Startseite Steady flow and heat transfer analysis of MHD flow of Phan-Thien-Tanner fluid in double-layer optical fiber coating analysis with slip conditions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Steady flow and heat transfer analysis of MHD flow of Phan-Thien-Tanner fluid in double-layer optical fiber coating analysis with slip conditions

  • Zeeshan Khan EMAIL logo , Saeed Islam und Rehan Ali Shah
Veröffentlicht/Copyright: 13. Januar 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Modern optical fibers require a double-layer coating on the glass fiber in order to provide protection from signal attenuation and mechanical damage. The most important plastic resins used in wires and optical fibers are plastic polyvinyl chloride, low- and high-density polyethylene, nylon, and polysulfone. One of the most important things that affect the final product after processing is the design of the coating die. In the present study, double-layer optical fiber coating is performed using melt polymer satisfying the Phan-Thien-Tanner (PTT) fluid model in a pressure-type die. The fluid is electrically conducted in the presence of applied magnetic field. Wet-on-wet coating process is applied for double-layer optical fiber coating. The assumption of fully developed flow of PTT fluid model, two-layer liquid flows of an immiscible fluid, is modeled in an annular die of length L, where the fiber is dragged at a higher speed. The equations characterizing the flow ad heat transfer phenomena are solved exactly and the effects of emerging parameters are shown with the help of graphs. It is interesting to remark that an increase in the non-Newtonian parameters increases the velocity in the absence or presence of slip parameters, which coincides with the results reported earlier. Also, the effect of important parameters such as Deborah numbers, slip parameters, magnetic parameter, characteristic velocity, radii ratio, and Brinkman numbers on the axial velocity, flow rate, thickness of coated fiber optics, and temperature distribution are investigated. Furthermore, the results were compared with the experimental results already published. To the best of our knowledge, no such analysis of the double-layer coating flows of PTT fluid using slip conditions is available in the literature. At the end, the result of the present work is also compared with the experimental results already published by taking λ → 0 (non-Newtonian parameter).

  1. Conflict of interest statement: All the authors declare no conflict of interest.

  2. Funding: Zeeshan Khan, (Grant/Award Number: ‘Abdul Wali Khan University Mardan, Pakistan’).

References

[1] Han CD, Rao D. Polym. Eng. Sci. 1978, 18, 1019–1029.10.1002/pen.760181309Suche in Google Scholar

[2] Nayak MK. Wire Coating Analysis, 2nd ed. India Tech: New Delhi, 2015.Suche in Google Scholar

[3] Caswell B, Tanner RJ. Polym. Eng. Sci. 1978, 18, 417–421.10.1002/pen.760180514Suche in Google Scholar

[4] Tucker CL. Computer Modeling for Polymer Processing. Hanser: Munich, 1989, pp. 311–317.Suche in Google Scholar

[5] Akter S, Hashmi MSJ. Prog. Org. Coat. 1999, 37, 15–22.10.1016/S0300-9440(99)00045-4Suche in Google Scholar

[6] Akter S, Hashmi MSJ. Plasto-hydrodynamic pressure distribution in a tapered geometry wire coating unit, in: Proceedings of the 14th Conference of the Irish Manufacturing Committee (IMC14), Dublin, 1997, pp. 331–340.Suche in Google Scholar

[7] Siddiqui AM, Haroon T, Khan H. Int. J. Non-linear Sci. Numer. Simul. 2009, 10, 247–257.Suche in Google Scholar

[8] Fenner RT, Williams JG. Trans. Plast. Inst. London 1967, 35, 701–706.Suche in Google Scholar

[9] Shah RA, Islam S, Siddiqui AM, Haroon T. J. Ksiam 2011, 15, 201–222.Suche in Google Scholar

[10] Shah RA, Islam S, Siddiqui AM, Haroon T. Math. Comp. Mod. 2013, 57, 1284–1288.10.1016/j.mcm.2012.10.031Suche in Google Scholar

[11] Shah RA, Islam S, Siddiqui AM, Haroon T. Comput. Math. Appl. 2012, 63, 695–707.10.1016/j.camwa.2011.11.033Suche in Google Scholar

[12] Majid M, Siddiqui AM, Hayat T. Int. J. Eng. Sci. 2007, 45, 381–392.10.1016/j.ijengsci.2007.04.010Suche in Google Scholar

[13] Shah RA, Islam S, Ellahi M, Haroon T, Siddiqui AM. Int. J. Phys. Sci. 2011, 6, 4213–4223.Suche in Google Scholar

[14] Shah RA, Islam S, Siddiqui AM, Haroon T. J. Heat Mass Transfer 2012, 48, 903–914.10.1007/s00231-011-0934-1Suche in Google Scholar

[15] Mitsoulis E. Ad. Poly. Tech. 1986, 6, 467–487.10.1002/adv.1986.060060405Suche in Google Scholar

[16] Oliveira PJ, Pinho FT. J. Fluid Mech. 1999, 387, 271–280.10.1017/S002211209900453XSuche in Google Scholar

[17] Thien NP, Tanner RI. J. Non-Newtonian Fluid Mech. 1977, 2, 353–365.10.1016/0377-0257(77)80021-9Suche in Google Scholar

[18] Kasajima M, Ito K. Appl. Polym. Symp. 1973, 20, 221–235.Suche in Google Scholar

[19] Wagner R, Mitsoulis E. Adv. Polym. Tech. 1985, 5, 305–325.10.1002/adv.1985.060050404Suche in Google Scholar

[20] Bagley EB, Storey SH. Wire Wire Prod. 1963, 38, 1104–1122.Suche in Google Scholar

[21] Pinho FT, Oliveira PJ. Int. J. Heat Mass Transfer 2000, 43, 2273–2287.10.1016/S0017-9310(99)00303-8Suche in Google Scholar

[22] Abel S, Prasad KV, Mahaboob A. Int. J. Thermal Sci. 2005, 44, 465–476.10.1016/j.ijthermalsci.2004.08.005Suche in Google Scholar

[23] Sarpakaya T. AIChE J. 1961, 7, 324–328.10.1002/aic.690070231Suche in Google Scholar

[24] Abel MS, Tawade JV, Shinde JN. Adv. Math. Phy. 2012, Article 702681.10.1155/2012/702681Suche in Google Scholar

[25] Chen VC. Int. J. Heat Mass Transfer 2010, 19, 4264–4273.10.1016/j.ijheatmasstransfer.2010.05.053Suche in Google Scholar

[26] Hayat T, Asif Farooq M, Javed T, Sajid M. Non-linear Anal. (Real world applications) 2009, 10, 745–755.10.1016/j.nonrwa.2007.11.001Suche in Google Scholar

[27] Asghar S, Mudassar Gulzar M, Ayub M. Acta Mech. Sin. 2006, 5, 393–396.10.1007/s10409-006-0109-3Suche in Google Scholar

[28] Ellahi R. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 1377–1384.10.1016/j.cnsns.2008.04.002Suche in Google Scholar

[29] Sajid M, Awais M, Nadeem S, Hayat T. Comput. Math. Appl. 2008, 56, 2019–2026.10.1016/j.camwa.2008.04.022Suche in Google Scholar

[30] Nargis K, Mehmood T. Int. J. Nonlinear Sci. 2012, 13, 105–116.Suche in Google Scholar

[31] Asghar S, Gulzar MM, Ayub M. Acta. Mech. Sin. 2006, 22, 393–396.10.1007/s10409-006-0109-3Suche in Google Scholar

[32] Shah RA, Siddiqui AM, Haroon T. Int. J. Mech. Mechtronic Eng. 2016, 3, 1336–1348.Suche in Google Scholar

[33] Hatzikiriakos SG. Progr. Polym. Sci. 2012, 37, 624–643.10.1016/j.progpolymsci.2011.09.004Suche in Google Scholar

[34] Ngamaramvaranggul V, Webster MF. Int. J. Num. Meth. Fluids 2000, 33, 961–992.10.1002/1097-0363(20000815)33:7<961::AID-FLD39>3.0.CO;2-WSuche in Google Scholar

[35] Ferras LL, Nobrega JM, Pinho FT. J. Non-Newtonian Fluid Mech. 2012, 171, 97–105.10.1016/j.jnnfm.2012.01.009Suche in Google Scholar

[36] Ferras LL, Afonso AM, Alves MA, Nobrega JM, Pinho FT. J. Non-Newtonian Fluid Mech. 2014, 212, 80–91.10.1016/j.jnnfm.2014.07.004Suche in Google Scholar

[37] Kaoullas G, Georgiou GC. Rheol. Acta 2013, 52, 913–925.10.1007/s00397-013-0730-6Suche in Google Scholar

[38] Kim K, Kwak HS, Park SH. J. Coat. Technol. Res. 2011, 8, 35–44.10.1007/s11998-010-9272-3Suche in Google Scholar

[39] Kim KJ, Kwak HS. Trans. Tech. Publ. 2012, 224, 260–263.10.4028/www.scientific.net/AMM.224.260Suche in Google Scholar

[40] Zeeshan K, Shah RA, Islam S, Siddique AM. N.Y. Sci. J. 2013, 6, 66–73.10.1038/scientificamerican0313-66Suche in Google Scholar

[41] Zeeshan K, Islam S, Shah RA, Khan I, Gul T. J. Appl. Environ. Biol. Sci. 2015, 5, 96–105.Suche in Google Scholar

[42] Zeeshan K, Islam S, Shah RA, Khan I, Gul T, Gaskel P. J. Appl. Environ. Biol. Sci. 2015, 5, 36–51.Suche in Google Scholar

[43] Zeeshan K, Islam S, Shah RA, Khan I. J. Coat. Technol. Res. 2016, 13, 1055–1063.10.1007/s11998-016-9817-1Suche in Google Scholar

Received: 2016-6-9
Accepted: 2016-11-7
Published Online: 2017-1-13
Published in Print: 2017-8-28

©2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2016-0199/pdf?lang=de
Button zum nach oben scrollen