Abstract
In this research, maleated poly(lactic acid) (PLA-g-MA) was manufactured by different levels of maleic anhydride (MAH). Also PLA-g-MA effects as a compatibilizer were investigated on PLA/cellulose nanofiber (CNF) composites. The grafting reaction was performed in the presence of dicumyl peroxide (DCP) as an initiator at constant level (0.2 phr) via reactive extrusion. Furthermore, the effects of four different levels of MAH (1–4 phr) were studied on the physical properties of PLA grafted films. We used the Fourier transform infrared (FTIR) and titration methods for confirmation of the grafting process. Based on the titration method, the greatest amount of yield was gained by 4 phr of MAH in grafting. Contact angle analysis shows that increasing the amount of MAH led to a decrease in the contact angle of films. Moreover, the glass transition temperature (Tg) and % crystallinity were decreased by increasing MAH content. PLA-g-MA was added to the composites in two levels of 3% and 5% in total. CNF was used at a constant level of 5%. The thermal, morphological and mechanical properties of nanocomposites were determined as a function of PLA-g-MA content using thermogravimetric analysis, heat distortion temperature (HDT) and tensile testing. All the prepared nanocomposite materials showed improvement in the mechanical and thermal properties compared to neat PLA.
References
[1] Zhu R, Liu H, Zhang J. Ind. Eng. Chem. Res. 2012, 51, 7786–7792.10.1021/ie300118xSearch in Google Scholar
[2] Zhang K, Nagarajan V, Misra M, Mohanty AK. ACS Appl. Mater. Interfaces 2014, 6, 12436–12448.10.1021/am502337uSearch in Google Scholar PubMed
[3] Hwang SW, Lee SB, Lee CK, Lee JY, Shim JK, Selke SE, Soto-Valdez H, Matuana L, Rubino M, Auras R. Polym. Test. 2012, 31, 333–344.10.1016/j.polymertesting.2011.12.005Search in Google Scholar
[4] Huda MS, Drzal LT, Mohanty AK, Misra M. Compos. Sci. Technol. 2006, 66, 1813–1824.10.1016/j.compscitech.2005.10.015Search in Google Scholar
[5] Bitinis N, Verdejo R, Cassagnau P, Lopez-Manchado M. Mater. Chem. Phys. 2011, 129, 823–831.10.1016/j.matchemphys.2011.05.016Search in Google Scholar
[6] Jaratrotkamjorn R, Khaokong C, Tanrattanakul V. J. Appl. Polym. Sci. 2012, 124, 5027–5036.Search in Google Scholar
[7] Yu I, Ebrahimi T, Hatzikiriakos SG, Mehrkhodavandi P. Dalton Trans. 2015, 44, 14248–14254.10.1039/C5DT02357BSearch in Google Scholar
[8] Wang Y, Qin Y, Zhang Y, Yuan M, Li H, Yuan M. Int. J. Biol. Macromol. 2014, 67, 58–63.10.1016/j.ijbiomac.2014.02.048Search in Google Scholar PubMed
[9] Clasen SH, Müller CM, Pires AT. J. Brazilian Chem. Soc. 2015, 26, 1583–1590.Search in Google Scholar
[10] Mathew AP, Oksman K, Sain M. J. Appl. Polym. Sci. 2005, 97, 2014–2025.10.1002/app.21779Search in Google Scholar
[11] Oksman K, Mathew A, Bondeson D, Kvien I. Compos. Sci. Technol. 2006, 66, 2776–2784.10.1016/j.compscitech.2006.03.002Search in Google Scholar
[12] Petersson L, Oksman K. Compos. Sci. Technol. 2006, 66, 2187–2196.10.1016/j.compscitech.2005.12.010Search in Google Scholar
[13] Huda MS, Drzal LT, Mohanty AK, Misra M. Compos. Sci. Technol. 2008, 68, 424–432.10.1016/j.compscitech.2007.06.022Search in Google Scholar
[14] Bledzki AK, Jaszkiewicz A, Scherzer D. Composites, Part A 2009, 40, 404–412.10.1016/j.compositesa.2009.01.002Search in Google Scholar
[15] Jonoobi M, Harun J, Mathew AP, Oksman K. Compos. Sci. Technol. 2010, 70, 1742–1747.10.1016/j.compscitech.2010.07.005Search in Google Scholar
[16] Fortunati E, Peltzer M, Armentano I, Torre L, Jiménez A, Kenny J. Carbohydr. Polym. 2012, 90, 948–956.10.1016/j.carbpol.2012.06.025Search in Google Scholar PubMed
[17] Raquez J-M, Habibi Y, Murariu M, Dubois P. Prog. Polym. Sci. 2013, 38, 1504–1542.10.1016/j.progpolymsci.2013.05.014Search in Google Scholar
[18] Hassan ML, Mathew AP, Hassan EA, Fadel SM, Oksman K. J. Reinf. Plast. Compos. 2014, 33, 26–36.10.1177/0731684413509292Search in Google Scholar
[19] Pracella M, Haque MM-U, Puglia D. Polym. 2014, 55, 3720–3728.10.1016/j.polymer.2014.06.071Search in Google Scholar
[20] Jonoobi M, Mathew AP, Abdi MM, Makinejad MD, Oksman K. J. Polym. Env. 2012, 20, 991–997.10.1007/s10924-012-0503-9Search in Google Scholar
[21] Abdulkhani A, Hosseinzadeh J, Ashori A, Dadashi S, Takzare Z. Polym. Test. 2014, 35, 73–79.10.1016/j.polymertesting.2014.03.002Search in Google Scholar
[22] Song Z, Xiao H, Zhao Y. Carbohydr. Polym. 2014, 111, 442–448.10.1016/j.carbpol.2014.04.049Search in Google Scholar PubMed
[23] Qu P, Gao Y, Bai L, Zhang L-P. J. Funct. Mater. 2011, 42, 69–72.10.4028/www.scientific.net/AMM.69.67Search in Google Scholar
[24] Tsou C-H, Hung W-S, Wu C-S, Chen J-C, Huang C-Y, Chiu S-H, Tsou C-Y, Yao W-H, Lin S-M, Chu C-K. Mater. Sci. 2014, 20, 446–451.10.5755/j01.ms.20.4.6034Search in Google Scholar
[25] Rahman MR, Hamdan S, Hasan M, Baini R, Salleh AA. BioResources 2015, 10, 4557–4568.10.15376/biores.10.3.4557-4568Search in Google Scholar
[26] Kim H-S, Lee B-H, Choi S-W, Kim S, Kim H-J. Composites, Part A 2007, 38, 1473–1482.10.1016/j.compositesa.2007.01.004Search in Google Scholar
[27] Malkapuram R, Kumar V, Negi YS. J. Reinf. Plast. Compos. 2008, 28, 1169–1189.10.1177/0731684407087759Search in Google Scholar
[28] Huneault MA, Li H. Polym. 2007, 48, 270–280.10.1016/j.polymer.2006.11.023Search in Google Scholar
[29] Tawakkal ISM, Talib RA, Abdan K, Ling CN. BioResources 2012, 7, 1643–1655.10.15376/biores.7.2.1643-1655Search in Google Scholar
[30] Yussuf A, Massoumi I, Hassan A. J. Polym. Env. 2010, 18, 422–429.10.1007/s10924-010-0185-0Search in Google Scholar
[31] Nyambo C, Mohanty AK, Misra M. Macromol. Mater. Eng. 2011, 296, 710–718.10.1002/mame.201000403Search in Google Scholar
[32] Pradhan R, Misra M, Erickson L, Mohanty A. Bioresour. Technol. 2010, 101, 8489–8491.10.1016/j.biortech.2010.06.053Search in Google Scholar
[33] Jang JY, Jeong TK, Oh HJ, Youn JR, Song YS. Composites, Part B 2012, 43, 2434–2438.10.1016/j.compositesb.2011.11.003Search in Google Scholar
[34] Plackett D, Andersen TL, Pedersen WB, Nielsen L. Compos. Sci. Technol. 2003, 63, 1287–1296.10.1016/S0266-3538(03)00100-3Search in Google Scholar
[35] Tao Y, Yan L, Jie R. Trans. Nonferrous Met. Soc. China 2009, 19, s651–s655.10.1016/S1003-6326(10)60126-4Search in Google Scholar
[36] Zhang J-F, Sun X. Biomacromol. 2004, 5, 1446–1451.10.1021/bm0400022Search in Google Scholar
[37] Ke T, Sun X. J. Appl. Polym. Sci. 2003, 89, 1203–1210.10.1002/app.12162Search in Google Scholar
[38] Ghasemi S, Behrooz R, Ghasemi I. J. Nanosci. Nanotechnol. 2016, 16, 5791–5797.10.1166/jnn.2016.12416Search in Google Scholar
[39] Yang W, Dominici F, Fortunati E, Kenny JM, Puglia D. RSC Advances 2015, 5, 32350–32357.10.1039/C5RA00894HSearch in Google Scholar
[40] Wu C-S. Polym. Degrad. Stabil. 2009, 94, 1076–1084.10.1016/j.polymdegradstab.2009.04.002Search in Google Scholar
[41] Kaynak C, Meyva Y. Polym. Adv. Technol. 2014, 25, 1622–1632.10.1002/pat.3415Search in Google Scholar
[42] Dogu B, Kaynak C. Cellulose 2016, 23, 611–622.10.1007/s10570-015-0839-0Search in Google Scholar
[43] Mani R, Bhattacharya M, Tang J. J. Polym. Sci. Part A: Polym. Chem. 1999, 37, 1693–1702.10.1002/(SICI)1099-0518(19990601)37:11<1693::AID-POLA15>3.0.CO;2-YSearch in Google Scholar
[44] Muenprasat D, Suttireungwong S, Tongpin C. J. Met., Mater. Miner. 2010, 20, 189–192.Search in Google Scholar
[45] Luo Y, Wang Y, Niu X, Fu C, Wang S. Eur. Polym. J. 2007, 43, 3856–3864.10.1016/j.eurpolymj.2007.06.022Search in Google Scholar
[46] Johari AP, Kurmvanshi S, Mohanty S, Nayak S. Int. J. Biol. Macromol. 2016, 84, 329–339.10.1016/j.ijbiomac.2015.12.038Search in Google Scholar PubMed
[47] Safdari F, Bagheriasl D, Carreau PJ, Heuzey MC, Kamal MR. Polym. Compos. 2016. DOI: 10.1002/pc.24127.2016.10.1002/pc.24127.2016Search in Google Scholar
[48] Baltazar‐y‐Jimenez A, Sain M. J. Appl. Polym. Sci. 2012, 124, 3013–3023.10.1002/app.35331Search in Google Scholar
[49] Spinella S, Re GL, Liu B, Dorgan J, Habibi Y, Leclere P, Raquez J-M, Dubois P, Gross RA. Polymer 2015, 65, 9–17.10.1016/j.polymer.2015.02.048Search in Google Scholar
[50] Iwatake A, Nogi M, Yano H. Compos. Sci. Technol. 2008, 68, 2103–2106.10.1016/j.compscitech.2008.03.006Search in Google Scholar
[51] Kakroodi AR, Cheng S, Sain M, Asiri A. J. Nanomater. 2014, 2014, 139.Search in Google Scholar
[52] Lee K-Y, Aitomäki Y, Berglund LA, Oksman K, Bismarck A. Compos. Sci. Technol. 2014, 105, 15–27.10.1016/j.compscitech.2014.08.032Search in Google Scholar
[53] Ng H-M, Sin LT, Tee T-T, Bee S-T, Hui D, Low C-Y, Rahmat A. Composites, Part B 2015, 75, 176–200.10.1016/j.compositesb.2015.01.008Search in Google Scholar
[54] Park SH, Lee SG, Kim SH. J. Mater. Sci. 2013, 48, 6952–6959.10.1007/s10853-013-7503-6Search in Google Scholar
[55] Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J. Chem. Soc. Rev. 2011, 40, 3941–3994.10.1039/c0cs00108bSearch in Google Scholar PubMed
[56] Bourmaud A, Pimbert S. Composites, Part A 2008, 39, 1444–1454.10.1016/j.compositesa.2008.05.023Search in Google Scholar
©2018 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Material properties
- Persistent inhibition performance of amine polymers to inhibit clay swelling
- Evaluation of stearic acid modified industrial lime sludge waste as a filler in high density polyethylene composites
- Effects of graphene surface energy on the structure and mechanical properties of phenolic foams
- Experimental and theoretical investigations of the high performance blends of PEEK/PEI
- Reciprocating friction and wear of polyimide composites filled with solid lubricants
- Dual pH-/temperature-responsive and fluorescent hydrogel for controlled drug delivery
- Thermoelectric behavior of PEDOT:PSS/CNT/graphene composites
- Investigating the properties of maleated poly(lactic acid) and its effect on poly(lactic acid)/cellulose nanofiber composites
- Preparation of graphene and its application in polycarbonate/acrylonitrile-butadiene-styrene composites
- Preparation and assembly
- Electrospinning of poly(lactic acid)/polycaprolactone blends: investigation of the governing parameters and biocompatibility
Articles in the same Issue
- Frontmatter
- Material properties
- Persistent inhibition performance of amine polymers to inhibit clay swelling
- Evaluation of stearic acid modified industrial lime sludge waste as a filler in high density polyethylene composites
- Effects of graphene surface energy on the structure and mechanical properties of phenolic foams
- Experimental and theoretical investigations of the high performance blends of PEEK/PEI
- Reciprocating friction and wear of polyimide composites filled with solid lubricants
- Dual pH-/temperature-responsive and fluorescent hydrogel for controlled drug delivery
- Thermoelectric behavior of PEDOT:PSS/CNT/graphene composites
- Investigating the properties of maleated poly(lactic acid) and its effect on poly(lactic acid)/cellulose nanofiber composites
- Preparation of graphene and its application in polycarbonate/acrylonitrile-butadiene-styrene composites
- Preparation and assembly
- Electrospinning of poly(lactic acid)/polycaprolactone blends: investigation of the governing parameters and biocompatibility