Startseite Study on low temperature toughness and crystallization behavior of polypropylene random copolymer
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Study on low temperature toughness and crystallization behavior of polypropylene random copolymer

  • Yingchun Li , Shuai He , Hui He EMAIL logo , Peng Yu und Dongqing Wang
Veröffentlicht/Copyright: 15. Dezember 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This research designed a series of novel approaches aiming to tackle a long-standing problem that is the brittleness of polypropylene (PP) random copolymer (PPR) at low temperature. By introducing polyolefin elastomer (POE), the toughness of PPR was improved; talc improved the stiffness of PPR, low density polyethylene (LDPE) or high density PE (HDPE) improved the low temperature toughness of PPR, and annealing treatment also improved the low temperature toughness of PPR significantly. The addition of dicumyl peroxide (DCP) and triallyl isocyanurate (TAIC) increased its stiffness through the formation of cross-linking networks. Also, the crystallization behavior and morphology were investigated in detail. Differential scanning calorimetry (DSC) results indicated that the adoption of annealing treatment can improve the crystallinity of PPR, while a polarizing microscope revealed that the incorporation of foreign matter can facilitate the crystallization process of the matrix. X-ray diffraction (XRD) tests showed an unchanged polymorphic composition of PPR after introducing different additives, and scanning electron microscopy (SEM) indicated that annealing treatment can enhance interfacial interactions between the matrix and fillers.

Acknowledgments

The authors gratefully acknowledge The Science and Technology Project of Guangzhou (201508020090) for financial support.

References

[1] Moore EP. Polypropylene Handbook: Polymerization, Characterization, Properties, Processing, Applications. Hanser-Gardner Publications: Cincinnati, 1996.Suche in Google Scholar

[2] Silvestre C, Cimmino S, Triolo R. J. Polym. Sci. Part B Polym. Phys. 2003, 41, 493–500.10.1002/polb.10403Suche in Google Scholar

[3] Horvath Z, Horváth Z, Menyhárd A, Doshev P, Gahleitner M, Tranninger C, Kheirandish S, Varga J, Pukánszky B. J. Appl. Polym. Sci. 2013, 130, 3365–3373.10.1002/app.39585Suche in Google Scholar

[4] Busico V, Cipullo R. Prog. Polym. Sci. 2001, 26, 443–533.10.1016/S0079-6700(00)00046-0Suche in Google Scholar

[5] Gahleitner M, Jääskeläinen P, Ratajski E, Paulik C, Reussner J, Wolfschwenger J, Neißl W. J. Appl. Polym. Sci. 2005, 95, 1073–1081.10.1002/app.21308Suche in Google Scholar

[6] Busico V, Cipullo R, Friederichs N, Ronca S, Talarico G, Togrou M, Wang B. Macromolecules 2004, 37, 8201–8203.10.1021/ma048144bSuche in Google Scholar

[7] Mai JH, Zhang MQ, Rong MZ, Bárány T, Ruan WH. eXPRESS Polym. Lett. 2012, 6, 739–749.10.3144/expresspolymlett.2012.79Suche in Google Scholar

[8] Zhu Y, Luo F, Bai H, Wang K, Deng H, Chen F, Zhang Q, Fu Q. J. Appl. Polym. Sci. 2013, 129, 3613–3622.10.1002/app.39107Suche in Google Scholar

[9] McNally T, McShane P, Nally GM, Murphy WR, Cook M, Miller A. Polymer 2002, 43, 3785–3793.10.1016/S0032-3861(02)00170-2Suche in Google Scholar

[10] Feng L, Wang K, Wang J, Deng H, Zhang Q, Chen F, Fu Q, Na B. Polym. Int. 2011, 60, 1705–1714.10.1002/pi.3135Suche in Google Scholar

[11] Li M, Li G, Jiang J, Tao Y, Mai K. Compos. Sci. Technol. 2013, 81, 30–36.10.1016/j.compscitech.2013.03.020Suche in Google Scholar

[12] Pasquini N, Dell V. Polypropylene Handbook. Hanser Publishers: Munich, 2005.Suche in Google Scholar

[13] Rapa M, Rapa M, Grosu E, Ghioca PN, Iancu L, Spurcaciu B, Pica A, Gardu R, Cincu C. Materiale Plastice 2016, 53, 68–72.Suche in Google Scholar

[14] Abreu F, Forte MMC, Liberman SA. J. Appl. Polym. Sci. 2005, 95, 254–263.10.1002/app.21263Suche in Google Scholar

[15] Wang XM, Wang X, Yin X, Wang L, Zhang C, Gong W, He L. J. Appl. Polym. Sci. 2016, 133, 42960.10.1002/app.44335Suche in Google Scholar

[16] Menyhárd A, Varga J, Liber Á, Belina G. Eur. Polym. J. 2005, 41, 669–677.10.1016/j.eurpolymj.2004.10.036Suche in Google Scholar

[17] Luo F, Wang J, Bai H, Wang K, Deng H, Zhang Q, Chen F, Fu Q, Na B. Mater. Sci. Eng. A 2011, 528, 7052–7059.10.1016/j.msea.2011.05.030Suche in Google Scholar

[18] Zhou X, Feng J, Yi J, Wang L. Mater. Des. 2013, 49, 502–510.10.1016/j.matdes.2013.01.069Suche in Google Scholar

[19] Qiao T, Song P, Guo H, Song X, Zhang B, Chen X. Eur. Polym. J. 2016, 74, 101–108.10.1016/j.eurpolymj.2015.11.012Suche in Google Scholar

[20] Li Y, Huang J, Lu X, Jia S, Zhang H, Jin G, Qu J. J. Appl. Polym. Sci. 2015, 132, 41543.10.1002/app.42596Suche in Google Scholar

[21] Polat K, Sen M. J. Polym. Eng. 2014, 34, 787–792.10.1515/polyeng-2014-0056Suche in Google Scholar

[22] Chen JW, Dai J, Yang J-H, Zhang N, Huang T, Wang Y, Zhang C-L. Chin. J. Polym. Sci. 2015, 33, 1211–1224.10.1007/s10118-015-1668-1Suche in Google Scholar

[23] Wu HY, Li X, Chen J, Shao L, Huang T, Shi Y, Wang Y. Composites, Part B 2013, 44, 439–445.10.1016/j.compositesb.2012.04.020Suche in Google Scholar

[24] Li JX, Cheung WL. Polymer 1998, 39, 6935–6940.10.1016/S0032-3861(98)00144-XSuche in Google Scholar

[25] Castillo L, López O, López C, Zaritzky N, García MA, Barbosa S, Villar M. Carbohydr. Polym. 2013, 95, 664–674.10.1016/j.carbpol.2013.03.026Suche in Google Scholar PubMed

Received: 2016-5-16
Accepted: 2016-11-4
Published Online: 2016-12-15
Published in Print: 2017-8-28

©2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2016-0169/pdf
Button zum nach oben scrollen