Home Effects of modes of metal transfer on microstructure of welded duplex stainless steel samples
Article
Licensed
Unlicensed Requires Authentication

Effects of modes of metal transfer on microstructure of welded duplex stainless steel samples

  • R. Nagar

    Reena Nagar received her Master of Engineering degree in Metallurgical & Materials engineering (Industrial Metallurgy) from the department of Metallurgical & Materials engineering department, The Maharaja Sayajirao University of Baroda. Currently working as Temporary Assistant Professor at The Maharaja Sayajirao University of Baroda, Teaching the subjects material science, physical metallurgy& basic metallurgy.

    EMAIL logo
    , C. Gohil , K. K. Patel and S. Soman

    Sanjay N. Soman Ex-HOD & Professor in Metallurgical & Materials Engineering department, The Maharaja Sayajirao University of Baroda. He has completed is Ph.D from IIT Bombay.

Published/Copyright: May 20, 2025
Become an author with De Gruyter Brill

Abstract

The aim of this work is to study the micro-structural variations of 2205 duplex stainless steel welded by the gas metal arc welding (GMAW) process in three transfer modes: spray transfer, globular transfer and dip transfer. Duplex stainless steels, characterized by a two-phase microstructure of austenite and ferrite, exhibit exceptional mechanical properties and corrosion resistance that can be significantly affected by welding techniques. Plates of 8 mm thickness, solution annealed at 1100 °C, were joined using ER 2209 welding wire and a shielding gas mixture of 98 % Argon and 2 % O2. Various welding parameters were optimized to maintain an interpass temperature below 100 °C and a heat input ranging from 0.38 to 1.20 kJ/mm. The microstructure was prepared and etched with KOH reagent and analyzed by optical microscopy. The results show that all welding modes resulted in a significant increase in ferrite content within the heat affected zone (HAZ), with the spray mode exhibiting the highest delta ferrite and a coarsened microstructure due to elevated temperatures and slow cooling rates. In the weld region, spray mode contains the highest amount of austenite phase and exhibits distinct morphologies including grain boundary austenite (GBA), Widmanstätten austenite (WA) and intergranular austenite (IGA). The lowest amount of austenite is found in the weld metal of the dip transfer mode.

Kurzfassung

Das Ziel dieser Arbeit ist die Untersuchung der mikrostrukturellen Veränderungen des nichtrostenden Duplexstahls 2205, der mittels Metall-Inertgasschweißen (MIG) in drei Modi geschweißt wurde: Sprüh-Transfer, Globular-Transfer und Kurzlichtbogen. Duplex-Edelstähle, die sich durch ein zweiphasiges Gefüge aus Austenit und Ferrit auszeichnen, besitzen außergewöhnliche mechanische Eigenschaften und eine hohe Korrosionsbeständigkeit, die durch die Schweißtechnik erheblich beeinflusst werden können. 8 mm dicke, bei 1100 °C lösungsgeglühte Bleche wurden mit dem Schweißdraht ER 2209 und einem Schutzgasgemisch aus 98 % Argon und 2 % O2 zusammengefügt. Verschiedene Schweißparameter wurden optimiert, um die Zwischenlagentemperatur unter 100 °C und die Wärmeeinbringung zwischen 0,38 und 1,20 kJ/mm zu halten. Die Mikrostruktur wurde mit KOH geätzt und anschließend mit einem Lichtmikroskop analysiert. Die Ergebnisse zeigen, dass alle Schweißverfahren zu einer deutlichen Erhöhung des Ferritgehaltes in der Wärmeeinflusszone (WEZ) führen, wobei das Sprüh-Transfer-Verfahren aufgrund der hohen Temperaturen und der langsamen Abkühlgeschwindigkeiten den höchsten Ferritgehalt und ein gröberes Gefüge aufweist. In der Schweißzone enthält die mittels Spray-Transfer geschweißte Probe den höchsten Anteil an Austenit und weist verschiedene Morphologien auf, einschließlich Korngrenzenaustenit (GBA), Widmanstätten-Austenit (WA) und intergranularem Austenit (IGA). Der geringste Austenitanteil findet sich im Schweißgut der mittels Kurzlichtbogen geschweißten Probe.

About the authors

R. Nagar

Reena Nagar received her Master of Engineering degree in Metallurgical & Materials engineering (Industrial Metallurgy) from the department of Metallurgical & Materials engineering department, The Maharaja Sayajirao University of Baroda. Currently working as Temporary Assistant Professor at The Maharaja Sayajirao University of Baroda, Teaching the subjects material science, physical metallurgy& basic metallurgy.

S. Soman

Sanjay N. Soman Ex-HOD & Professor in Metallurgical & Materials Engineering department, The Maharaja Sayajirao University of Baroda. He has completed is Ph.D from IIT Bombay.

References / Literatur

[1] Joo, M. S.; Noh, K. M.; Kim, W. K.; Bae, J. H.; Lee, C. S.: A Study of Metallurgical Factors for Defect Formation in Electric Resistance Welded API Steel Pipes. Metallurgical and Materials Transactions E2 (2015), pp. 119–30. DOI:10.1007/s40553-015-0049-610.1007/s40553-015-0049-6Search in Google Scholar

[2] Varbai, B.; Pickle, T.; Májlinger, K.: Development and comparison of quantitative phase analysis for duplex stainless steel weld. Periodica Polytechnica Mechanical Engineering 62 (2018) 3, pp. 247–53. DOI:10.3311/PPme.1223410.3311/PPme.12234Search in Google Scholar

[3] McPherson, N. A.; Li, Y.; Baker, T. N.: Microstructure and properties of as welded duplex stainless steel. Science and Technology of Welding and Joining 5 (2000) 4, pp. 235–44. DOI:10.1179/13621710010153826310.1179/136217100101538263Search in Google Scholar

[4] Argandoña, G.; Palacio, J. F.; Berlanga, C.; Biezma, M. V.; Rivero, P. J.; Peña, J. et al.: Effect of the temperature in the mechanical properties of austenite, ferrite and sigma phases of duplex stainless steels using hardness, microhardness and nanoindentation techniques. Metals (Basel) 7 (2017) 6, p. 219. DOI:10.3390/met706021910.3390/met7060219Search in Google Scholar

[5] Nagar, R.; Patel, K. K.; Parmar, A.: Study and Characterization of Sigma Phase in Duplex Stainless Steel 2205 (03Kh22N6M2). Metal Science and Heat Treatment 65 (2024), pp. 558–62. DOI:10.1007/s11041-024-00969-810.1007/s11041-024-00969-8Search in Google Scholar

[6] Mampuya, M. B.; Umba, M. C.; Mutombo, K.; Olubambi, P. A.: Effect of heat treatment on the micro-structure of duplex stainless steel 2205. Mater Today Proc. 38 (2021) 2, pp. 1107–1112. DOI:10.1016/j.matpr.2020.06.19610.1016/j.matpr.2020.06.196Search in Google Scholar

[7] Cui, S.; Pang, S.; Pang, D.; Zhang, Z.: Influence of Welding Speeds on the Morphology, Mechanical Properties, and Microstructure of 2205 DSS Welded Joint by K-TIG Welding. Materials 14 (2021) 12, p. 3426. DOI:10.3390/ma1412342610.3390/ma14123426Search in Google Scholar PubMed PubMed Central

[8] Ge, G.; Hu, J.; Huo, Y.; Liu, Y.; Tang, S.; Ding, J. et al.: Effect of arc energy on the microstructure and electrochemical behavior of duplex stainless steel weld overlay deposited by GMAW process. Journal of Solid State Electrochemistry 28 (2024) 7, pp. 2125–2138. DOI:10.1007/s10008-023-05731-310.1007/s10008-023-05731-3Search in Google Scholar

[9] Yang, Y.; Yan, B.; Li, J.; Wang, J.: The effect of large heat input on the microstructure and corrosion behaviour of simulated heat affected zone in 2205 duplex stainless steel. Corros Sci. 53 (2011) 11, pp. 3756–63. DOI:10.1016/j.corsci.2011.07.02210.1016/j.corsci.2011.07.022Search in Google Scholar

[10] Chacón-Fernández, S.; Portolés García, A.; Romaní Labanda, G.: Influence of parameters on the microstructure of a duplex stainless steel joint welded by a GMAW welding process. Progress in Natural Science: Materials International. 32 (2022) 4, pp. 415–423. DOI:10.1016/j.pnsc.2022.06.00310.1016/j.pnsc.2022.06.003Search in Google Scholar

[11] Nowacki, J.; Łukojc, A.: Microstructural transformations of heat affected zones in duplex steel welded joints. Mater Charact. 56 (2006) 4–5, pp. 436–441. DOI:10.1016/j.matchar.2006.02.00710.1016/j.matchar.2006.02.007Search in Google Scholar

[12] Gupta, A.; Kumar, A.; Baskaran, T.; Arya, S. B.; Khatirkar, R. K.: Effect of Heat Input on Micro-structure and Corrosion Behavior of Duplex Stainless Steel Shielded Metal Arc Welds. Transactions of the Indian Institute of Metals. 71 (2018) 7, pp. 1595–606. DOI:10.1007/s12666-018-1294-z10.1007/s12666-018-1294-zSearch in Google Scholar

[13] Hsieh, R. I.; Liou, H. Y.; Pan, Y. T.: Effects of cooling time and alloying elements on the microstructure of the gleeble-simulated heat-affected zone of 22 % Cr duplex stainless steels. J Mater Eng Perform. (2001). DOI:10.1361/10599490177034466510.1361/105994901770344665Search in Google Scholar

Received: 2024-11-08
Accepted: 2025-04-29
Published Online: 2025-05-20
Published in Print: 2025-05-26

© 2025 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 9.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/pm-2025-0035/html
Scroll to top button