Abstract
Dissolution of poorly water-soluble active pharmaceutical ingredients (APIs) in polymeric melts plays an important role in the manufacturing of solid dispersions and solid solutions. The understanding of the dissolution is essential for selecting the processing equipment, the operating conditions, and the polymer excipients. The methodology presented in this work for ketoprofen (KTO) and polymer excipients serves as a screening process to select the best API-polymer formulation for hot melt extrusion (HME) to target a specific release profile. KTO dispersion within the polymer was characterized by differential scanning calorimetry (DSC), X-ray diffraction (XRD), and dissolution tests. Thermal characterization shows that a single phase amorphous solid solution (one glass transition temperature [Tg]) was achieved under the HME processing conditions and screw configuration; and with the combination of polymer excipients, an extended release profile of KTO was accomplished, releasing 100% of KTO in 24 h.
Acknowledgements
The authors gratefully acknowledge the technical support of the professionals from the Instituto de Capacitación e Investigación del Plástico y del Caucho (ICIPC), the pharmaceutical company Procaps S.A., and Universidad del Norte. The support and valuable technical discussions provided by Dr. Costas Gogos from the Polymer Processing Institute (PPI) are greatly appreciated. Dr. Shaukat Ali from BASF and Charlie Martin from Leistritz are gratefully acknowledged for the donation of polymeric excipients and the loan of a pharmaceutical twin screw extruder (Nano 16), respectively. The authors acknowledge the financial support of Colciencias grants 562-2012 and 156-2016, ICIPC, Procaps S.A. and Universidad del Norte. The infrastructure support of Universidad EAFIT is greatly appreciated.
Conflict of interest statement: The authors declare to have no conflicts of interest regarding this article.
References
[1] Niu X, Wan L, Hou Z, Wang T, Sun C, Sun J, Zhao P, Jiang T, Wang S. Int. J. Pharm. 2013, 452, 382–389.10.1016/j.ijpharm.2013.05.016Search in Google Scholar PubMed
[2] Kolter K, Karl M, Gryczke A. Hot-Melt Extrusion with BASF Pharma Polymers – Extrusion Compendium, 2nd revised and enlarged ed., BASF: Ludwigshafen, Germany, 2012.Search in Google Scholar
[3] Prodduturi S, Urman K, Otaigbe J, Repka M. AAPS PharmSciTech 2007, 8, E152–E161.10.1208/pt0802050Search in Google Scholar PubMed PubMed Central
[4] Li M, Gogos C, Ioannidis N. Int. J. Pharm. 2015, 478, 103–112.10.1016/j.ijpharm.2014.11.024Search in Google Scholar PubMed
[5] Gao N, Guo M, Fu Q, He Z. Asian J. Pharm. Sci. 2017, 12, 66–72.10.1016/j.ajps.2016.06.006Search in Google Scholar PubMed PubMed Central
[6] Djuris J, Nikolakakis I, Ibric S, Djuric Z, Kachrimanis K. Eur. J. Pharm. Biopharm. 2013, 84, 228–237.10.1016/j.ejpb.2012.12.018Search in Google Scholar PubMed
[7] Dhirendra K, Lewis S, Udupa N, Atin K. Pak. J. Pharm. Sci. 2009, 22, 234–246.Search in Google Scholar
[8] Shah S, Maddineni S, Lu J, Repka M. Int. J. Pharm. 2013, 453, 233–252.10.1016/j.ijpharm.2012.11.001Search in Google Scholar PubMed
[9] Sarode A, Sandhu H, Shah N, Malick W, Zia H. Eur. J. Pharm. Sci. 2013, 48, 371–384.10.1016/j.ejps.2012.12.012Search in Google Scholar PubMed
[10] Baghel S, Cathcart H, O’Reilly NJ. J. Pharm. Sci. 2016, 105, 2527–2544.10.1016/j.xphs.2015.10.008Search in Google Scholar PubMed
[11] Kalivoda A, Fischbach M, Kleinebudde P. Int. J. Pharm. 2012, 429, 58–68.10.1016/j.ijpharm.2012.03.009Search in Google Scholar PubMed
[12] Yang M, Wang P, Suwardie H, Gogos C. Int. J. Pharm. 2011, 403, 83–89.10.1016/j.ijpharm.2010.10.026Search in Google Scholar PubMed
[13] Almeida A, Claeys B, Remon J, Vervaet C. Hot-Melt Extrusion: Pharmaceutical Applications, 1st ed., John Wiley & Sons Ltd: Chichester, UK, 2012.Search in Google Scholar
[14] T. C. C. BASF. Kollidon(R) SR, BASF The Chemical Company, 1st ed., Lampertheim, Germany, 2011.Search in Google Scholar
[15] Jan S, Khan G, Khan H, Asim-ur-Rehman, Khan K, Shag S, Shah K, Badshah A, Hussain I. Afr. J. Pharm. Pharmacol. 2012, 6, 601–607.Search in Google Scholar
[16] Zhong Y, Jing G, Tian B, Huang H, Zhang Y, Gou J, Tang X, He H, Wang Y. Asian J. Pharm. Sci. 2016, 11, 255–264.10.1016/j.ajps.2015.07.001Search in Google Scholar
[17] Dixit M, Kulkarni P, Vaghela R. Trop. J. Pharm. Res. 2013, 12, 317–322.10.4314/tjpr.v12i3.7Search in Google Scholar
[18] Shohin I, Kulinich J, Ramenskaya G, Abrahamsson B, Kop S, Langguth P, Polli J, Shah V, Groot D, Barends D, Dressman J. J. Pharm. Sci. 2012, 101, 3593–3603.10.1002/jps.23233Search in Google Scholar
[19] Vueba M, Batista de Carvalho L, Veiga F, Soussa J, Pina M. Eur. J. Pharm. Biopharm. 2004, 58, 51–59.10.1016/j.ejpb.2004.03.006Search in Google Scholar
[20] Vueba M, Pina M, Veiga F, Sousa J, Batista de cavalho L. Int. J. Pharm. 2006, 307, 56–65.10.1016/j.ijpharm.2005.09.019Search in Google Scholar
[21] Fukuda M, Miller D, Peppas N, McGinity J. Int. J. Pharm. 2008, 350, 188–196.10.1016/j.ijpharm.2007.08.038Search in Google Scholar
[22] Yadav P, Kumar V, Singh U, Bhat H, Mazumder B. Saudi Pharm. J. 2013, 21, 77–84.10.1016/j.jsps.2011.12.007Search in Google Scholar
[23] Maschke A, Klumpp U, Güntherberg N, Kolter K. Effect of Preparation Method on Release Behavior of Kollidon SR Tablets Hot Melt Extrusion versus Direct Compression, BASF the Chemical Company: Germany, 2011.Search in Google Scholar
[24] Yang M, Wang P, Huang C, Ku M, Liu H, Gogos C. Int. J. Pharm. 2010, 395, 53–61.10.1016/j.ijpharm.2010.04.033Search in Google Scholar
[25] Martin C. In Melt Extrusion, AAPS Advances in the Pharmaceutical Sciences Series, AAPS: Heidelberg, Dordrecht, London, 2013.Search in Google Scholar
[26] Tsvetkova B, Peikova L. Trakia J. Sci. 2013, 11, 55–59.Search in Google Scholar
[27] Reintjes T. Solubility Enhancement with BASF Pharma Polymers – Solubilizer Compedium, BASF The Chemical Company: Germany, 2011.Search in Google Scholar
[28] Crowley M, Fredersdorf A, Schroeder B, Kucera S, Prodduturi S, Repka M, McGinity J. Eur. J. Pharm. Sci. 2004, 22, 409–418.10.1016/j.ejps.2004.04.005Search in Google Scholar
[29] Blasi P, Schoubben A, Giovagnoli S, Perioli L, Ricci M, Rossi C. AAPS PharmSciTech. 2008, 8, E1–E8.10.1208/pt0802037Search in Google Scholar
[30] Kunze C, Freier T, Kramer S, Schmitz K-P. J. Mater. Sci.: Mater. Med. 2002, 13, 1051–1055.10.1023/A:1020392606225Search in Google Scholar
[31] Wu C, McGinity JW. Int. J. Pharm. 1999, 177, 15–27.10.1016/S0378-5173(98)00312-3Search in Google Scholar
[32] Tita D, Fulias A, Tita B. J. Therm. Anal. Calorim. 2011, 105, 501–508.10.1007/s10973-010-1187-9Search in Google Scholar
[33] Tita D, Fulias A, Tita B. J. Therm. Anal. Calorim. 2013, 111, 1979–1985.10.1007/s10973-011-2147-8Search in Google Scholar
[34] Grund J, Koerber M, Walther M, Bodmeiser R. Int. J. Pharm. 2014, 469, 94–101.10.1016/j.ijpharm.2014.04.033Search in Google Scholar PubMed
[35] Food and Drug Administration – FDA. Guidance for Industry Dissolution Testing of Immediate Release Solid Oral Dosage Forms. Rockville, MD, 1997.Search in Google Scholar
[36] Coppens K, Hall M, Koblinski B, Larsen P, Read M, Shrestha U. Controlled Release of Poorly Soluble Drugs Utilizing Hot Melt Extrusion. The Dow Chemical Company, 2009.Search in Google Scholar
[37] Gue E, Willart J, Muschert S, Danede F, Delcourt E, Descamps M, Siepmann J. Int. J. Pharm. 2013, 457, 298–307.10.1016/j.ijpharm.2013.09.023Search in Google Scholar PubMed
[38] Bajaj S, Singla D, Sakhuja N. J. Appl. Pharm. Sci. 2012, 02, 129–138.Search in Google Scholar
[39] Noriega M, Restrepo-Uribe L, Sanjuan M, Salazar C, Silva C. US 2016/0193151 A1. 2016.Search in Google Scholar
[40] Noriega M, Restrepo-Uribe L, Sanjuan M, Salazar C, Silva C. WO 2016/111725 A1. 2016.Search in Google Scholar
[41] Chan S, Chung Y, Cheah X, Tan E, Quah J. Asian J. Pharm. Sci. 2015, 10, 372–385.10.1016/j.ajps.2015.04.003Search in Google Scholar
[42] Nagabandi V, Tadikonda R, Jayaveera K. J. Pharm. Biomed. Sci. 2011, 9, 1–6.Search in Google Scholar
©2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Material properties
- Thermo-oxidative and thermal degradation kinetics of silica/polymethyl methacrylate composites with electrostatic interaction phase interfaces
- Study of the rheology and foaming processes of poly(vinyl chloride) plastisols with different foaming agents
- The non-isothermal crystallization behavior of polyamide 6 and polyamide 6/HDPE/MAH/L-101 composites
- Preparation and assembly
- Preparation and properties of biodegradable polymer/nano-hydroxyapatite bioceramic scaffold for spongy bone regeneration
- Properties of EPDM/PP thermoplastic vulcanizates produced by an intermeshing-type internal mixer comparing with a co-rotating twin-screw extruder
- Applications and characterization of silicalite-1/polydimethylsiloxane composite membranes for the pervaporation of a model solution and fermentation broth
- Electroless plate of polyaniline-silver composite layer on polyester fibers
- Surface modification of polymeric flat sheet membranes by adding oligomeric fluoroalcohol
- Engineering and processing
- Processing polymer nanocomposites with natural additives for medical applications
- Dissolution improvement of an active pharmaceutical ingredient in a polymer melt by hot melt extrusion
- Determination of the fundamental dimension development in building direction for laser-sintered parts
Articles in the same Issue
- Frontmatter
- Material properties
- Thermo-oxidative and thermal degradation kinetics of silica/polymethyl methacrylate composites with electrostatic interaction phase interfaces
- Study of the rheology and foaming processes of poly(vinyl chloride) plastisols with different foaming agents
- The non-isothermal crystallization behavior of polyamide 6 and polyamide 6/HDPE/MAH/L-101 composites
- Preparation and assembly
- Preparation and properties of biodegradable polymer/nano-hydroxyapatite bioceramic scaffold for spongy bone regeneration
- Properties of EPDM/PP thermoplastic vulcanizates produced by an intermeshing-type internal mixer comparing with a co-rotating twin-screw extruder
- Applications and characterization of silicalite-1/polydimethylsiloxane composite membranes for the pervaporation of a model solution and fermentation broth
- Electroless plate of polyaniline-silver composite layer on polyester fibers
- Surface modification of polymeric flat sheet membranes by adding oligomeric fluoroalcohol
- Engineering and processing
- Processing polymer nanocomposites with natural additives for medical applications
- Dissolution improvement of an active pharmaceutical ingredient in a polymer melt by hot melt extrusion
- Determination of the fundamental dimension development in building direction for laser-sintered parts