Startseite Stereocomplex electrospun fibers from high molecular weight of poly(L-lactic acid) and poly(D-lactic acid)
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Stereocomplex electrospun fibers from high molecular weight of poly(L-lactic acid) and poly(D-lactic acid)

  • Homa Maleki und Hossein Barani
Veröffentlicht/Copyright: 9. Dezember 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The stereocomplex formation is a promising method to improve the properties of poly(lactide) (PLA)-based products due to the strong interaction of the side-by-side arrangement of the molecular chains. Recently, electrospinning method has been applied to prepare PLA stereocomplex, which is more convenient. The objective of the current study is to make stereocomplexed PLA nanofibers using electrospinning method and compare their properties and structures with pure poly(l-lactide) (PLLA) fibers. The stereocomplexed fibers were electrospun from a blend solution of high molecular weight PLLA and poly(d-lactide) (1:1 ratio). The morphology of the obtained electrospun fibers was examined by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Differential scanning calorimetry was applied to study their thermal properties and crystallinity. Fourier transform infrared spectroscopy (FTIR) test was conducted on the samples to characterize their chemical properties. The SEM and AFM images indicated that smooth uniform fibers with a cylindrical structure were produced. Besides, the FTIR results and thermal properties confirmed that only stereocomplex crystallites formed in the resulting fibers via the electrospinning method.

References

[1] Barani H. Mater. Sci. Eng. C 2014, 43, 50–57.10.1016/j.msec.2014.07.004Suche in Google Scholar PubMed

[2] Maleki H, Barani H. Polym. Eng. Sci. 2018, 58, 1091–1096.10.1002/pen.24671Suche in Google Scholar

[3] Xue J, Xie J, Liu W, Xia Y. Accounts Chem. Res. 2017, 50, 1976–1987.10.1021/acs.accounts.7b00218Suche in Google Scholar PubMed PubMed Central

[4] Jin G, Prabhakaran MP, Nadappuram BP, Singh G, Kai D, Ramakrishna S. J. Biomat. Sci. Polym. E. 2012, 23, 2337–2352.10.1163/156856211X617399Suche in Google Scholar PubMed

[5] Semnani Rahbar R, Maleki H, Kalantari B. J. Exp. Nanosci. 2016, 11, 1402–1415.10.1080/17458080.2016.1233582Suche in Google Scholar

[6] Liu L, Ren Y, Li Y, Liang Y. Polymer 2013, 54, 5250–5256.10.1016/j.polymer.2013.07.046Suche in Google Scholar

[7] Bhagat V, Becker ML. Biomacromolecules 2017, 18, 3009–3039.10.1021/acs.biomac.7b00969Suche in Google Scholar PubMed

[8] Maleki H, Gharehaghaji AA, Toliyat T, Dijkstra PJ. Biofabrication 2016, 8, 35019.10.1088/1758-5090/8/3/035019Suche in Google Scholar PubMed

[9] Maleki H, Gharehaghaji AA, Dijkstra PJ. J. Mech. Behav. Biomed. Mater. 2017, 71, 231–237.10.1016/j.jmbbm.2017.03.031Suche in Google Scholar PubMed

[10] Maleki H, Gharehaghaji AA, Moroni L, Dijkstra PJ. Biofabrication 2013, 5, 35014.10.1088/1758-5082/5/3/035014Suche in Google Scholar PubMed

[11] Maleki H, Gharehaghaji AA, Criscenti G, Moroni L, Dijkstra PJ. J. Appl. Polym. Sci. 2015, 132, 41388.Suche in Google Scholar

[12] Chen S, Luo Z, Wu L, Xiao X. Int. J. Polym. Mater. Po. 2018, 67, 572–580.10.1080/00914037.2017.1354205Suche in Google Scholar

[13] Saini P, Arora M, Kumar MNVR. Adv. Drug Deliver. Rev. 2016, 107, 47–59.10.1016/j.addr.2016.06.014Suche in Google Scholar PubMed

[14] Xie Q, Han L, Shan G, Bao Y, Pan P. ACS Sustain. Chem. Eng. 2016, 4, 2680–2688.10.1021/acssuschemeng.6b00191Suche in Google Scholar

[15] Zhang ZC, Sang ZH, Huang YF, Ru JF, Zhong GJ, Ji X, Wang R, Li ZM. ACS Sustain. Chem. Eng. 2017, 5, 1692–1703.10.1021/acssuschemeng.6b02438Suche in Google Scholar

[16] Wang B, Zheng H, Chang MW, Ahmad Z, Li JS. Colloid. Surface. B 2016, 145, 757–767.10.1016/j.colsurfb.2016.05.092Suche in Google Scholar PubMed

[17] Ishii D, Ying T, Yamaoka T, Iwata T. Materials 2009, 2, 1520–1546.10.3390/ma2041520Suche in Google Scholar

[18] Xie L, Xu H, Li ZM, Hakkarainen M. Macromol. Rapid Commun. 2016, 37, 745–751.10.1002/marc.201500736Suche in Google Scholar PubMed

[19] Tashiro K, Wang H, Kouno N, Koshobu J, Watanabe K. Macromolecules 2017, 50, 8066–8071.10.1021/acs.macromol.7b01573Suche in Google Scholar

[20] Bao J, Chang R, Shan G, Bao Y, Pan P. Cryst. Growth Des. 2016, 16, 1502–1511.10.1021/acs.cgd.5b01627Suche in Google Scholar

[21] Cao ZQ, Sun XR, Bao RY, Yang W, Xie BH, Yang MB. Eur. Polym. J.2016, 83, 42–52.10.1016/j.eurpolymj.2016.08.005Suche in Google Scholar

[22] Huang W, Luo XZ, Wang BJ, Wei WF, Chen P, Gu Q, de Vos S, Wang RY, Joziasse CAP. Macromol. Chem. Phys. 2015, 216, 1120–1124.10.1002/macp.201500050Suche in Google Scholar

[23] Bai H, Deng S, Bai D, Zhang Q, Fu Q. Macromol. Rapid Commun. 2017, 38, 1700454.10.1002/marc.201700454Suche in Google Scholar PubMed

[24] Baimark Y, Srihanam P. Polym. Test. 2015, 45, 52–57.10.1016/j.polymertesting.2015.04.017Suche in Google Scholar

[25] Bao J, Han L, Shan G, Bao Y, Pan P. J. Phys. Chem. B. 2015, 119, 12689–12698.10.1021/acs.jpcb.5b05398Suche in Google Scholar PubMed

[26] Zhang P, Tian R, Na B, Lv R, Liu Q. Polymer (United Kingdom) 2015, 60, 221–227.10.1016/j.polymer.2015.01.049Suche in Google Scholar

[27] Zhang D, Lin Y, Wu G. Compos. Sci. Technol. 2017, 138, 57–67.10.1016/j.compscitech.2016.11.016Suche in Google Scholar

[28] Tsuji H. Adv. Drug Deliver. Rev. 2016, 107, 97–135.10.1016/j.addr.2016.04.017Suche in Google Scholar PubMed

[29] Monticelli O, Putti M, Gardella L, Cavallo D, Basso A, Prato M, Nitti S. Macromolecules 2014, 47, 4718–4727.10.1021/ma500528aSuche in Google Scholar

[30] Yamamoto M, Nishikawa G, Afifi AM. Am. J. Macromol. Sci. 2015, 2, 11–24.Suche in Google Scholar

[31] Brzeziński M, Biela T. Polym. Int. 2015, 64, 1667–1675.10.1002/pi.4961Suche in Google Scholar

[32] Tsuji H, Nakano M, Hashimoto M, Takashima K, Katsura S, Mizuno A. Biomacromolecules 2006, 7, 3316–3320.10.1021/bm060786eSuche in Google Scholar PubMed

[33] Gupta A, Prasad A, Mulchandani N, Shah M, Sankar MR, Kumar S, Katiyar V. ACS Omega 2017, 2, 4039–4052.10.1021/acsomega.7b00915Suche in Google Scholar PubMed PubMed Central

[34] Cui L, Wang Y, Guo Y, Liu Y, Zhao J, Zhang C, Zhu P. Polym. Advan. Technol. 2016, 27, 1301–1307.10.1002/pat.3795Suche in Google Scholar

[35] Maleki H, Semnani Rahbar R, Saadatmand MM, Barani H. Plast. Rubber Compos. 2018, 47, 438–446.10.1080/14658011.2018.1532672Suche in Google Scholar

[36] Casasola R, Thomas NL, Trybala A, Georgiadou S. Polymer (United Kingdom) 2014, 55, 4728–4737.10.1016/j.polymer.2014.06.032Suche in Google Scholar

[37] Richard-Lacroix M, Pellerin C. Macromolecules 2013, 46, 9473–9493.10.1021/ma401681mSuche in Google Scholar

[38] Pirani S, Abushammala H, Hashaikeh R. J. Appl. Polym. Sci. 2013, 130, 3345–3354.10.1002/app.39576Suche in Google Scholar

[39] Wang L, Lee RE, Wang G, Chu RKM, Zhao J, Park CB. Chem. Eng. J. 2017, 327, 1151–1162.10.1016/j.cej.2017.07.024Suche in Google Scholar

[40] Fundador NGV, Takemura A, Iwata T. Macromol. Mater. Eng. 2010, 295, 865–871.10.1002/mame.201000197Suche in Google Scholar

[41] Ishii D, Lee WK, Kasuya KI, Iwata T. J. Biotechnol. 2007, 132, 318–324.10.1016/j.jbiotec.2007.03.019Suche in Google Scholar PubMed

[42] Pan P, Yang J, Shan G, Bao Y, Weng Z, Cao A, Yazawa K, Inoue Y. Macromolecules 2012, 45, 189–197.10.1021/ma201906aSuche in Google Scholar

Received: 2019-01-26
Accepted: 2019-11-06
Published Online: 2019-12-09
Published in Print: 2020-01-28

©2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 23.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2019-0026/html
Button zum nach oben scrollen