Startseite Characterizations of PMMA-based polymer electrolyte membranes with Al2O3
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Characterizations of PMMA-based polymer electrolyte membranes with Al2O3

  • Cha Chee Sun EMAIL logo , Ah Heng You und Lay Lian Teo
Veröffentlicht/Copyright: 22. Juni 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Poly(methyl methacrylate) (PMMA)-based polymer electrolyte membranes are prepared through the solution cast method, with PMMA:ethylene carbonate (EC):LiCF3SO3:Al2O3 weight ratio of 55.13:18.34:24.5:2. The effect of Al2O3 filler grain sizes of 50 nm and 10 μm on the polymer electrolytes was studied in this work. From the Cole-Cole plot obtained through electrochemical impedance spectroscopy, the highest ionic conductivity for 50-nm Al2O3 in the PMMA-LiCF3SO3-EC-Al2O3 sample was measured as 1.52 × 10−4 S/cm at room temperature. The bonding formation among the host polymer and other additives in the polymer electrolytes has been studied using Fourier transform infrared spectroscopy. A strong occurrence of CH3 stretching mode has proven that nano size Al2O3 results in a much stronger bonding effect with the host polymer. The particle sizes were calculated by applying the Debye-Scherrer equation from the X-ray diffraction results. This work considers the effect of instrument broadening to further improve the accuracy of particle broadening for particle size calculation. The average particle size of nano size Al2O3 in the PMMA sample is calculated as 2.9693 nm. Moreover, a higher amorphousity level obtained from nano size filler polymer electrolyte of 98.5% computed from differential scanning calorimetry thermograms had also explained the achievement of high ionic conductivity in this work.

  1. Funding: This research is partially supported by the Fundamental Research Grant Scheme MMU/RMC-PL/AL/FRGS/2015/015, funded by the Ministry of Higher Education Malaysia, and the 2019/2020 Mini Fund Project (MMU/RMC/MiniFund/2019/02).

References

[1] Fenton DE, Parker JM, Wright PV. Polymer 1973, 14, 589.10.1016/0032-3861(73)90146-8Suche in Google Scholar

[2] Faria LO, Moreira RL. J. Polym. Sci. B Polym. Phys. 1999, 37, 2996–3002.10.1002/(SICI)1099-0488(19991101)37:21<2996::AID-POLB9>3.0.CO;2-7Suche in Google Scholar

[3] Liao CS, Ye WB. J. Polym. Res. 2003, 10, 241–246.10.1023/B:JPOL.0000004619.00197.7aSuche in Google Scholar

[4] Liang B, Tang S, Jiang Q, Chen C, Chen X, Li S, Yan X. Electrochim. Acta 2015, 169, 334–341.10.1016/j.electacta.2015.04.039Suche in Google Scholar

[5] Lin D, Liu W, Liu Y, Lee HR, Hsu PC, Liu K, Cui Y. Nano Lett. 2016, 16, 459–465.10.1021/acs.nanolett.5b04117Suche in Google Scholar

[6] Pal P, Ghosh A. Solid State Ion. 2018, 319, 117–124.10.1016/j.ssi.2018.02.009Suche in Google Scholar

[7] Stephan AM, Kumar TP, Renganathan NG, Pitchumani S, Thirunakaran R, Muniyandi N. J. Power Sources 2000, 89, 80–87.10.1016/S0378-7753(00)00379-7Suche in Google Scholar

[8] Kuo CW, Huang CW, Chen BK, Li WB, Chen PR, Ho TH, Tseng CG, Wu TY. Int. J. Electrochem. Sci. 2013, 8, 3834–3850.Suche in Google Scholar

[9] Vondrák J, Reiter J, Velická J, Klápště B, Sedlaříková M, Dvořák J. J. Power Sources 2005, 146, 436–440.10.1016/j.jpowsour.2005.03.048Suche in Google Scholar

[10] Saikia D, Kumar A. Electrochim. Acta 2004, 49, 2581–2589.10.1016/j.electacta.2004.01.029Suche in Google Scholar

[11] Sharma S, Pathak D, Dhiman N, Kumar R, Kumar M. Surf. Innov. 2019, 7, 51–58.10.1680/jsuin.18.00033Suche in Google Scholar

[12] Samsudin AS, Isa MIN. Bull. Mater. Sci. 2012, 35, 1123–1131.10.1007/s12034-012-0396-1Suche in Google Scholar

[13] Zhao H, Jia Z, Yuan W, Hu H, Fu Y, Baker GL, Liu G. ACS Appl. Mater. Interfaces 2015, 7, 19335–19341.10.1021/acsami.5b05419Suche in Google Scholar

[14] Wang W, Alexandridis P. Polymers 2016, 8, 387.10.3390/polym8110387Suche in Google Scholar

[15] Johan MR, Shy OH, Ibrahim S, Yassin SMM, Hui TY. Solid State Ion. 2011, 196, 41–47.10.1016/j.ssi.2011.06.001Suche in Google Scholar

[16] Long L, Wang S, Xiao M, Meng Y. J. Mater. Chem. A 2016, 4, 10038–10069.10.1039/C6TA02621DSuche in Google Scholar

[17] You X, Chaudhari MI, Rempe SB, Pratt LR. J. Phys. Chem. B 2016, 120, 1849–1853.10.1021/acs.jpcb.5b09561Suche in Google Scholar

[18] Malathi J, Kumaravadivel M, Brahmanandhan GM, Hema M, Baskaran R, Selvasekarapandian S. J. Non Cryst. Solids 2010, 356, 2277–2281.10.1016/j.jnoncrysol.2010.08.011Suche in Google Scholar

[19] Sun CC, You AH, Teo LL, Thong LW. AIP Conf. Proc. 2018, 1958, 020028.Suche in Google Scholar

[20] Chew KW, Tan KW. Int. J. Electrochem. Sci. 2011, 6, 5792–5801.Suche in Google Scholar

[21] Kuo CW, Li WB, Chen PR, Liao JW, Tseng CG, Wu TZ. Int. J. Electrochem. Sci. 2013, 8, 5007–5021.Suche in Google Scholar

[22] Rajendran S, Uma T. Mater. Lett. 2000, 44, 242–247.10.1016/S0167-577X(00)00036-7Suche in Google Scholar

[23] Pletincx S, Marcoen K, Trotochaud L, Fockaert L, Mol JMC, Head AR, Karslioğlu O, Bluhm H, Terryn H, Hauffman T. Sci. Rep. 2017, 7, 13341.10.1038/s41598-017-13549-zSuche in Google Scholar PubMed PubMed Central

[24] Ahmad S, Bohidar HB, Ahmad S, Agnihotry SA. Polymer 2006, 47, 3583–3590.10.1016/j.polymer.2006.03.059Suche in Google Scholar

[25] Uma T, Mahalingam T, Stimming U. Mater. Chem. Phys. 2005, 90, 245–249.10.1016/j.matchemphys.2003.11.011Suche in Google Scholar

[26] Kumar R, Sharma JP, Sekhon SS. Euro. Polym. J. 2005, 41, 2718–2725.10.1016/j.eurpolymj.2005.05.010Suche in Google Scholar

[27] Ali AMM, Yahya MZA, Bahron H, Subban RHY, Harun MK, Atan I. Mater. Lett. 2007, 61, 2026–2029.10.1016/j.matlet.2006.08.008Suche in Google Scholar

[28] Subban RHY, Arof AK. J. New Mater. Electrochem. Sys. 2003, 6, 197–203.Suche in Google Scholar

[29] Flora XH, Ulaganathan M, Rajendran S. Int. J. Electrochem. Sci. 2012, 7, 7451–7462.Suche in Google Scholar

[30] Sengwa RJ, Dhartawal P, Choudhary S. Electrochim. Act. 2014, 142, 359–370.10.1016/j.electacta.2014.07.120Suche in Google Scholar

[31] Scherrer P. Math. Pys. Kl. 1918, 2, 96–100.Suche in Google Scholar

[32] Klug HP, Alexander LE. X-Ray Diffraction Procedures, John Wiley & Sons: New York, 1974, p. 618.Suche in Google Scholar

[33] Kril CE, Birringer R. Philos. Mag. A 1998, 77, 621–640.10.1080/01418619808224072Suche in Google Scholar

[34] Emrich M, Opper D. XRD analysis, 2nd., PANalytical: Almelo, the Netherlands, 2013, 77.Suche in Google Scholar

[35] Crompton TR. Practical polymer analysis, 1st ed., Springer: Berlin, Heidelberg, Germany, 1993, 630–647.10.1007/978-1-4615-2874-6_13Suche in Google Scholar

[36] Blaine RL. TA Instrum. 2013, TA123, 1–3.Suche in Google Scholar

[37] Tribone JJ, O’Reilly JM, Greener J. Macromolecules 1986, 19, 1732–1739.10.1021/ma00160a043Suche in Google Scholar

[38] Li X, Hsu SL. J. Polym. Sci. 1984, 22, 1331–1342.10.1002/pol.1984.180220715Suche in Google Scholar

[39] Sharma R, Sil A, Ray S. J. Polym. Res. 2016, 23, 194.10.1007/s10965-016-1049-7Suche in Google Scholar

Received: 2019-03-31
Accepted: 2019-05-08
Published Online: 2019-06-22
Published in Print: 2019-07-26

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2019-0088/pdf?lang=de
Button zum nach oben scrollen