Abstract
Personalized medicine is revolutionizing modern health care. The aim of personalized diagnostics is to provide rapid, portable and simple tests that will reduce diagnosis time. They enable rapid analysis performed near the patient and provide specific details of the patient’s condition so that a personalized treatment can be made. This review focuses on the recent advances in optical diagnostic techniques based on surface plasmon resonance (SPR) and surface-enhanced Raman scattering spectroscopy (SERS) for translational medical diagnostics. In the first part, recent developments in SPR biosensors for infectious disease diagnosis are presented including the first two-dimensional multiplex influenza SPR biosensor for H1N1 (influenza A) and H3N2 (seasonal influenza) detection. In the second part, advances in SERS, which is another ultra-sensitive optical diagnostic technique for various cancer detection applications in pre-clinical and clinical settings, are reviewed.
Zusammenfassung
Die personalisierte Medizin revolutioniert die moderne Gesundheitsversorgung. Ziel der personalisierten Diagnostik ist es, schnelle, mobile und einfache Tests bereitzustellen, die die Diagnosezeit reduzieren. Solche Tests ermöglichen eine schnelle Analyse in der Nähe des Patienten und liefern genaue Angaben über seinen Zustand, so dass eine individuelle Behandlung durchgeführt werden kann. Der vorliegende Review-Artikel konzentriert sich auf die jüngsten Fortschritte bei solchen optischen Diagnoseverfahren für die translationale medizinische Diagnose, die auf der Oberflächenplasmonresonanz (SPR)-Spektroskopie und der oberflächenverstärkten Raman-Spektroskopie (SERS) basieren. Im ersten Teil werden die jüngsten Entwicklungen bei SPR-Biosensoren für die Diagnose von Infektionskrankheiten präsentiert, einschließlich des ersten zweidimensionalen Multiplex-Influenza SPR-Biosensors zur Detektion des H1N1- (Influenza A) und H3N2- (saisonale Influenza) Virus. Im zweiten Teil werden die Fortschritte in der SERS, einer anderen hochempfindlichen optischen Diagnosetechnik für den Einsatz zur Krebserkennung im präklinischen und klinischen Bereich, betrachtet.
Acknowledgments
This work is supported by Singapore Bioimaging Consortium, Agency for Science, Technology, and Research, Singapore. The authors would like to acknowledge Lai Tin Ho for the contributions in experimental design and ideas for the SPR-based multiplex influenza biosensor.
References
[1] Crawley N, Thompson M, Romaschin A. Theranostics in the growing field of personalized medicine: an analytical chemistry perspective. Anal Chem 2014;86(1):130–60.10.1021/ac4038812Search in Google Scholar
[2] Ahmed MU, Saaem I, Wu PC, Brown AS. Personalized diagnostics and biosensors: a review of the biology and technology needed for personalized medicine. Crit Rev Biotechnol 2014;34(2):180–96.10.3109/07388551.2013.778228Search in Google Scholar
[3] Bombard Y, Abelson J, Simeonov D, Gauvin FP. Citizens’ perspectives on personalized medicine: a qualitative public deliberation study. Eur J Hum Genet 2013;21(11):1197–201.10.1038/ejhg.2012.300Search in Google Scholar
[4] Hamburg MA, Collins FS. The path to personalized medicine. N Engl J Med 2010;363(4):301–4. Erratum in: N Engl J Med 2010;363(11):1092.Search in Google Scholar
[5] Global Health Council. http://www.globalhealth.org/ [Accessed on September 25, 2014].Search in Google Scholar
[6] Yager P, Domingo GJ, Gerdes J. Point-of-care diagnostics for global health. Annu Rev Biomed Eng 2008;10:107–44.10.1146/annurev.bioeng.10.061807.160524Search in Google Scholar
[7] Moore C. Point-of-care tests for infection control: should rapid testing be in the laboratory or at the front line? J Hosp Infect 2013;85(1):1–7.10.1016/j.jhin.2013.06.005Search in Google Scholar
[8] Chan CP, Mak WC, Cheung KY, Sin KK, Yu CM, Rainer TH, Renneberg R. Evidence-based point-of-care diagnostics: current status and emerging technologies. Annu Rev Anal Chem (Palo Alto Calif) 2013;6:191–211.10.1146/annurev-anchem-062012-092641Search in Google Scholar
[9] Yager P, Edwards T, Fu E, Helton K, Nelson K, Tam MR, Weigl BH. Microfluidic diagnostic technologies for global public health. Nature 2006;442(7101):412–8.10.1038/nature05064Search in Google Scholar
[10] Wong CL, Olivo M. Surface plasmon resonance imaging sensors: a review. Plasmonics 2014;9(4):809–24.10.1007/s11468-013-9662-3Search in Google Scholar
[11] Homola J, Yee SS, Gauglitz G. Surface plasmon resonance sensors: review. Sensor Actuat B-Chem 1999; 54(1):3–15.10.1016/S0925-4005(98)00321-9Search in Google Scholar
[12] Lee HJ, Nedelkov D, Corn RM. Surface plasmon resonance imaging measurements of antibody arrays for the multiplexed detection of low molecular weight protein biomarkers. Anal Chem 2006;78(18):6504–10.10.1021/ac060881dSearch in Google Scholar PubMed
[13] Hsieh SC, Chang CC, Lu CC, Wei CF, Lin CS, Lai HC, Lin CW. Rapid identification of Mycobacterium tuberculosis infection by a new array format-based surface plasmon resonance method. Nanoscale Res Lett 2012;7(1):180.10.1186/1556-276X-7-180Search in Google Scholar
[14] Nelson SG, Johnston KS, Yee SS. High sensitivity surface plasmon resonance sensor based on phase detection. Sensor Actuat B-Chem 1996;35(1):187–91.10.1016/S0925-4005(97)80052-4Search in Google Scholar
[15] Park TJ, Lee SJ, Kim DK, Heo NS, Park JY, Lee SY. Development of label-free optical diagnosis for sensitive detection of influenza virus with genetically engineered fusion protein. Talanta 2012;89:246–52.10.1016/j.talanta.2011.12.021Search in Google Scholar PubMed
[16] Zavaleta CL, Smith BR, Walton I, Doering W, Davis G, Shojaei B, Natan MJ, Gambhir SS. Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy. Proc Natl Acad Sci USA 2009;106(32):13511–6.10.1073/pnas.0813327106Search in Google Scholar PubMed PubMed Central
[17] Bantz KC, Meyer AF, Wittenberg NJ, Im H, Kurtuluş O, Lee SH, Lindquist NC, Oh SH, Haynes CL. Recent progress in SERS biosensing. Phys Chem Chem Phys 2011;13(24):11551–67.10.1039/c0cp01841dSearch in Google Scholar PubMed PubMed Central
[18] Xie W, Schlücker S. Medical applications of surface-enhanced Raman scattering. Phys Chem Chem Phys 2013;15(15):5329–44.10.1039/c3cp43858aSearch in Google Scholar PubMed
[19] Kho KW, Fu CY, Dinish US, Olivo M. Clinical SERS: are we there yet? J Biophotonics 2011;4(10):667–84.10.1002/jbio.201100047Search in Google Scholar PubMed
[20] Vendrell M, Maiti KK, Dhaliwal K, Chang YT. Surface-enhanced Raman scattering in cancer detection and imaging. Trends Biotechnol 2013;31(4):249–57.10.1016/j.tibtech.2013.01.013Search in Google Scholar PubMed
[21] Peeling RW, Mabey D. Point-of-care tests for diagnosing infections in the developing world. Clin Microbiol Infect 2010;16(8):1062–9.10.1111/j.1469-0691.2010.03279.xSearch in Google Scholar PubMed
[22] Bissonnette L, Bergeron MG. Diagnosing infections – current and anticipated technologies for point-of-care diagnostics and home-based testing. Clin Microbiol Infect 2010;16(8):1044–53.10.1111/j.1469-0691.2010.03282.xSearch in Google Scholar PubMed
[23] Denkinger CM, Nicolau I, Ramsay A, Chedore P, Pai M. Are peripheral microscopy centres ready for next generation molecular tuberculosis diagnostics? Eur Respir J. 2013;42(2):544–7.10.1183/09031936.00081113Search in Google Scholar
[24] Perkins MD, Bell DR. Working without a blindfold: the critical role of diagnostics in malaria control. Malar J 2008;7 Suppl 1:S5.10.1186/1475-2875-7-S1-S5Search in Google Scholar
[25] Green C, Huggett JF, Talbot E, Mwaba P, Reither K, Zumla AI. Rapid diagnosis of tuberculosis through the detection of mycobacterial DNA in urine by nucleic acid amplification methods. Lancet Infect Dis 2009;9(8):505–11.10.1016/S1473-3099(09)70149-5Search in Google Scholar
[26] Thornton C, Johnson G, Agrawal S. Detection of invasive pulmonary aspergillosis in haematological malignancy patients by using lateral-flow technology. J Vis Exp 2012;(61). pii: 3721.10.3791/3721Search in Google Scholar PubMed PubMed Central
[27] Wiriyachaiporn S, Howarth PH, Bruce KD, Dailey LA. Evaluation of a rapid lateral flow immunoassay for Staphylococcus aureus detection in respiratory samples. Diagn Microbiol Infect Dis 2013;75(1):28–36.10.1016/j.diagmicrobio.2012.09.011Search in Google Scholar PubMed
[28] Wiwanitkit V. POCT test for swine flu. J Infect Public Health 2011;4(4):217; author reply 218.10.1016/j.jiph.2011.04.002Search in Google Scholar PubMed
[29] Sharp SE, Ruden LO, Pohl JC, Hatcher PA, Jayne LM, Ivie WM. Evaluation of the C.Diff Quik Chek Complete Assay, a new glutamate dehydrogenase and A/B toxin combination lateral flow assay for use in rapid, simple diagnosis of clostridium difficile disease. J Clin Microbiol 2010;48(6):2082–6.10.1128/JCM.00129-10Search in Google Scholar PubMed PubMed Central
[30] Stürenburg E, Junker R. Point-of-care testing in microbiology: the advantages and disadvantages of immunochromatographic test strips. Dtsch Arztebl Int 2009;106(4):48–54.Search in Google Scholar
[31] Mabey D, Peeling RW, Ustianowski A, Perkins MD. Diagnostics for the developing world. Nat Rev Microbiol 2004;2(3):231–40.10.1038/nrmicro841Search in Google Scholar PubMed
[32] Gussenhoven GC, van der Hoorn MA, Goris MG, Terpstra WJ, Hartskeerl RA, Mol BW, van Ingen CW, Smits HL. LEPTO dipstick, a dipstick assay for detection of Leptospira-specific immunoglobulin M antibodies in human sera. J Clin Microbiol 1997;35(1):92–7.10.1128/jcm.35.1.92-97.1997Search in Google Scholar PubMed PubMed Central
[33] Ho JA, Wauchope RD. A strip liposome immunoassay for aflatoxin B1. Anal Chem 2002;74(7):1493–6.10.1021/ac010903qSearch in Google Scholar PubMed
[34] Kabanda T, Siedner MJ, Klausner JD, Muzoora C, Boulware DR. Point-of-care diagnosis and prognostication of cryptococcal meningitis with the cryptococcal antigen lateral flow assay on cerebrospinal fluid. Clin Infect Dis 2014;58(1):113–6.10.1093/cid/cit641Search in Google Scholar PubMed PubMed Central
[35] Thornton CR. Lateral-flow device for diagnosis of fungal infection. Curr Fungal Infect Rep 2013;7(3):244–51.10.1007/s12281-013-0138-xSearch in Google Scholar
[36] Labbé AC, Pillai DR, Hongvangthong B, Vanisaveth V, Pomphida S, Inkathone S, Hay Burgess DC, Kain KC. The performance and utility of rapid diagnostic assays for Plasmodium falciparum malaria in a field setting in the Lao People’s Democratic Republic. Ann Trop Med Parasitol 2001;95(7):671–7.10.1080/00034983.2001.11813684Search in Google Scholar
[37] Kaur H, Dhanao J, Oberoi A. Evaluation of rapid kits for detection of HIV, HBsAg and HCV infections. Indian J Med Sci 2000;54(10):432–4.Search in Google Scholar
[38] Raj AA, Subramaniam T, Raghuraman S, Abraham P. Evaluation of an indigenously manufactured rapid immunochromatographic test for detection of HBsAg. Indian J Pathol Microbiol 2001;44(4):413–4.Search in Google Scholar
[39] Dierkes C, Ehrenstein B, Siebig S, Linde HJ, Reischl U, Salzberger B. Clinical impact of a commercially available multiplex PCR system for rapid detection of pathogens in patients with presumed sepsis. BMC Infect Dis 2009;9:126.10.1186/1471-2334-9-126Search in Google Scholar PubMed PubMed Central
[40] Westh H, Lisby G, Breysse F, Böddinghaus B, Chomarat M, Gant V, Goglio A, Raglio A, Schuster H, Stuber F, Wissing H, Hoeft A. Multiplex real-time PCR and blood culture for identification of bloodstream pathogens in patients with suspected sepsis. Clin Microbiol Infect 2009;15(6):544–51.10.1111/j.1469-0691.2009.02736.xSearch in Google Scholar PubMed
[41] Homola J, editor. Surface plasmon resonance based sensors. Berlin, Heidelberg: Springer-Verlag; 2006.10.1007/b100321Search in Google Scholar
[42] Homola J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 2008;108(2):462–93.10.1021/cr068107dSearch in Google Scholar PubMed
[43] D’Agata R, Spoto G. Surface plasmon resonance imaging for nucleic acid detection. Anal Bioanal Chem 2013;405 (2–3):573–84.10.1007/s00216-012-6563-9Search in Google Scholar PubMed
[44] Wong CL, Ho HP, Chan KS, Wu SY, Lin C. Application of spectral surface plasmon resonance to gas pressure sensing. Opt Eng 2005;44(12):124403.10.1117/1.2148913Search in Google Scholar
[45] Yuan W, Ho HP, Wong CL, Kong SK. Surface plasmon resonance biosensor incorporated in a Michelson interferometer with enhanced sensitivity. IEEE Sens J 2007;7(1):70–3.10.1109/JSEN.2006.884982Search in Google Scholar
[46] Ho HP, Yuan W, Wong CL, Wu SY, Suen YK, Kong SK, Lin C. Sensitivity enhancement based on application of multi-pass interferometry in phase-sensitive surface plasmon resonance biosensor. Opt Commun 2007; 275 (2):491–6.10.1016/j.optcom.2007.03.067Search in Google Scholar
[47] Lam WW, Chu LH, Wong CL, Zhang YT. A surface plasmon resonance system for the measurement of glucose in aqueous solution. Sensor Actuat B-Chem 2005;105(2):138–43.10.1016/j.snb.2004.04.088Search in Google Scholar
[48] Lee YK, Lee KS, Kim WM, Sohn YS. Detection of amyloid-β42 using a waveguide-coupled bimetallic surface plasmon resonance sensor chip in the intensity measurement mode. PLoS One 2014;9(6):e98992.10.1371/journal.pone.0098992Search in Google Scholar PubMed PubMed Central
[49] Wong CL, Ho HP, Wong PL, Wu SY, Guo F. Application of surface plasmon resonance to measurement of hydrostatic pressure in tribological lubricant layers. In: Proceeding of 2003 IEEE Conference on Electron Devices and Solid-State Circuits, 16–18 Dec 2003, Hong Kong, China; 2003. doi: 10.1109/EDSSC.2003.1283577.10.1109/EDSSC.2003.1283577Search in Google Scholar
[50] Ho HP, Wong CL. Application of spectral surface plasmon resonance for gas pressure sensing. In: Proceeding of 2002 IEEE Meeting on Electron Devices, 22 Jun 2002, Hong Kong, China; 2002. doi: 10.1109/HKEDM.2002.1029160.10.1109/HKEDM.2002.1029160Search in Google Scholar
[51] Wong CL, Ho HP, Suen YK, Kong SK, Chen QL, Yuan W, Wu SY. Real-time protein biosensor arrays based on surface plasmon resonance differential phase imaging. Biosens Bioelectron 2008;24(4):606–12.10.1016/j.bios.2008.06.013Search in Google Scholar PubMed
[52] Rothenhäusler B, Knoll W. Surface-plasmon microscopy. Nature 1988;332:615–7.10.1038/332615a0Search in Google Scholar
[53] Wong CL. Imaging surface plasmon resonance (SPR) photonic sensors. Doctor thesis, The City University of Hong Kong, 2007.Search in Google Scholar
[54] Wong CL, Chen GC, Li X, Ng BK, Shum P, Chen P, Lin Z, Lin C, Olivo M. Colorimetric surface plasmon resonance imaging (SPRI) biosensor array based on polarization orientation. Biosens Bioelectron 2013;47:545–52.10.1016/j.bios.2013.02.040Search in Google Scholar PubMed
[55] Wong CL, Chen GC, Ng BK, Agarwal S, Lin Z, Chen P, Ho HP. Multiplex spectral surface plasmon resonance imaging (SPRI) sensor based on the polarization control scheme. Opt Express 2011;19(20):18965–78.10.1364/OE.19.018965Search in Google Scholar PubMed
[56] Wong CL, Yu X, Shum P, Ho HP. Optical characterization of elastohydrodynamic lubrication pressure with surface plasmon resonance. In: Ghrib T, editor. New tribological ways. Rijeka, Croatia: InTech; 2011, p. 1–27. http://www.intechopen.com/books/new-tribological-ways/optical-characterization-of-elas-tohydrodynamic-lubrication-pressure-with-surface-plasmonresonance [Accessed on September 25, 2014].Search in Google Scholar
[57] Ho HP, Wong CL, Wu SY, Law WC, Lin CL, Kong SK. Optical sensing devices with SPR sensors based on differential phase interrogation and measuring method using the same. Patent No. US7365855 B2; 2008. http://www.google.de/patents/US7365855 [Accessed on September 25, 2014].Search in Google Scholar
[58] Wong CL, Ho HP, Chan KS, Wong PL, Wu SY, Lin CL. Optical characterization of elastohydrodynamic lubricated (EHL) contacts using surface plasmon resonance (SPR) effect. Tribol Int 2008;41(5):356–66.10.1016/j.triboint.2007.09.006Search in Google Scholar
[59] Wong CL, Ho HP, Yu TT, Suen YK, Chow WW, Wu SY, Law WC, Yuan W, Li WJ, Kong SK, Lin C. Two-dimensional biosensor arrays based on surface plasmon resonance phase imaging. Appl Opt 2007;46(12):2325–32.10.1364/AO.46.002325Search in Google Scholar
[60] Ho HP, Wong CL, Chan KS, Wu SY, Lin C. Application of two-dimensional spectral surface plasmon resonance to imaging of pressure distribution in elastohydrodynamic lubricant films. Appl Opt 2006;45(23):5819–26.10.1364/AO.45.005819Search in Google Scholar PubMed
[61] Wong CL, Ho HP, Chan KS, Wu SY. Application of surface plasmon resonance sensing to studying elastohydrodynamic lubricant films. Appl Opt 2005;44(23):4830–7.10.1364/AO.44.004830Search in Google Scholar PubMed
[62] Wong CL, Chen G, Ng BK. Two-dimensional surface plasmon resonance (SPR) biosensor based on infrared imaging. In: Optical Society of America (OSA). Optics in the Life Sciences, OSA Technical Digest (CD); 2011, paper OTuA5. http://www.opticsinfobase.org/abstract.cfm?URI=OMP-2011-OTuA5 [Accessed on September 25, 2014].Search in Google Scholar
[63] Wong CL, Ho HP, Suen YK, Chow WWY, Wu SY, Li WJ, Kong SK, Lin CL. Biosensor arrays based on surface plasmon resonance phase imaging. In: Proceedings of Metamaterials 2006. International Symposium on Biophotonics, Nanophotonics and Metamaterials, 16–18 Oct 2006, Hangzhou, China; 2006. doi: 10.1109/METAMAT.2006.335007.10.1109/METAMAT.2006.335007Search in Google Scholar
[64] Ho HP, Wong CL. Imaging differential phase surface plasmon resonance biosensors. In: Proceedings of LEOS 2006. 19th Annual Meeting of the IEEE Lasers & Electro-Optics Society, 29 Oct–2 Nov 2006, Montréal, Canada; 2006. doi: 10.1109/LEOS.2006.278893.10.1109/LEOS.2006.278893Search in Google Scholar
[65] Ho HP, Wong CL, Wu SY, Yuan W, Lin C, Kong SK. Highly sensitive photonic biosensors based on interferometric detection of surface plasmon waves. In: Proceedings of Metamaterials 2006. International Symposium on Biophotonics, Nanophotonics and Metamaterials, 16–18 Oct 2006, Hangzhou, China; 2006. doi: 10.1109/METAMAT.2006.334980.10.1109/METAMAT.2006.334980Search in Google Scholar
[66] Wong CL, Lei KF, Chow WWY, Ho HP, Li WJ, Kong SK, Chan KS. Chemical and biological detection using microfluidic platform and surface plasmon resonance imaging sensor. In: Proceedings of IEEE Sensors 2005, 30 Oct–3Nov 2005, Irvine, CA, USA; 2005. doi: 10.1109/ICSENS.2005.1597667.10.1109/ICSENS.2005.1597667Search in Google Scholar
[67] Ho HP, Chan KS, Wong CL, Lei KF, Li WJ, Law WC, Wu SY, Kong SK, Lin C. Two-dimensional surface plasmon resonance biosensor array based on phase-sensitive measurement. Proc SPIE 2005;5927:59270E.10.1117/12.619180Search in Google Scholar
[68] Wong CL, Ho HP, Lei KF, Li WJ, Chan KS, Law WC, Wu SY, Kong SK, Lin CL. Two dimensional phase sensitive surface plasmon resonance biosensor array using microfluidic flow circuit platform. In: Proceedings of the 2005 IEEE Conference on Electron Devices and Solid-State Circuits, 19–21 Dec 2005, Hong Kong, China; 2005. doi: 10.1109/EDSSC.2005.1635374.10.1109/EDSSC.2005.1635374Search in Google Scholar
[69] Otto A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z Phys 1968;216:398–410.10.1007/BF01391532Search in Google Scholar
[70] Kretschmann E. The determination of the optical constants of metals by excitation of surface plasmons. EPJA 1971;241(4):313–24.Search in Google Scholar
[71] Homola J, Vaisocherová H, Dostálek J, Piliarik M. Multianalyte surface plasmon resonance biosensing. Methods 2005;37: 26–36.10.1016/j.ymeth.2005.05.003Search in Google Scholar
[72] Šípová H, Homola J. Surface plasmon resonance sensing of nucleic acids: a review. Anal Chim Acta 2013;773:9–23.10.1016/j.aca.2012.12.040Search in Google Scholar
[73] Hong SC, Chen H, Lee J, Park HK, Kim YS, Shin HC, Kim CM, Park TJ, Lee SJ, Koh K, Kim HJ, Chang CL, Lee J. Ultrasensitive immunosensing of tuberculosis CFP-10 based on SPR spectroscopy. Sensor Actuat B-Chem 2011;156(1):271–5.10.1016/j.snb.2011.04.032Search in Google Scholar
[74] Wittekindt C, Fleckenstein B, Wiesmüller K, Eing BR, Kühn JE. Detection of human serum antibodies against type-specifically reactive peptides from the N-terminus of glycoprotein B of herpes simplex virus type 1 and type 2 by surface plasmon resonance. J Virol Methods 2000;87(1–2):133–44.10.1016/S0166-0934(00)00160-9Search in Google Scholar
[75] Biacore®X. http://web.bf.uni-lj.si/bi/sprcenter/BiacoreX.pdf [Accessed on September 25, 2014].Search in Google Scholar
[76] Nilsson CE, Abbas S, Bennemo M, Larsson A, Hämäläinen MD, Frostell-Karlsson A. A novel assay for influenza virus quantification using surface plasmon resonance. Vaccine 2010;28(3):759–66.10.1016/j.vaccine.2009.10.070Search in Google Scholar PubMed
[77] Šípová H, Ševců V, Kuchař M, Ahmad JN, Mikulecký P, Šebo P, Malý P, Homola J. Sensitive detection of interferon-gamma with engineered proteins and surface plasmon resonance biosensor. Procedia Eng 2011;25:940–3.10.1016/j.proeng.2011.12.231Search in Google Scholar
[78] Vaisocherová H, Mrkvová K, Piliarik M, Jinoch P, Steinbachová M, Homola J. Surface plasmon resonance biosensor for direct detection of antibody against Epstein-Barr virus. Biosens Bioelectron 2007;22(6):1020–6.10.1016/j.bios.2006.04.021Search in Google Scholar PubMed
[79] Kim HS, Jung SH, Kim SH, Suh IB, Kim WJ, Jung JW, Yuk JS, Kim YM, Ha KS. High-throughput analysis of mumps virus and the virus-specific monoclonal antibody on the arrays of a cationic polyelectrolyte with a spectral SPR biosensor. Proteomics 2006;6(24):6426–32.10.1002/pmic.200600432Search in Google Scholar PubMed PubMed Central
[80] Chung JW, Kim SD, Bernhardt R, Pyun JC. Application of SPR biosensor for medical diagnostics of human hepatitis B virus (hHBV). Sensor Actuat B-Chem 2005;111–112:416–22.10.1016/j.snb.2005.03.055Search in Google Scholar
[81] Hu J, Li W, Wang T, Lin Z, Jiang M, Hu F. Development of a label-free and innovative approach based on surface plasmon resonance biosensor for on-site detection of infectious bursal disease virus (IBDV). Biosens Bioelectron 2012;31(1):475–9.10.1016/j.bios.2011.11.019Search in Google Scholar PubMed
[82] Huang JG, Hung CC, Lai HC, Lee CK, Lin SM, Feng P, Lin CW. Surface plasmon resonance biochips for tuberculosis bacillus detection. Conf Proc IEEE Eng Med Biol Soc 2004;4:2553–6.Search in Google Scholar
[83] Su LC, Chang CM, Tseng YL, Chang YF, Li YC, Chang YS, Chou C. Rapid and highly sensitive method for influenza A (H1N1) virus detection. Anal Chem 2012;84(9):3914–20.10.1021/ac3002947Search in Google Scholar
[84] Dostálek J, Vaisocherová H, Homola J. Multichannel surface plasmon resonance biosensor with wavelength division multiplexing. Sensor Actuat B-Chem 2005; 108(1–2):758–64.10.1016/j.snb.2004.12.096Search in Google Scholar
[85] Yuk JS, Kim HS, Jung JW, Jung SH, Lee SJ, Kim WJ, Han JA, Kim YM, Ha KS. Analysis of protein interactions on protein arrays by a novel spectral surface plasmon resonance imaging. Biosens Bioelectron 2006;21(8):1521–8.10.1016/j.bios.2005.07.009Search in Google Scholar
[86] Balasubramanian S, Sorokulova IB, Vodyanoy VJ, Simonian AL. Lytic phage as a specific and selective probe for detection of Staphylococcus aureus – A surface plasmon resonance spectroscopic study. Biosens Bioelectron 2007;22(6):948–55.10.1016/j.bios.2006.04.003Search in Google Scholar
[87] Chinowsky TM, Soelberg SD, Baker P, Swanson NR, Kauffman P, Mactutis A, Grow MS, Atmar R, Yee SS, Furlong CE. Portable 24-analyte surface plasmon resonance instruments for rapid, versatile biodetection. Biosens Bioelectron 2007;22(9–10):2268–75.10.1016/j.bios.2006.11.026Search in Google Scholar
[88] Löfas S, Johnsson B, Edström A, Hansson A, Lindquist G, Müller Hillgren RM, Stigh L. Methods for site controlled coupling to carboxymethyl dextran surfaces in surface plasmon resonance sensors. Biosens Bioelectron 1995;10(9–10):813–22.10.1016/0956-5663(95)99220-FSearch in Google Scholar
[89] Zhen G, Falconnet D, Kuennemann E, Vörös J, Spencer ND, Textor M and Zürcher S. Nitrilotriacetic acid functionalized graft copolymers: a polymeric interface for selective and reversible binding of histidine-tagged proteins. Adv Funct Mater 2006;16(2):243–51.10.1002/adfm.200500232Search in Google Scholar
[90] World Health Organization. Tuberculosis. Fact sheet N°104. Reviewed March 2014. http://www.who.int/mediacentre/factsheets/fs104/en/ [Accessed on September 30, 2014].Search in Google Scholar
[91] Corbett EL, Watt CJ, Walker N, Maher D, Williams BG, Raviglione MC, Dye C. The growing burden of tuberculosis: global trends and interactions with the HIV epidemic. Arch Intern Med 2003;163(9):1009–21.10.1001/archinte.163.9.1009Search in Google Scholar PubMed
[92] Soo PC, Horng YT, Hsueh PR, Shen BJ, Wang JY, Tu HH, Wei JR, Hsieh SC, Huang CC, Lai HC. Direct and simultaneous identification of Mycobacterium tuberculosis complex (MTBC) and Mycobacterium tuberculosis (MTB) by rapid multiplex nested PCR-ICT assay. J Microbiol Methods 2006;66(3):440–8.10.1016/j.mimet.2006.01.010Search in Google Scholar PubMed
[93] Trajman A, Steffen RE, Menzies D. Interferon-gamma release assays versus tuberculin skin testing for the diagnosis of latent tuberculosis infection: an overview of the evidence. Pulm Med 2013;2013:601737.10.1155/2013/601737Search in Google Scholar PubMed PubMed Central
[94] Veerapathran A, Joshi R, Goswami K, Dogra S, Moodie EE, Reddy MV, Kalantri S, Schwartzman K, Behr MA, Menzies D, Pai M. T-cell assays for tuberculosis infection: deriving cut-offs for conversions using reproducibility data. PLoS One 2008;3(3):e1850.10.1371/journal.pone.0001850Search in Google Scholar PubMed PubMed Central
[95] Parvaneh N, Filipovich AH, Borkhardt A. Primary immunodeficiencies predisposed to Epstein-Barr virus-driven haematological diseases. Br J Haematol 2013;162(5):573–86.10.1111/bjh.12422Search in Google Scholar PubMed
[96] Riedel T, Rodriguez-Emmenegger C, de los Santos Pereira A, Bědajánková A, Jinoch P, Boltovets PM, Brynda E. Diagnosis of Epstein-Barr virus infection in clinical serum samples by an SPR biosensor assay. Biosens Bioelectron 2014;55:278–84.10.1016/j.bios.2013.12.011Search in Google Scholar PubMed
[97] Klutts JS, Ford BA, Perez NR, Gronowski AM. Evidence-based approach for interpretation of Epstein-Barr virus serological patterns. J Clin Microbiol 2009;47(10):3204–10.10.1128/JCM.00164-09Search in Google Scholar PubMed PubMed Central
[98] World Health Organization. China–WHO joint mission on human infection with avian influenza A (H7N9) virus. 18–24 April 2013. Mission Report. http://www.who.int/influenza/human_animal_interface/influenza_h7n9/ChinaH7N9JointMissionReport2013.pdf [Accessed on September 30, 2014].Search in Google Scholar
[99] European Centre for Disease Prevention and Control. Human infection with a novel avian influenza A (H7N9) virus, China. Third update 27 January 2014. http://ecdc.europa.eu/en/publications/Publications/influenza-AH7N9-China-rapid-risk-assessment-27-January-2014.pdf [Accessed on September 30, 2014].Search in Google Scholar
[100] Flasche S, Hens N, Boëlle PY, Mossong J, van Ballegooijen WM, Nunes B, Rizzo C, Popovici F, Santa-Olalla P, Hrubá F, Parmakova K, Baguelin M, van Hoek AJ, Desenclos JC, Bernillon P, Cámara AL, Wallinga J, Asikainen T, White PJ, Edmunds WJ. Different transmission patterns in the early stages of the influenza A(H1N1)v pandemic: a comparative analysis of 12 European countries. Epidemics 2011;3(2):125–33.10.1016/j.epidem.2011.03.005Search in Google Scholar PubMed
[101] Yeatman E, Ash E. Surface plasmon microscopy. Electron Lett 1987;23:1091–2.10.1049/el:19870762Search in Google Scholar
[102] Wegner GJ, Lee HJ, Corn RM. Characterization and optimization of peptide arrays for the study of epitope-antibody interactions using surface plasmon resonance imaging. Anal Chem 2002;74(20):5161–8.10.1021/ac025922uSearch in Google Scholar PubMed
[103] Smith EA, Thomas WD, Kiessling LL, Corn RM. Surface plasmon resonance imaging studies of protein-carbohydrate interactions. J Am Chem Soc 2003;125(20):6140–8.10.1021/ja034165uSearch in Google Scholar PubMed
[104] Wark AW, Lee HJ, Corn RM. Long-range surface plasmon resonance imaging for bioaffinity sensors. Anal Chem 2005;77(13):3904–7.10.1021/ac050402vSearch in Google Scholar PubMed
[105] Fu E, Chinowsky T, Foley J, Weinstein J, Yager P. Characterization of a wavelength-tunable surface plasmon resonance microscope. Rev Sci Instrum 2004;75(7):2300–4.10.1063/1.1764608Search in Google Scholar
[106] Shumaker-Parry JS, Campbell CT. Quantitative methods for spatially resolved adsorption/desorption measurements in real time by surface plasmon resonance microscopy. Anal Chem 2004;76(4):907–17.10.1021/ac034962aSearch in Google Scholar
[107] Yuk JS, Hong DG, Jung HI, Ha KS. Application of spectral SPR imaging for the surface analysis of C-reactive protein binding. Sensor Actuat B-Chem 2006;119(2):673–5.10.1016/j.snb.2006.01.031Search in Google Scholar
[108] Liu L, He Y, Zhang Y, Ma S, Ma H, Guo J. Parallel scan spectral surface plasmon resonance imaging. Appl Opt 2008;47(30):5616–21.10.1364/AO.47.005616Search in Google Scholar
[109] Lee SH, Lindquist NC, Wittenberg NJ, Jordan LR, Oh SH. Real-time full-spectral imaging and affinity measurements from 50 microfluidic channels using nanohole surface plasmon resonance. Lab Chip 2012;12(20):3882–90.10.1039/c2lc40455aSearch in Google Scholar
[110] Bardin F, Bellemain A, Roger G, Canva M. Surface plasmon resonance spectro-imaging sensor for biomolecular surface interaction characterization. Biosens Bioelectron 2009;24(7):2100–5.10.1016/j.bios.2008.10.023Search in Google Scholar
[111] Smith AR. Color gamut transform pairs. In: Beatty JC, Booth KS, editors. Tutorial: computer graphics. Silver Spring: IEEE Computer Society Press; 1982, p. 376–83. http://alvyray.com/Papers/CG/color78.pdf [Accessed on October 8, 2014].Search in Google Scholar
[112] Bose T. Digital signal and image processing. NewYork: Wiley; 2004.Search in Google Scholar
[113] Schilsky RL. Personalized medicine in oncology: the future is now. Nat Rev Drug Discov 2010;9(5):363–6.10.1038/nrd3181Search in Google Scholar
[114] Ko H, Singamaneni S, Tsukruk VV. Nanostructured surfaces and assemblies as SERS media. Small 2008;4(10):1576–99.10.1002/smll.200800337Search in Google Scholar
[115] Fleischmann M, Hendra PJ, McQuillan AJ. Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 1974;26(2):163–6.10.1016/0009-2614(74)85388-1Search in Google Scholar
[116] Jeanmaire DL, van Duyne RP. Surface Raman electrochemistry – Part I. Heterocyclic, aromatic and aliphatic amines adsorbed on the anodized silver electrode. J Electroanal Chem 1977;84:1–20.10.1016/S0022-0728(77)80224-6Search in Google Scholar
[117] Albrecht MG, Creighton JA. Anomalously intense Raman spectra of pyridine at a silver electrode. J Am Chem Soc 1977;99(15):5215–7.10.1021/ja00457a071Search in Google Scholar
[118] Qian X, Peng XH, Ansari DO, Yin-Goen Q, Chen GZ, Shin DM, Yang L, Young AN, Wang MD, Nie S. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol 2008;26(1):83–90.10.1038/nbt1377Search in Google Scholar PubMed
[119] Keren S, Zavaleta C, Cheng Z, de la Zerda A, Gheysens O, Gambhir SS. Noninvasive molecular imaging of small living subjects using Raman spectroscopy. Proc Natl Acad Sci USA 2008;105(15):5844–9.10.1073/pnas.0710575105Search in Google Scholar PubMed PubMed Central
[120] Maiti KK, Dinish US, Samanta A, Vendrell M, Soh KS, Park SJ, Olivo M, Chang YT. Multiplex targeted in vivo cancer detection using sensitive near-infrared SERS nanotags. Nano Today 2012;7(2):85–93.10.1016/j.nantod.2012.02.008Search in Google Scholar
[121] Küstner B, Gellner M, Schütz M, Schöppler F, Marx A, Ströbel P, Adam P, Schmuck C, Schlücker S. SERS labels for red laser excitation: silica-encapsulated SAMs on tunable gold/silver nanoshells. Angew Chem Int Ed Engl 2009;48(11):1950–3.10.1002/anie.200804518Search in Google Scholar PubMed
[122] Maiti KK, Dinish US, Fu CY, Lee JJ, Soh KS, Yun SW, Bhuvaneswari R, Olivo M, Chang YT. Development of biocompatible SERS nanotag with increased stability by chemisorption of reporter molecule for in vivo cancer detection. Biosens Bioelectron 2010;26(2):398–403.10.1016/j.bios.2010.07.123Search in Google Scholar PubMed
[123] Samanta A, Maiti KK, Soh KS, Liao X, Vendrell M, Dinish US, Yun SW, Bhuvaneswari R, Kim H, Rautela S, Chung J, Olivo M, Chang YT. Ultrasensitive near-infrared Raman reporters for SERS-based in vivo cancer detection. Angew Chem Int Ed Engl 2011;50(27):6089–92.10.1002/anie.201007841Search in Google Scholar PubMed
[124] von Maltzahn G, Centrone A, Park JH, Ramanathan R, Sailor MJ, Hatton TA, Bhatia SN. SERS-coded gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating. Adv Mater 2009;21(31):3175–80.10.1002/adma.200803464Search in Google Scholar PubMed PubMed Central
[125] Lee S, Chon H, Lee M, Choo J, Shin SY, Lee YH, Rhyu IJ, Son SW, Oh CH. Surface-enhanced Raman scattering imaging of HER2 cancer markers overexpressed in single MCF7 cells using antibody conjugated hollow gold nanospheres. Biosens Bioelectron 2009;24(7):2260–3.10.1016/j.bios.2008.10.018Search in Google Scholar PubMed
[126] Huang PJ, Chau LK, Yang TS, Tay LL, Lin TT. Nanoaggregate-embedded beads as novel Raman labels for biodetection. Adv Funct Mater 2009;19(2):242–8.10.1002/adfm.200800961Search in Google Scholar
[127] Han XX, Zhao B, Ozaki Y. Surface-enhanced Raman scattering for protein detection. Anal Bioanal Chem 2009;394(7):1719–27.10.1007/s00216-009-2702-3Search in Google Scholar PubMed
[128] Cho SJ, Ahn YH, Maiti KK, Dinish US, Fu CY, Thoniyot P, Olivo M, Chang YT. Combinatorial synthesis of a triphenylmethine library and their application in the development of surface enhanced Raman scattering (SERS) probes. Chem Commun (Camb) 2010;46(5):722–4.10.1039/B921550FSearch in Google Scholar
[129] Zhang Y, Hong H, Myklejord DV, Cai W. Molecular imaging with SERS-active nanoparticles. Small 2011;7(23):3261–9.10.1002/smll.201100597Search in Google Scholar PubMed PubMed Central
[130] Kong KV, Lam Z, Goh WD, Leong WK, Olivo M. Metal carbonyl-gold nanoparticle conjugates for live-cell SERS imaging. Angew Chem Int Ed Engl 2012;51(39):9796–9.10.1002/anie.201204349Search in Google Scholar PubMed
[131] Wang X, Qian X, Beitler JJ, Chen ZG, Khuri FR, Lewis MM, Shin HJ, Nie S, Shin DM. Detection of circulating tumor cells in human peripheral blood using surface-enhanced Raman scattering nanoparticles. Cancer Res 2011;71(5):1526–32.10.1158/0008-5472.CAN-10-3069Search in Google Scholar PubMed PubMed Central
[132] Jokerst JV, Miao Z, Zavaleta C, Cheng Z, Gambhir SS. Affibody-functionalized gold-silica nanoparticles for Raman molecular imaging of the epidermal growth factor receptor. Small 2011;7(5):625–33.10.1002/smll.201002291Search in Google Scholar PubMed PubMed Central
[133] Dinish US, Fu CY, Soh KS, Ramaswamy B, Kumar A, Olivo M. Highly sensitive SERS detection of cancer proteins in low sample volume using hollow core photonic crystal fiber. Biosens Bioelectron 2012;33(1):293–8.10.1016/j.bios.2011.12.056Search in Google Scholar PubMed
[134] Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ. Cancer statistics, 2008. CA Cancer J Clin 2008;58(2):71–96.10.3322/CA.2007.0010Search in Google Scholar PubMed
[135] Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 2010;127(12):2893–917.10.1002/ijc.25516Search in Google Scholar PubMed
[136] Wu P, Gao Y, Zhang H, Cai C. Aptamer-guided silver-gold bimetallic nanostructures with highly active surface-enhanced Raman scattering for specific detection and near-infrared photothermal therapy of human breast cancer cells. Anal Chem 2012;84(18):7692–9.10.1021/ac3015164Search in Google Scholar PubMed
[137] Park H, Lee S, Chen L, Lee EK, Shin SY, Lee YH, Son SW, Oh CH, Song JM, Kang SH, Choo J. SERS imaging of HER2-overexpressed MCF7 cells using antibody-conjugated gold nanorods. Phys Chem Chem Phys 2009;11(34):7444–9.10.1039/b904592aSearch in Google Scholar PubMed
[138] Wu P, Gao Y, Lu Y, Zhang H, Cai C. High specific detection and near-infrared photothermal therapy of lung cancer cells with high SERS active aptamer-silver-gold shell-core nanostructures. Analyst 2013;138(21):6501–10.10.1039/c3an01375hSearch in Google Scholar PubMed
[139] Chon H, Lee S, Son SW, Oh CH, Choo J. Highly sensitive immunoassay of lung cancer marker carcinoembryonic antigen using surface-enhanced Raman scattering of hollow gold nanospheres. Anal Chem 2009;81(8):3029–34.10.1021/ac802722cSearch in Google Scholar PubMed
[140] Hoehn D, Medeiros J, Konoplev S. Molecular pathology of chronic lymphocytic leukemia. In: Crisan, D, editor. Hematopathology: genomic mechanisms of neoplastic diseases. New York: Humana Press; 2010, p. 255–91.10.1007/978-1-60761-262-9_8Search in Google Scholar
[141] Naeim F. Principles of immunophenotyping. In: Naeim F, Rao PN, Grody WW, editors. Hematopathology: morphology, immunophenotype, cytogenetics, and molecular approaches. San Diego: Academic Press; 2008, p. 27–55.10.1016/B978-0-12-370607-2.00002-8Search in Google Scholar
[142] Nguyen CT, Nguyen JT, Rutledge S, Zhang J, Wang C, Walker GC. Detection of chronic lymphocytic leukemia cell surface markers using surface enhanced Raman scattering gold nanoparticles. Cancer Lett 2010;292(1):91–7.10.1016/j.canlet.2009.11.011Search in Google Scholar PubMed
[143] MacLaughlin CM, Mullaithilaga N, Yang G, Ip SY, Wang C, Walker GC. Surface-enhanced Raman scattering dye-labeled Au nanoparticles for triplexed detection of leukemia and lymphoma cells and SERS flow cytometry. Langmuir 2013;29(6):1908–19.10.1021/la303931cSearch in Google Scholar PubMed
[144] Xia W, Low PS. Folate-targeted therapies for cancer. J Med Chem 2010;53(19):6811–24.10.1021/jm100509vSearch in Google Scholar PubMed
[145] Kelemen LE. The role of folate receptor alpha in cancer development, progression and treatment: cause, consequence or innocent bystander? Int J Cancer 2006;119(2):243–50.10.1002/ijc.21712Search in Google Scholar PubMed
[146] Wang Z, Zong S, Yang J, Li J, Cui Y. Dual-mode probe based on mesoporous silica coated gold nanorods for targeting cancer cells. Biosens Bioelectron 2011;26(6):2883–9.10.1016/j.bios.2010.11.032Search in Google Scholar PubMed
[147] Schlücker S, Küstner B, Punge A, Bonfig R, Marx A, Ströbel P. Immuno-Raman microspectroscopy: in situ detection of antigens in tissue specimens by surface-enhanced Raman scattering. J Raman Spectrosc 2006;37(7):719–21.10.1002/jrs.1534Search in Google Scholar
[148] Jehn C, Küstner B, Adam P, Marx A, Ströbel P, Schmuck C, Schlücker S. Water soluble SERS labels comprising a SAM with dual spacers for controlled bioconjugation. Phys Chem Chem Phys 2009;11(34):7499–504.10.1039/b905092bSearch in Google Scholar PubMed
[149] Sha MY, Xu H, Natan MJ, Cromer R. Surface-enhanced Raman scattering tags for rapid and homogeneous detection of circulating tumor cells in the presence of human whole blood. J Am Chem Soc 2008;130(51):17214–5.10.1021/ja804494mSearch in Google Scholar PubMed PubMed Central
[150] Wu L, Wang Z, Zong S, Chen H, Wang C, Xu S, Cui Y. Simultaneous evaluation of p53 and p21 expression level for early cancer diagnosis using SERS technique. Analyst 2013;138(12):3450–6.10.1039/c3an00181dSearch in Google Scholar PubMed
[151] Wang HN, Vo-Dinh T. Multiplex detection of breast cancer biomarkers using plasmonic molecular sentinel nanoprobes. Nanotechnology 2009;20(6):065101.10.1088/0957-4484/20/6/065101Search in Google Scholar PubMed PubMed Central
[152] Dinish US, Balasundaram G, Chang YT, Olivo M. Sensitive multiplex detection of serological liver cancer biomarkers using SERS-active photonic crystal fiber probe. J Biophotonics 2014;7(11–12):956–65.10.1002/jbio.201300084Search in Google Scholar PubMed
[153] Dinish US, Balasundaram G, Chang YT, Olivo M. Actively targeted in vivo multiplex detection of intrinsic cancer biomarkers using biocompatible SERS nanotags. Sci Rep 2014;F4:4075.10.1038/srep04075Search in Google Scholar PubMed PubMed Central
[154] Zavaleta CL, Garai E, Liu JT, Sensarn S, Mandella MJ, Van de Sompel D, Friedland S, Van Dam J, Contag CH, Gambhir SS. A Raman-based endoscopic strategy for multiplexed molecular imaging. Proc Natl Acad Sci USA 2013;110(25):E2288–97.10.1073/pnas.1211309110Search in Google Scholar PubMed PubMed Central
[155] Feng S, Chen R, Lin J, Pan J, Chen G, Li Y, Cheng M, Huang Z, Chen J, Zeng H. Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis. Biosens Bioelectron 2010;25(11):2414–9.10.1016/j.bios.2010.03.033Search in Google Scholar PubMed
[156] Feng S, Chen R, Lin J, Pan J, Wu Y, Li Y, Chen J, Zeng H. Gastric cancer detection based on blood plasma surface-enhanced Raman spectroscopy excited by polarized laser light. Biosens Bioelectron 2011;26(7):3167–74.10.1016/j.bios.2010.12.020Search in Google Scholar PubMed
[157] Li SX, Zeng QY, Li LF, Zhang YJ, Wan MM, Liu ZM, Xiong HL, Guo ZY, Liu SH. Study of support vector machine and serum surface-enhanced Raman spectroscopy for noninvasive esophageal cancer detection. J Biomed Opt 2013;18(2):27008.10.1117/1.JBO.18.2.027008Search in Google Scholar PubMed
[158] Feng S, Lin D, Lin J, Li B, Huang Z, Chen G, Zhang W, Wang L, Pan J, Chen R, Zeng H. Blood plasma surface-enhanced Raman spectroscopy for non-invasive optical detection of cervical cancer. Analyst 2013;138(14):3967–74.10.1039/c3an36890dSearch in Google Scholar PubMed
[159] Xavier CP, Lima CF, Preto A, Seruca R, Fernandes-Ferreira M, Pereira-Wilson C. Luteolin, quercetin and ursolic acid are potent inhibitors of proliferation and inducers of apoptosis in both KRAS and BRAF mutated human colorectal cancer cells. Cancer Lett 2009;281(2):162–70.10.1016/j.canlet.2009.02.041Search in Google Scholar PubMed
[160] Winawer SJ. The multidisciplinary management of gastrointestinal cancer. Colorectal cancer screening. Best Pract Res Clin Gastroenterol 2007;21(6):1031–48.10.1016/j.bpg.2007.09.004Search in Google Scholar PubMed
[161] Lin D, Feng S, Pan J, Chen Y, Lin J, Chen G, Xie S, Zeng H, Chen R. Colorectal cancer detection by gold nanoparticle based surface-enhanced Raman spectroscopy of blood serum and statistical analysis. Opt Express 2011;19(14):13565–77.10.1364/OE.19.013565Search in Google Scholar PubMed
[162] Chen Y, Chen G, Feng S, Pan J, Zheng X, Su Y, Chen Y, Huang Z, Lin X, Lan F, Chen R, Zeng H. Label-free serum ribonucleic acid analysis for colorectal cancer detection by surface-enhanced Raman spectroscopy and multivariate analysis. J Biomed Opt 2012;17(6):067003.10.1117/1.JBO.17.6.067003Search in Google Scholar PubMed
[163] Kang H, Jeong S, Park YG, Yim J, Jun BH, Kyeong S, Yang JK, Kim G, Hong SG, Lee LP, Kim JH, Lee HY, Jeong DH, Lee YS. Near-infrared SERS nanoprobes with plasmonic Au/Ag hollow-shell assemblies for in vivo multiplex detection. Adv Funct Mater 2013;23(30):3719–27.10.1002/adfm.201203726Search in Google Scholar
[164] Ito H, Inoue H, Hasegawa K, Hasegawa Y, Shimizu T, Kimura S, Onimaru M, Ikeda H, Kudo SE. Use of surface-enhanced Raman scattering for detection of cancer-related serum-constituents in gastrointestinal cancer patients. Nanomedicine 2014;10(3):599–608.10.1016/j.nano.2013.09.006Search in Google Scholar PubMed
©2015 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Editorial
- Sensors in diagnostics and monitoring
- Magazine section
- Snapshots
- Reviews
- Recent advances in SPR and SERS for sensitive translational medical diagnostics
- Raman spectroscopy for the discrimination of cancerous and normal skin
- Original contribution
- Fluorescence-optical handheld non-contact sensor for rapid cleaning validation of surfaces
- Preliminary research reports
- Evaluation of a novel skin tone meter and the correlation between Fitzpatrick skin type and skin color
- In-line optical monitoring of oxygen saturation and hematocrit for cardiopulmonary bypass: Adjustment-free and bloodless calibration
- Short communications
- Non-invasive detection of free hemoglobin in red blood cell concentrates for quality assurance
- Development of an in-vivo sensor for monitoring of water content in skin
- Congress announcements
- LASER World of PHOTONICS – DGLM Application Panel: Laser-advanced new methods for diagnostics and therapeutics
- Congresses 2015/2016
Articles in the same Issue
- Frontmatter
- Editorial
- Sensors in diagnostics and monitoring
- Magazine section
- Snapshots
- Reviews
- Recent advances in SPR and SERS for sensitive translational medical diagnostics
- Raman spectroscopy for the discrimination of cancerous and normal skin
- Original contribution
- Fluorescence-optical handheld non-contact sensor for rapid cleaning validation of surfaces
- Preliminary research reports
- Evaluation of a novel skin tone meter and the correlation between Fitzpatrick skin type and skin color
- In-line optical monitoring of oxygen saturation and hematocrit for cardiopulmonary bypass: Adjustment-free and bloodless calibration
- Short communications
- Non-invasive detection of free hemoglobin in red blood cell concentrates for quality assurance
- Development of an in-vivo sensor for monitoring of water content in skin
- Congress announcements
- LASER World of PHOTONICS – DGLM Application Panel: Laser-advanced new methods for diagnostics and therapeutics
- Congresses 2015/2016