Startseite Anisotropic mechanical properties of fused deposition modeled parts fabricated by using acrylonitrile butadiene styrene polymer
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Anisotropic mechanical properties of fused deposition modeled parts fabricated by using acrylonitrile butadiene styrene polymer

  • Maksym Rybachuk ORCID logo EMAIL logo , Charlène Alice Mauger , Thomas Fiedler und Andreas Öchsner
Veröffentlicht/Copyright: 20. Januar 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The anisotropic mechanical properties of parts that are fabricated using acrylonitrile butadiene styrene (ABS) polymer relative to part-built orientation employing the fused deposition modelling process are reported in this work. ABSplus-P430 polymer was used to investigate the effects of infill orientation on the parts’ mechanical properties under tensile and compression loading. Results revealed that infill orientation strongly affected the tensile properties of fabricated ABS samples. Specifically, the values for Young’s modulus ranged from ~1.5 to ~2.1 GPa, ultimate tensile strength from ~12.0 to ~22.0 MPa, yield strength from ~1.0 to ~21.0 MPa, and elongation-at-break from ~0.2 to ~4.8% for different infill orientations. Samples with infill orientation aligned to the vertical (i.e. Z-) axis displayed the highest values relative to all other infill orientations investigated. Mechanical properties anisotropy was lower for parts under compressive loading, such that the Young’s modulus, ultimate compressive and yield strength were weakly correlated with infill orientation apart from samples whose built orientation was aligned at 45° to the vertical Z-axis. The latter samples displayed inferior mechanical properties under all compressive tests. The effects of sample gauge thickness on tensile properties and ABS sample micro- and bulk- hardness with respect to infill orientation are also discussed.

Acknowledgments

C.M. acknowledges the overseas internship funding from Université de Strasbourg. M.R. acknowledges the Sir Samuel Griffith Lectureship program and seed funding from the Griffith School of Engineering. The technical support from Ian Underhill, Chris Little and Chuen Lo is also gratefully acknowledged.

References

[1] Rodríguez JF, Thomas JP, Renaud JE. Rapid Prototyping J. 2001, 7, 148–158.10.1108/13552540110395547Suche in Google Scholar

[2] Ahn SH, Montero M, Odell D, Roundy S, Wright PK. Rapid Prototyping J. 2002, 8, 248–257.10.1108/13552540210441166Suche in Google Scholar

[3] Rodríguez JF, Thomas JP, Renaud JE. Rapid Prototyping J. 2003, 9, 219–230.10.1108/13552540310489604Suche in Google Scholar

[4] Lee CS, Kim SG, Kim HJ, Ahn SH. J. Mater. Process. Tech. 2007, 187–188, 627–630.10.1016/j.jmatprotec.2006.11.095Suche in Google Scholar

[5] Olivera S, Muralidhara HB, Venkatesh K, Gopalakrishna K, Vivek CS. J. Mater. Sci. 2016, 1–18.Suche in Google Scholar

[6] Syamsuzzaman M, Mardi NA, Fadzil M, Farazila Y. Mater. Res. Innov. 2014, 18, 485–489.10.1179/1432891714Z.0000000001030Suche in Google Scholar

[7] Huang B, Singamneni S. In Advanced Research in Material Science and Mechanical Engineering, Pts 1 and 2; Rui, H, Ed., Trans Tech Publications Ltd: Stafa-Zurich, 2014, Vol. 446–447, pp. 263–269.10.4028/www.scientific.net/AMM.446-447.263Suche in Google Scholar

[8] Carneiro OS, Silva AF, Gomes R. Mater. Des. 2015, 83, 768–776.10.1016/j.matdes.2015.06.053Suche in Google Scholar

[9] Sood AK, Ohdar RK, Mahapatra SS. J. Adv. Res. 2012, 3, 81–90.10.1016/j.jare.2011.05.001Suche in Google Scholar

[10] Walton DJ. Mater. Des. 1990, 11, 142–152.10.1016/0261-3069(90)90004-4Suche in Google Scholar

[11] Daneshmand S, Aghanajafi C, Shahverdi H. J. Polym. Eng. 2012, 32, 575–584.10.1515/polyeng-2012-0089Suche in Google Scholar

[12] Shofner ML, Lozano K, Rodríguez-Macías FJ, Barrera EV. J. Appl. Polym. Sci. 2003, 89, 3081–3090.10.1002/app.12496Suche in Google Scholar

[13] Donald AM, Kramer EJ. J. Mater Sci. 1982, 17, 1765–1772.10.1007/BF00540805Suche in Google Scholar

[14] Owen SR, Harper JF. Polym. Degrad. Stabil. 1999, 64, 449–455.10.1016/S0141-3910(98)00150-5Suche in Google Scholar

[15] Khun NW, Liu E. J. Polym. Eng. 2013, 33, 535–543.10.1515/polyeng-2013-0039Suche in Google Scholar

[16] Hage E, Hale W, Keskkula H, Paul DR. Polymer 1997, 38, 3237–3250.10.1016/S0032-3861(96)00879-8Suche in Google Scholar

[17] Lee J, Huang A. Rapid Prototyping J. 2013, 19, 291–299.10.1108/13552541311323290Suche in Google Scholar

[18] Stratasys Inc. P430 ABS/M30 ABS Model; Material Safety Data Sheet according to 1907/2006/EC, AR. 2013.Suche in Google Scholar

[19] Stratasys Inc. P400 ABS Model; Material Safety Data Sheet according to US OSHA HCS; #109348-0001 (A); revision 03.05.2013.Suche in Google Scholar

[20] Lebedev YV, Ilavsky M, Dusek K, Lipatov YS, Pelzbauer Z. J. Appl. Polym. Sci. 1980, 25, 2493–2500.10.1002/app.1980.070251104Suche in Google Scholar

[21] Kim H, Keskkula H, Paul DR. Polymer 1991, 32, 1447–1455.10.1016/0032-3861(91)90425-ISuche in Google Scholar

[22] Zeleny P, Safka J, Elkina I. In Novel Trends in Production Devices and Systems, Velisek, K; Kostal, P; Nad, M, (Eds.), 2014, 474, 381–386.10.4028/www.scientific.net/AMM.474.381Suche in Google Scholar

[23] Tymrak BM, Kreiger M, Pearce JM. Mater. Des. 2014, 58, 242–246.10.1016/j.matdes.2014.02.038Suche in Google Scholar

[24] Sood AK, Ohdar RK, Mahapatra SS. Mater Des. 2010, 31, 287–295.10.1016/j.matdes.2009.06.016Suche in Google Scholar

[25] Brinson LC, Gates TS. Int. J. Solids Struct. 1995, 32, 827–846.10.1016/0020-7683(94)00163-QSuche in Google Scholar

[26] Chen HP. AIAA J. 1991, 29, 813–819.10.2514/3.10661Suche in Google Scholar

[27] Magalhes LC, Volpato N, Luersen MA. J. Braz. Soc. Mech. Sci. & Eng. 2014, 36, 449–459.10.1007/s40430-013-0111-1Suche in Google Scholar

[28] Hughes G, Öchsner A. In Advanced Structured Materials, Öchsner A, Altenbach H, Eds., Springer: Heidelberg, Germany, 2015, Vol. 71, pp. 133–179.10.1007/978-3-319-19470-7_9Suche in Google Scholar

[29] Öchsner A. Continuum Damage and Fracture Mechanics, Springer Singapore, 2016.10.1007/978-981-287-865-6Suche in Google Scholar

[30] Sugavaneswaran M, Arumaikkannu G. Mater. Des. 2015, 66, Part A, 29–36.10.1016/j.matdes.2014.10.029Suche in Google Scholar

[31] Jami H, Masood SH, Song WQ. Adv. Mater. Res. 2013, 748, 291–294.10.4028/www.scientific.net/AMR.748.291Suche in Google Scholar

[32] Mohamed OA, Masood SH, Bhowmik JL, Nikzad M, Azadmanjiri J. J. Mater. Eng. Perform. 2016, 25, 2922–2935.10.1007/s11665-016-2157-6Suche in Google Scholar

[33] Hu A, Griesing S, Rybachuk M, Lu Q-B, Duley WW. J. Appl. Phys. 2007, 102, 074311–074316.10.1063/1.2786708Suche in Google Scholar

[34] Rybachuk M, Bell JM. Diam. Relat. Mater. 2006, 15, 977–981.10.1016/j.diamond.2005.12.001Suche in Google Scholar

[35] Zhou JG, Kokkengada M, He Z, Kim YS, Tseng AA. Mater. Des. 2004, 25, 145–154.10.1016/j.matdes.2003.09.014Suche in Google Scholar


Supplemental Material:

The online version of this article (DOI: https://doi.org/10.1515/polyeng-2016-0263) offers supplementary material.


Received: 2016-7-12
Accepted: 2016-11-13
Published Online: 2017-1-20
Published in Print: 2017-8-28

©2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2016-0263/pdf?lang=de
Button zum nach oben scrollen