Startseite Graft copolymerization of poly(vinyl acetate) onto starch using KMnO4-H2SO4 redox system
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Graft copolymerization of poly(vinyl acetate) onto starch using KMnO4-H2SO4 redox system

  • Baohan Qu , Hongchun Li und Yongsheng Niu EMAIL logo
Veröffentlicht/Copyright: 17. Juli 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The graft copolymerization of poly(vinyl acetate) [poly(VAc)] onto starch was studied using the KMnO4-H2SO4 redox system. The grafting parameters are favored by changing the concentration of KMnO4, the concentration of acid, the temperature, the time, and the concentration of monomer. A maximum graft yield of 38.3% was obtained at optimum conditions: KMnO4 concentration=3.0×10-3 mol/l, concentration of acid=1.5×10-2 mol/l, temperature=40°C, time=3 h, and concentration of monomer=1 mol/l. The grafting of poly(VAc) onto starch was confirmed by the IR spectra of pure sago starch, poly(VAc), and poly(VAc) grafted starch. Both swelling power and solubility increased with the increase in temperature. Graft copolymerization increased swelling power and reduced solubility. This material may have use as an application as a biodegradable plastic.


Corresponding author: Yongsheng Niu, College of Chemistry and Pharmacy, Qingdao Agricultural University, 266109, PR China

Gratitude is expressed to the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 51003051), Science-Technology Foundation for Middle-aged and Young Scientist of Shandong Province, China (Grant No. BS2011CL021), and the High-level Talent Initial Funding for Scientific Research of Qingdao Agricultural University (Grant No. 630924) for financial support.

References

[1] Sugahara Y, Ohta T. J. Appl. Polym. Sci. 2001, 82, 1437–1443.Suche in Google Scholar

[2] Liu T, Lei J, Li X. Polym.-Plast. Technol. Eng. 2007, 46, 569–573.Suche in Google Scholar

[3] Keles S, Guclu G. Polym.-Plast. Technol. Eng. 2006, 45, 365–371.Suche in Google Scholar

[4] Guclu, G, Keles S, Guclu K. Polym.-Plast. Technol. Eng. 2006, 45, 55–59.Suche in Google Scholar

[5] Senna MM, Zaman K, Ghazali Z, Hashim K. Polym.-Plast. Technol. Eng. 2005, 44, 1173–1187.Suche in Google Scholar

[6] Li A, Liu RF, Wang AQ. J. Appl. Polym. Sci. 2005, 98, 1351–1357.Suche in Google Scholar

[7] Pledger JR, Young TS, Wu GS. J. Macromol. Sci., Chem. 1986, 22, 415–436.Suche in Google Scholar

[8] Kutsevol N, Guenet JM, Melnyk N, Sarazin D. Macromol. Symp. 2006, 235, 201–205.Suche in Google Scholar

[9] Lu D, Xiao C, Sun F. J. Appl. Polym. Sci. 2012, 124, 3450–3455.Suche in Google Scholar

[10] Liu M, Cheng R, Wu J, Ma C. J. Polym. Sci., Part A: Polym. Chem. 1993, 31, 3181–3186.Suche in Google Scholar

[11] Mostafa KM, Morsy MS. Polym. Int. 2004, 53, 885–890.Suche in Google Scholar

[12] Mostafa KM, Samarkandy AR, El-Sanabary AA. J. Polym. Res. 2010, 17, 789–800.Suche in Google Scholar

[13] Mostafa KM, Samarkandy AR, El-Sanabary AA. Adv. Polym. Tech. 2011, 30, 138–149.Suche in Google Scholar

[14] Hung PV, Morita N. Carbohydr. Polym. 2005, 59, 239–246.Suche in Google Scholar

Received: 2013-4-28
Accepted: 2013-6-24
Published Online: 2013-07-17
Published in Print: 2013-09-01

©2013 by Walter de Gruyter Berlin Boston

Heruntergeladen am 16.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2013-0105/html
Button zum nach oben scrollen