Home Thermoelectric behavior of PEDOT:PSS/CNT/graphene composites
Article
Licensed
Unlicensed Requires Authentication

Thermoelectric behavior of PEDOT:PSS/CNT/graphene composites

  • Yan-Xin Liu , Hai-Hui Liu EMAIL logo , Jian-Ping Wang and Xing-Xiang Zhang
Published/Copyright: September 9, 2017
Become an author with De Gruyter Brill

Abstract

Hybrids of poly(3,4-ethylenedioxythiophene) (PEDOT):poly(4-styrene sulfonate) (PSS)/multi-walled carbon nanotube (MWCNT)/graphene (P/M/G), which have high electrical conductivity and low thermal conductivity, were successfully prepared in aqueous solution through in situ polymerization of 3,4-ethylenedioxythiophene (EDOT) monomers in the presence of poly(sodium 4-styrene sulfonate) (PSSNa). Meanwhile, the composites were characterized by Raman spectroscopy, infrared (IR) spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy. Thermoelectric properties of the samples were measured at room temperature and 50°C. Compared with pristine PEDOT:PSS (P), PEDOT:PSS/MWCNT (P/M) and PEDOT:PSS/graphene (P/G), the power factor of P/M/G composites was significantly improved, whatever the temperature. It increased from 0.061 μW/mK2 to 0.105 μW/mK2 at room temperature and from 0.070 μW/mK2 to 0.142 μW/mK2 at 50°C, meaning 72% and 103% enhancement, respectively. The increased power factor is attributed to the synergic effects of MWCNT and graphene, a hybrid structure with excellent electronic coupling and more electric channels.

Acknowledgments

This study was financially supported by The National Key Research and Development Program of China (grant no. 2016YFB0303000), and The New Materials Research Key Programm of Tianjin (grant no. 16ZXCLGX00090).

References

[1] Leclerc M, Najari A. Nat. Mater. 2011, 10, 409–410.10.1038/nmat3032Search in Google Scholar PubMed

[2] Snyder GJ, Toberer ES. Nat. Mater. 2008, 7, 105–114.10.1038/nmat2090Search in Google Scholar PubMed

[3] Zhao D, Tan G. Appl. Therm. Eng. 2014, 66, 15–24.10.1016/j.applthermaleng.2014.01.074Search in Google Scholar

[4] Gao C, Chen G. Compos. Sci. Technol. 2016, 124, 52–70.10.1016/j.compscitech.2016.01.014Search in Google Scholar

[5] Dresselhaus MS, Chen G, Tang MY, Yang RG, Lee H, Wang DZ, Ren ZF, Fleurial JP, Gogna P. Adv. Mater. 2007, 19, 1043–1053.10.1002/adma.200600527Search in Google Scholar

[6] Xiong DB, Okamoto NL, Inui H. Scr. Mater. 2013, 69, 397–400.10.1016/j.scriptamat.2013.05.029Search in Google Scholar

[7] Li G, Liang D, Qiu RLJ, Gao XPA. Appl. Phys. Lett. 2013, 102, 438–442.10.1063/1.4812661Search in Google Scholar

[8] Chen Z, Guodong XU, Zhang J. J. Nanchang Inst. Technol. 2014, 38, 101–108.10.1260/0309-524X.38.1.101Search in Google Scholar

[9] Heremans JP, Jovovic V, Toberer ES, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder GJ. Science 2008, 321, 554–557.10.1126/science.1159725Search in Google Scholar PubMed

[10] Zahid F, Lake R. Appl. Phys. Lett. 2010, 97, 21, 212102.10.1063/1.3518078Search in Google Scholar

[11] Zhang KN, Jian WL, Zhao JP, Zhou ZP. Chin. J. Struct. Chem. 2007, 26, 361–364.Search in Google Scholar

[12] Li J, Tang X, Li H, Yan Y, Zhang Q. Synth. Met. 2010, 160, 1153–1158.10.1016/j.synthmet.2010.03.001Search in Google Scholar

[13] Wang L, Qin Y, Hui B, Huang F, Wang Q, Chen L. J. Mater. Chem. A 2014, 2, 11107–11113.10.1039/c4ta01541jSearch in Google Scholar

[14] Yao Q, Chen L, Zhang W, Liufu S, Chen X. Acs. Nano. 2010, 4, 2445–2451.10.1021/nn1002562Search in Google Scholar PubMed

[15] Wang L, Liu F, Jin C, Zhang T, Yin Q. RSC Adv. 2014, 4, 46187–46193.10.1039/C4RA07774ASearch in Google Scholar

[16] Abad B, Alda I, Díazchao P, Kawakami H, Almarza A, Amantia D, Gutierrez D, Aubouy L, Martíngonzález M. J. Mater. Chem. 2013, 1, 10450–10457.10.1039/c3ta12105dSearch in Google Scholar

[17] Kim GH, Shao L, Zhang K, Pipe KP. Nat. Mater. 2013, 12, 719–723.10.1038/nmat3635Search in Google Scholar PubMed

[18] Bubnova O, Khan ZU, Malti A, Braun S, Fahlman M, Berggren M, Crispin X. Nat. Mater. 2011, 10, 429–433.10.1038/nmat3012Search in Google Scholar PubMed

[19] Xu Y, Wang Y, Liang J, Huang Y, Ma Y, Wan X. Nano Res. 2009, 2, 343–348.10.1007/s12274-009-9032-9Search in Google Scholar

[20] Crispin X, Jakobsson FLE, Crispin A, Grim PCM, Andersson P, Volodin A, van Haesendonck CV, Van der Auweraer M, Salaneck WR, Berggren M. Chem. Mater. 2006, 18, 4354–4360.10.1021/cm061032+Search in Google Scholar

[21] Hu X, Chen L, Tan L, Ji T, Zhang Y, Zhang L, Zhang D, Chen Y. J. Mater. Chem. A 2016, 4, 6645–6652.10.1039/C6TA00287KSearch in Google Scholar

[22] Liu C, Jiang F, Huang M, Yue R. J. Electron. Mater. 2011, 40, 648–651.10.1007/s11664-010-1494-8Search in Google Scholar

[23] Scholdt M, Do H, Lang J, Gall A. J. Electron. Mater. 2010, 39, 1589–1592.10.1007/s11664-010-1271-8Search in Google Scholar

[24] Nevrela J, Micjan M, Novota M, Kovacova S, Pavuk M, Juhasz P, Kovac J, Jakabovic J, Weis M. J. Polym. Sci., Part B: Polym. Phys. 2015, 53, 1139–1146.10.1002/polb.23754Search in Google Scholar

[25] Dey A, Bajpai OP, Sikder AK, Chattopadhyay S, Khan MAS. Renew. Sustainable Energy Rev. 2016, 53, 653–671.10.1016/j.rser.2015.09.004Search in Google Scholar

[26] Yu C, Choi K, Yin L, Grunlan JC. ACS Nano 2011, 5, 7885–7892.10.1021/nn202868aSearch in Google Scholar PubMed

[27] Yan Y, Liang QF, Zhao H, Wu CQ, Li B. Phys. Lett. A 2012, 376, 2425–2429.10.1016/j.physleta.2012.06.010Search in Google Scholar

[28] Kim D, Kim Y, Choi K, Grunlan JC, Yu C. ACS Nano 2010, 4, 513–523.10.1021/nn9013577Search in Google Scholar PubMed

[29] Yoo D, Kim J, Kim JH. Nano Res. 2014, 7, 717–730.10.1007/s12274-014-0433-zSearch in Google Scholar

[30] Yoo D, Kim J, Lee SH, Cho W, Choi HH, Kim FS, Kim JH. J. Mater. Chem. 2015, 3, 6526–6533.10.1039/C4TA06710JSearch in Google Scholar

[31] Liu CJ, Tai SY, Chou SW, Yu YC, Chang KD, Wang S, Chien SS, Lin JY, Lin TW. J. Mater. Chem. 2012, 22, 21057–21064.10.1039/c2jm33679kSearch in Google Scholar

[32] Wang XJ, Wong KY. Thin Solid Films 2006, 515, 1573–1578.10.1016/j.tsf.2006.05.015Search in Google Scholar

[33] Wu J, Cho W, Martin DC, Feng ZQ, Leach MK, Franz EW, Naim YI, Gu ZZ, Corey JM. Polymer 2013, 54, 702–708.10.1016/j.polymer.2012.10.057Search in Google Scholar PubMed PubMed Central

[34] Xu K, Chen G, Qiu D. J. Mater. Chem. A 2013, 1, 12395–12399.10.1039/c3ta12691aSearch in Google Scholar

[35] Zhang J, Zhao XS. J. Phys. Chem. C 2012, 116, 5420–5426.10.1021/jp211474eSearch in Google Scholar

[36] Xiong J, Jiang F, Hui S, Xu J, Liu C, Zhou W, Jiang Q, Zhu Z, Hu Y. ACS Appl. Mater. Interfaces 2015, 7, 14917.10.1021/acsami.5b03692Search in Google Scholar PubMed

[37] Kim GH, Hwang DH, Woo SI. Phys. Chem. Chem. Phys. 2012, 14, 3530–3536.10.1039/c2cp23517jSearch in Google Scholar PubMed

[38] Tung NT, Khai TV, Jeon M, Lee YJ. Macromol. Res. 2011, 19, 203–208.10.1007/s13233-011-0216-2Search in Google Scholar

[39] Liang L, Chen G, Guo CY. Compos. Sci. Technol. 2016, 129, 130–136.10.1016/j.compscitech.2016.04.023Search in Google Scholar

[40] Gayner C, Kar KK. Prog. Mater. Sci. 2016, 83, 330–382.10.1016/j.pmatsci.2016.07.002Search in Google Scholar

[41] Wang Y, Cai K, Yao X. ACS Appl. Mater. Interfaces 2011, 3, 1163–1166.10.1021/am101287wSearch in Google Scholar PubMed

[42] Wang Q, Yao Q, Chang J, Chen L. J. Mater. Chem. 2012, 22, 17612.10.1039/c2jm32750cSearch in Google Scholar

[43] Lu G, Bu L, Li S, Yang X. Adv. Mater. 2014, 26, 2359–2364.10.1002/adma.201305320Search in Google Scholar PubMed

Received: 2017-6-1
Accepted: 2017-7-24
Published Online: 2017-9-9
Published in Print: 2018-4-25

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 16.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2017-0179/html
Scroll to top button