Home Effect of addition of silicone oil on the rheology of fumed silica and polyethylene glycol shear thickening suspension
Article
Licensed
Unlicensed Requires Authentication

Effect of addition of silicone oil on the rheology of fumed silica and polyethylene glycol shear thickening suspension

  • Mansi Singh ORCID logo , Sanjeev Kumar Verma , Ipsita Biswas and Rajeev Mehta ORCID logo EMAIL logo
Published/Copyright: August 25, 2018
Become an author with De Gruyter Brill

Abstract

Shear thickening fluids (STF) are stabilized and concentrated colloidal suspensions of hard nano-particles in a liquid medium (polymer) that, under the influence of impact forces, show non-Newtonian fluid behavior (shear thickening) dissipating the energy of impact. The viscosity of the dispersion medium should be optimum to lead to an increase in shear thickening, and at the same time, should also allow proper dispersion of the particles. Herein, an STF based on 20 wt% fractal nano-fumed silica particles of 11 nm suspended in a liquid medium of polyethylene glycol (PEG 200) with different concentrations of silicone oil was prepared. These systems were studied in terms of steady-state and dynamic-state rheological behavior under a wide range of temperature, shear rate, strain rate and frequency. The STF with replacement of up to only 20% of PEG with silicone oil as the liquid medium shows a large increase (about four times) in shear thickening parameters when compared with STF containing only PEG under the same processing conditions. It also shows more elastic behavior at high frequencies which are due to the high cross-linking property of silicone oil, contributing to much-improved properties, which are highly desirable from the view point of many applications.

Acknowledgements

The authors gratefully acknowledge the support by the Armament Research Board (ARMREB) of Defence Research and Development Organization (DRDO), Government of India. The authors also acknowledge the support of the Terminal Ballistics Research Laboratory (TBRL), Chandigarh, India.

References

[1] Cwalina CD, Dombrowski RD, McCutcheon CJ, Christiansen EL, Wagner NJ. Procedia Eng. 2015, 103, 97–104.10.1016/j.proeng.2015.04.014Search in Google Scholar

[2] Galindo-Rosales FJ. Appl. Sci. 2016, 6, 206.10.3390/app6080206Search in Google Scholar

[3] Wagner N, Kirkwood J, Egres R. United States patent application US 11/260,742. 2006.Search in Google Scholar

[4] Wierzbicki Ł, Danelska A, Olszewska K, Tryznowski M, Zielińska D, Kucińska I, Szafran M, Leonowicz M. Compos. Theory Pract. 2013, 4, 241–244.Search in Google Scholar

[5] Boersma W, Baets P, Lavèn J, Stein H. J. Rheol. 1991, 35, 1093–1120.10.1122/1.550167Search in Google Scholar

[6] Barnes H. J. Rheol. 1989, 33, 329–366.10.1122/1.550017Search in Google Scholar

[7] Zhang X, Li W, Gong X. Smart Mater. Struct. 2008, 17, 035027.10.1088/0964-1726/17/3/035027Search in Google Scholar

[8] Wagner N, Wetzel ED. University of Delaware, 2009. U.S. Patent 7498276.Search in Google Scholar

[9] Wetzel ED, Lee Y, Egres R, Kirkwood K, Kirkwood J, Wagner N, Ghosh S, Lee JK, Castro JC. AIP Conf. Proc. 2004, 712, 288–293.10.1063/1.1766538Search in Google Scholar

[10] Zhou H, Yan L, Jiang W, Xuan S, Gong X. J. Intell. Mater. Syst. Struct. 2016, 27, 208–220.10.1177/1045389X14563869Search in Google Scholar

[11] Kurahatti R, Surendranathan A, Kori S, Singh N, Kumar AR, Srivastava S. Def. Sci. J. 2010, 60, 551–563.10.14429/dsj.60.578Search in Google Scholar

[12] Egres Jr RG, Decker MJ, Halbach CJ, Lee YS, Kirkwood JE, Kirkwood KM, Wagner NJ, Wetzel ED. Transformational Science and Technology for the Current and Future Force 2006, pp 264–271. https://doi.org/10.1142/9789812772572_0034.10.1142/9789812772572_0034Search in Google Scholar

[13] Decker M, Halbach C, Nam C, Wagner N, Wetzel E. Compos. Sci. Technol. 2007, 67, 565–578.10.1016/j.compscitech.2006.08.007Search in Google Scholar

[14] Yeh F-Y, Chang K-C, Chen T-W, Yu C-H. J. Chin. Inst. Eng. 2014, 37, 983–994.10.1080/02533839.2014.912775Search in Google Scholar

[15] Kang TJ, Hong KH, Yoo MR. Fibers Polym. 2010, 11, 719–24.10.1007/s12221-010-0719-zSearch in Google Scholar

[16] Baharvandi HR, Saeedi Heydari M, Kordani N, Alebooyeh M, Alizadeh M, Khaksari P. J. Text. Inst. 2017, 108, 397–407.10.1080/00405000.2016.1168091Search in Google Scholar

[17] Majumdar A, Butola BS, Srivastava A. Mater. Des. 2013, 46, 191–198.10.1016/j.matdes.2012.10.018Search in Google Scholar

[18] Fischer C, Plummer CJ, Michaud V, Bourban P-E, Månson J-AE. Rheol. Acta 2007, 46, 1099–1108.10.1007/s00397-007-0202-ySearch in Google Scholar

[19] Singh M, Mehta R, Verma SK, Biswas I. Mater. Res. Express 2018, 5, 014001.10.1088/2053-1591/aa9f3fSearch in Google Scholar

[20] Raghavan SR, Khan SA. J. Colloid Interface Sci. 1997, 185, 57–67.10.1006/jcis.1996.4581Search in Google Scholar PubMed

[21] Wagner NJ, Brady JF. Phys. Today 2009, 62, 27–32.10.1063/1.3248476Search in Google Scholar

[22] Jiang W, Xuan S, Gong X. Appl. Phys. Lett. 2015, 106, 151902.10.1063/1.4918344Search in Google Scholar

[23] Moriana AD, Tian T, Sencadas V, Li W. Korea Aust. Rheol. J. 2016, 28, 197–205.10.1007/s13367-016-0020-9Search in Google Scholar

[24] Wu XJ, Wang Y, Yang W, Xie BH, Yang MB, Dan W. Soft Matter 2012, 8, 10457–10463.10.1039/c2sm25668aSearch in Google Scholar

[25] Wu XJ, Wang Y, Wang M, Yang W, Xie BH, Yang MB. Colloid Polym. Sci. 2012, 290, 151–161.10.1007/s00396-011-2535-4Search in Google Scholar

[26] Clements FE, Mahfuz H. Enhancing the stab resistance of flexible body armor using functionalized SiO2 nanoparticles. In 16th International Conference on Composite Materials, Kyoto, Japan, 2007. pp. 8–13.Search in Google Scholar

[27] Warren J, Offenberger S, Toghiani H, Pittman Jr CU, Lacy TE, Kundu S. ACS Appl. Mater. Interfaces 2015, 7, 18650–18661.10.1021/acsami.5b05094Search in Google Scholar PubMed

[28] Petel OE, Ouellet S, Loiseau J, Marr BJ, Frost DL, Higgins AJ. Appl. Phys. Lett. 2013, 102, 064103.10.1063/1.4791785Search in Google Scholar

[29] Shenoy SS, Wagner NJ. Rheol. Acta 2005, 44, 360–371.10.1007/s00397-004-0418-zSearch in Google Scholar

[30] Singh M, Mehta R, Verma SK, Biswas I. Mater. Res. Express 2018, 5, 05570410.1088/2053-1591/aac25cSearch in Google Scholar

[31] Antosik A, Głuszek M, Żurowski R, Szafran M. Arch. Metall. Mater. 2016, 61, 1511–1514.10.1515/amm-2016-0247Search in Google Scholar

[32] Kamibayashi M, Ogura H, Otsubo Y. J. Colloid Interface Sci. 2008, 321, 294–301.10.1016/j.jcis.2008.02.022Search in Google Scholar PubMed

[33] Tan V, Tay T, Teo W. Int. J. Solids Struct. 2005, 42, 1561–1576.10.1016/j.ijsolstr.2004.08.013Search in Google Scholar

[34] Kang TJ, Kim CY, Hong KH. J. Appl. Polym. Sci. 2012, 124, 1534–1541.10.1002/app.34843Search in Google Scholar

[35] Yu K, Cao H, Qian K, Sha X, Chen Y. J. Nanopart. Res. 2012, 14, 747.10.1007/s11051-012-0747-2Search in Google Scholar

[36] Raghavan SR, Walls H, Khan SA. Langmuir 2000, 16, 7920–7930.10.1021/la991548qSearch in Google Scholar

[37] Tian T, Li W, Ding J, Alici G, Du H. Study of the temperature effect of shear thickening fluid. In 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), IEEE, USA, 2013. pp. 833–837. http://dx.doi.org/10.1109/AIM.2013.6584197.10.1109/AIM.2013.6584197Search in Google Scholar

[38] Tian T, Peng G, Li W, Ding J, Nakano M. Korea Aust. Rheol. J. 2015, 27, 17–24.10.1007/s13367-015-0003-2Search in Google Scholar

[39] Shaw MT, MacKnight WJ. Introduction to Polymer Viscoelasticity, John Wiley & Sons, Hoboken, 2005. https://doi.org/10.1002/0471741833.ch1.10.1002/0471741833Search in Google Scholar

[40] Hassan TA, Rangari VK, Jeelani S. Ultrason. Sonochem. 2010, 17, 947–952.10.1016/j.ultsonch.2010.02.001Search in Google Scholar PubMed

[41] Nenno P, Chin W, Wetzel ED. Flammability testing of fabrics treated with oil-based shear thickening fluids. In Army Research Lab Aberdeen Proving Ground MD Weapons and Materials Research Directorate; 2014 May.10.21236/ADA601457Search in Google Scholar

[42] Böhm P. Functional Silicones and Silicone-Containing Block Copolymers (Doctoral dissertation, Universitätsbibliothek Mainz), 2012.Search in Google Scholar

[43] Zheng S-B, Xuan S-H, Jiang W-Q, Gong X-L. Smart Mater. Struct. 2015, 24, 085033.10.1088/0964-1726/24/8/085033Search in Google Scholar

[44] Joselin R, Wilson WJ. Def. Sci. J. 2014, 64, 236.10.14429/dsj.64.7322Search in Google Scholar

[45] Ramesh KT. Springer Handbook of Experimental Solid Mechanics, Springer, Boston, MA, 2008. pp. 929–960. https://doi.org/10.1007/978-0-387-30877-7_33.10.1007/978-0-387-30877-7_33Search in Google Scholar

[46] Tian T, Li W, Ding J, Alici G, Du H. Smart Mater. Struct. 2012, 21, 125009.10.1088/0964-1726/21/12/125009Search in Google Scholar

[47] Srivastava A, Majumdar A, Butola B. Crit. Rev. Solid State Mater. Sci. 2012, 37, 115–129.10.1080/10408436.2011.613493Search in Google Scholar

[48] Liu XQ, Bao RY, Wu XJ, Yang W, Xie BH, Yang MB. RSC Adv. 2015, 5, 18367–18374.10.1039/C4RA16261GSearch in Google Scholar

[49] Russel WB, Saville DA, Schowalter WR. Colloidal Dispersions. Cambridge University Press: Cambridge, 1989.10.1017/CBO9780511608810Search in Google Scholar

[50] Lee YS, Wagner NJ. Rheol. Acta 2003, 42, 199–208.10.1007/s00397-002-0290-7Search in Google Scholar

[51] Laun H, Bung R, Schmidt F. J. Rheol. 1991, 35, 999–1034.10.1122/1.550257Search in Google Scholar

Received: 2018-03-07
Accepted: 2018-07-25
Published Online: 2018-08-25
Published in Print: 2018-12-19

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2018-0054/html
Scroll to top button