Abstract
With good electrical conductivity and high ultimate strength and yield strength limit, copper-beryllium alloy is widely used in springs and electrical contacts. This article studies the effect of heat treatment on microstructure, precipitation process, and mechanical properties of beryllium copper alloy C17000 from a 0.3 mm thick sheet. The results show that the average HB hardness and strength of sample material after tempering at 800 °C for 0.5 h and water quenching are about 100 HB and 300 MPa, respectively. The sample after quenching and aging at 400 °C for 1 hour has a hardness up to 400 HB and a strength of up to 1200 MPa; both the hardness and strength after age hardening of samples are about 4 times higher than the sample after quenching. The increase in strength is caused by the irregular precipitation process of the gamma phase in the form of spheres in grains and grain boundaries, in the form of bands at grain boundaries and twin boundaries.
Kurzfassung
Kupfer-Beryllium-Legierungen werden wegen ihrer guten elektrischen Leitfähigkeit und ihrer hohen Bruch- und Streckgrenze häufig für Federn und elektrische Kontakte verwendet. In diesem Artikel werden die Auswirkungen der Wärmebehandlung auf die Mikrostruktur, den Ausscheidungsprozess und die mechanischen Eigenschaften der Kupfer-Beryllium-Legierung C17000, aus der eine 0,3 mm dicken Platte hergestellt wurde, untersucht. Die Ergebnisse zeigen, dass die durchschnittliche Härte HB und Festigkeit der Probe nach 0,5-stündigem Lösungsglühen bei 800 °C und Abschrecken in Wasser etwa 100 HB bzw. 300 MPa betragen. Nach dem Abschrecken und einer einstündigen Auslagerung bei 400 °C weist die Probe eine Härte von bis zu 400 HB und eine Festigkeit von bis zu 1200 MPa auf; sowohl die Härte als auch die Festigkeit der Proben nach der Auslagerung sind etwa viermal höher als die der Probe nach dem Abschrecken. Die Festigkeitszunahme wird durch unregelmäßige Ausscheidungen der Gamma-Phase in Form von Kugeln in Körnern und an Korngrenzen und in Form von Bändern an Korngrenzen und Zwillingsgrenzen verursacht.
References / Literatur
[1] Heller, W.: Copper-beryllium alloys for technical applications. CERNeuropean organization for nuclear research, CERN 76-01, Proton Synchrotron Division, Geneva (1976).Search in Google Scholar
[2] Fuqiang Lai, Kun Mao, Changsheng Cao, Anqiong Hu, Junxiang Tu and Youxi Lin: Rotating Bending Fatigue Behaviors of C17200 Beryllium Copper Alloy at High Temperatures. Materials 2 (2023) 16, pp. 81–5. DOI:10.3390/ma1602081510.3390/ma16020815Search in Google Scholar PubMed PubMed Central
[3] Lomakin, I.; Castillo-Rodríguez, M.; Xavier Sauvage, X.: Microstructure, Mechanical Properties and Aging Behaviour of Nanocrystalline Copper – Beryllium alloy, Materials Science and Engineering 744 (2019), pp. 206–214. DOI:10.1016/j.msea.2018.12.01110.1016/j.msea.2018.12.011Search in Google Scholar
[4] Rocha Rangel, E.; Rodríguez García, J. A.; Hernández Bocanegra, C. A.: Precipitation hardening of Cu-Be alloys. ChemXpress 5 (2014) 4, pp. 132–136.Search in Google Scholar
[5] Mohamed, M. I.: Effects of Cold Rolling and Aging Treatment on the Properties of Cu-Be Alloy. Engineering, Technology & Applied Science Research 9 (2019) 4, pp. 4500–4503. DOI:10.48084/etasr.272210.48084/etasr.2722Search in Google Scholar
[6] Altunpak, Y.: Wear behaviour of aged Cu-Be alloy under electrical sliding. Scientific Research and Essays 5 (2010) 19, pp. 2997–3002.Search in Google Scholar
[7] Higuera Cobos, O. F.; Niño Camacho I. C.; Orozco Lobo, L. F.; Hurtado Ferrer, S. A.; . Mesa Grajales, D. H: Wear Behaviour of Copper-Beryllium Alloy Under Abrasive Conditions. Contemporary Engineering Sciences 11 (2018) 59, pp. 2903–2910. DOI:10.12988/ces.2018.8629910.12988/ces.2018.86299Search in Google Scholar
[8] Higuera Cobos, O. F.; Moreno Téllez, C. M.; Pedraza Yepes, C. A.: Effect of Thermal Cycling on Abrasive Wear Response of Cu-1.9Be-0.25(Co+Ni) Alloy. Revista Facultad de Ingeniería 29 (2020) 54, p. e11616. DOI:10.19053/01211129.v29.n54.2020.1161610.19053/01211129.v29.n54.2020.11616Search in Google Scholar
[9] Guide to Copper Beryllium, Brush Wellman Inc. Cleveland, Ohio (2001), pp. 4.Search in Google Scholar
[10] Tech Brief Heat Treating Copper Beryllium Parts, materion.com/copperberyllium.Search in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston, Germany
Articles in the same Issue
- Inhalt
- Editorial
- Editorial
- Heat treatment of copper-beryllium alloy C17000 to form microstructure with high mechanical properties
- Microstructure and properties of Mg-Zn-Y-Nd-Zr alloy optimized by hot extrusion and solid solution
- Effects of modes of metal transfer on microstructure of welded duplex stainless steel samples
- Failure Analysis
- Determining the root cause of failure – calling a spade a spade – overload failures of tack strips for instrumentation wiring
- Picture of the Month
- Picture of the Month
- News
- News
- Meeting Diary
- Meeting Diary
Articles in the same Issue
- Inhalt
- Editorial
- Editorial
- Heat treatment of copper-beryllium alloy C17000 to form microstructure with high mechanical properties
- Microstructure and properties of Mg-Zn-Y-Nd-Zr alloy optimized by hot extrusion and solid solution
- Effects of modes of metal transfer on microstructure of welded duplex stainless steel samples
- Failure Analysis
- Determining the root cause of failure – calling a spade a spade – overload failures of tack strips for instrumentation wiring
- Picture of the Month
- Picture of the Month
- News
- News
- Meeting Diary
- Meeting Diary