.arabjc.2016.09.008Suche in Google Scholar
[30] Kumar ASK, Jiang SJ. J. Environ. Chem. Eng. 2016, 4, 1698–1713.10.1016/j.jece.2016.02.035Suche in Google Scholar
[31] Ren PG, Yan DX, Ji X, Chen T, Li ZM. Nanotechnology 2011, 22, 055705.10.1088/0957-4484/22/5/055705Suche in Google Scholar PubMed
[32] Jia J, Gai Y, Wang W, Zhao Y. Ultrason. Sonochem. 2016, 32, 300–306.10.1016/j.ultsonch.2016.03.027Suche in Google Scholar PubMed
[33] Wang SF, Shen L, Zhang WD, Tong YJ. Biomacromolecules 2005, 6, 3067–3072.10.1021/bm050378vSuche in Google Scholar PubMed
[34] Sanuja S, Agalya A, Umapathy MJ. Int. J. Biol. Macromol. 2015, 74, 76–84.10.1016/j.ijbiomac.2014.11.036Suche in Google Scholar PubMed
[35] Das K, Maiti S, Liu D. J. Inst. Eng. Ser. D 2014, 95, 35–41.10.1007/s40033-014-0033-9Suche in Google Scholar
©2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Material properties
- Synthesis, characterization and low energy photon attenuation studies of bone tissue substitutes
- The effect of oxygen plasma pretreatment on the properties of mussel-inspired polydopamine-decorated polyurethane nanofibers
- Effects of selected bleaching agents on the functional and structural properties of orange albedo starch-based bioplastics
- Study on the thermal and structural properties of gamma-irradiated polyethylene terephthalate fibers
- Preparation and assembly
- Stereocomplex electrospun fibers from high molecular weight of poly(L-lactic acid) and poly(D-lactic acid)
- Dual-wavelength fluorescent anti-counterfeiting fibers with skin-core structure
- Graphene oxide and zinc oxide decorated chitosan nanocomposite biofilms for packaging applications
- Supramolecular adsorption of cyclodextrin/polyvinyl alcohol film for purification of organic wastewater
- Engineering and processing
- Effects of high-efficiency infrared heating on fiber compatibility and weldline tensile properties of injection-molded long-glass-fiber-reinforced polyamide-66 composites
- Toward the development of polyethylene photocatalytic degradation
Artikel in diesem Heft
- Frontmatter
- Material properties
- Synthesis, characterization and low energy photon attenuation studies of bone tissue substitutes
- The effect of oxygen plasma pretreatment on the properties of mussel-inspired polydopamine-decorated polyurethane nanofibers
- Effects of selected bleaching agents on the functional and structural properties of orange albedo starch-based bioplastics
- Study on the thermal and structural properties of gamma-irradiated polyethylene terephthalate fibers
- Preparation and assembly
- Stereocomplex electrospun fibers from high molecular weight of poly(L-lactic acid) and poly(D-lactic acid)
- Dual-wavelength fluorescent anti-counterfeiting fibers with skin-core structure
- Graphene oxide and zinc oxide decorated chitosan nanocomposite biofilms for packaging applications
- Supramolecular adsorption of cyclodextrin/polyvinyl alcohol film for purification of organic wastewater
- Engineering and processing
- Effects of high-efficiency infrared heating on fiber compatibility and weldline tensile properties of injection-molded long-glass-fiber-reinforced polyamide-66 composites
- Toward the development of polyethylene photocatalytic degradation