Startseite Furanyl-Chalcones as antimalarial agent: synthesis, in vitro study, DFT, and docking analysis of PfDHFR inhibition
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Furanyl-Chalcones as antimalarial agent: synthesis, in vitro study, DFT, and docking analysis of PfDHFR inhibition

  • Fia Fathiana Wulan , Rachelio Clorozenta Pranaya , Jecky , Intan Nadira , Endang Astuti , Niko Prasetyo und Tutik Dwi Wahyuningsih ORCID logo EMAIL logo
Veröffentlicht/Copyright: 27. März 2025

Abstract

Malaria continues to pose a significant threat to global health, demanding the development of novel antimalarial agents. This study investigated the antimalarial potential of eleven (11) furanyl-chalcone derivatives synthesized from two distinct furan sources: 2-acetylfuran and furfuraldehyde with Claisen–Schmidt condensation under base conditions, and successfully synthesized target compound with yields ranging from 67 % to 94 %. Structural characterization was achieved using spectroscopic techniques, including NMR, IR, and GC-MS. Our findings revealed that compounds derived from 2-acetylfuran exhibited superior antimalarial activity compared to their furfuraldehyde counterparts. Compounds B1 and B4 demonstrated the most promising activity with IC50 values of 1.01 μM and 1.04 μM, respectively against P.falciparum FCR-3 strain. Our analysis revealed that B4 forms a stable hydrogen bond with Ser108 in the active site of wild-type PfDHFR, with a binding affinity of −6.7 kcal/mol. Importantly, this interaction was preserved even in the presence of a mutation at this residue, with B4 forming a hydrogen bond with Asn108 in the mutant enzyme, exhibiting a binding affinity of −7.0 kcal/mol. This suggests that B4 has the potential to overcome pyrimethamine resistance. Further analysis, utilizing DFT calculations and MEP, identified B4 as the most reactive compound within the series. The reactive site was located in the carbonyl group, with enhanced reactivity attributed to the presence of the electron-rich furan ring and the ortho-methoxy substituent.


Corresponding author: Tutik Dwi Wahyuningsih, Department of Chemistry, Faculty of Mathematics and Natural Sciences Universitas Gadjah Mada, Yogyakarta, 42124, Indonesia, e-mail:
Article note: A collection of invited papers based on presentations at the 9th International Conference for Young Chemists (ICYC 2024) held on 9–11 Oct 2024 in Penang, Malaysia.

Award Identifier / Grant number: 2081/UN1/DITLIT/PT.01.03/2024

Acknowledgments

Special appreciation is extended to the Austrian–Indonesian Centre for Computational Chemistry for providing access to Gaussian 09.

  1. Research ethics: The Medical and Health Research Ethics Committee (MHREC), Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada – Dr. Sardjito General Hospital, provided ethical clearance for the antimalarial test, with the reference number KE/FK/1421/EC/2022.

  2. Informed consent: Not applicable.

  3. Author contributions: FFW: Data Collection or Processing, Literature Search, Writing RCP: Data Collection or Processing J: Data Collection or Processing, IN: Data Collection or Processing EA: Design, Writing NP: Design, Writing TDW: Concept, Design, Literature Search, Writing.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: The authors gratefully acknowledge the Indonesian Ministry of Higher Education, Science, and Technology for the Pendidikan Magister Menuju Doktor Untuk Sarjana Unggul (PMDSU) scholarship awarded to Fia Fathiana Wulan (contract number 2081/UN1/DITLIT/PT.01.03/2024).

  7. Data availability: Not applicable.

References

1. Siqueira-Neto, J. L.; Wicht, K. J.; Chibale, K.; Burrows, J. N.; Fidock, D. A.; Winzeler, E. A. Nat. Rev. Drug Discov. 2023, 22, 807–826; https://doi.org/10.1038/s41573-023-00772-9.Suche in Google Scholar PubMed PubMed Central

2. Hanandita, W.; Tampubolon, G. Int. J. Health Geogr. 2016, 15, 1–15; https://doi.org/10.1186/s12942-015-0031-7.Suche in Google Scholar PubMed PubMed Central

3. Ministry of Health Republic Indonesia. Kasus Malaria di Indonesia. 2024, https://malaria.kemkes.go.id/case.Suche in Google Scholar

4. Mandal, S. Asian Pacific J. Trop. Dis. 2014, 4, S13–S26; https://doi.org/10.1016/s2222-1808(14)60410-2.Suche in Google Scholar

5. Wicht, K. J.; Mok, S.; Fidock, D. A. Annu. Rev. Microbiol. 2020, 74, 431–454; https://doi.org/10.1146/annurev-micro-020518-115546.Suche in Google Scholar PubMed PubMed Central

6. Guémas, E.; Coppée, R.; Ménard, S.; du Manoir, M.; Nsango, S.; Makaba Mvumbi, D.; Nakoune, E.; Eboumbou Moukoko, C. E.; Bouyou Akotet, M. K.; Mirabeau, T. Y.; Manguin, S.; Malekita Yobi, D.; Akiana, J.; Kouna, L. C.; Mawili Mboumba, D. P.; Voumbo-Matoumona, D. F.; Otam, A. L.; Rubbo, P. A.; Lombart, J. P.; Kwanai, E.; Cohen, O.; Iriart, X.; Ayong, L.; Lekana-Douki, J. B.; Ariey, F.; Berry, A. Lancet Microbe 2023, 4, e983–e993; https://doi.org/10.1016/s2666-5247(23)00211-2.Suche in Google Scholar PubMed

7. Gatton, M. L.; Martin, L. B.; Cheng, Q. Antimicrob. Agents Chemother. 2004, 48, 2116–2123; https://doi.org/10.1128/aac.48.6.2116-2123.2004.Suche in Google Scholar PubMed PubMed Central

8. Yuvaniyama, J.; Chitnumsub, P.; Kamchonwongpaisan, S.; Vanichtanankul, J.; Sirawaraporn, W.; Taylor, P.; Walkinshaw, M. D.; Yuthavong, Y. Nat. Struct. Biol. 2003, 10, 357–365; https://doi.org/10.1038/nsb921.Suche in Google Scholar PubMed

9. Hermawan, F.; Jumina, J.; Pranowo, H. D.; Sholikhah, E. N.; Iresha, M. R. Indones. J. Chem. 2022, 22, 263–271; https://doi.org/10.22146/ijc.69448.Suche in Google Scholar

10. Gomes, M. N.; Muratov, E. N.; Pereira, M.; Peixoto, J. C.; Rosseto, L. P.; Cravo, P. V. L.; Andrade, C. H.; Neves, B. J. Molecules; https://doi.org/10.3390/molecules22081210.Suche in Google Scholar PubMed PubMed Central

11. Kalaskar, M. G.; Surana, S. J. Anc. Sci. Life 2012, 32, 107–111; https://doi.org/10.4103/0257-7941.118550.Suche in Google Scholar PubMed PubMed Central

12. Pereira, V. D. J.; Auxiliadora, M.; Kaplan, C. Floresta e Ambient. 2013, 20, 1–15.10.4322/floram.2012.075Suche in Google Scholar

13. da Silva, L.; Donato, I. A.; Gonçalves, C. A. C.; Scherf, J. R.; dos Santos, H. S.; Mori, E.; Coutinho, H. D. M.; da Cunha, F. A. B. 3 Biotech 2023, 13, 1–30.10.1007/s13205-022-03398-7Suche in Google Scholar PubMed PubMed Central

14. Qin, H. L.; Zhang, Z. W.; Lekkala, R.; Alsulami, H.; Rakesh, K. P. Eur. J. Med. Chem. 2020, 193, 112215; https://doi.org/10.1016/j.ejmech.2020.112215.Suche in Google Scholar PubMed

15. Smit, F. J.; N’Da, D. D. Bioorg. Med. Chem. 2014, 22, 1128–1138.10.1016/j.bmc.2013.12.032Suche in Google Scholar PubMed

16. Yadav, N.; Dixit, S. K.; Bhattacharya, A.; Mishra, L. C.; Sharma, M.; Awasthi, S. K.; Bhasin, V. K. Chem. Biol. Drug Des. 2012, 80, 340–347; https://doi.org/10.1111/j.1747-0285.2012.01383.x.Suche in Google Scholar PubMed

17. Mulyana, F. E.; Waskitha, S. S. W.; Pranowo, D.; Khairuddean, M.; Wahyumingsih, T. D. Pharmacia 2023, 70, 1305–1313; https://doi.org/10.3897/pharmacia.70.e107406.Suche in Google Scholar

18. Waskitha, S. S. W.; Mulyana, F. E.; Riza, N. F.; Stansyah, Y. M.; Tahir, I.; Wahyuningsih, T. D. Rasayan J. Chem. 2021, 14, 2363–2370; https://doi.org/10.31788/rjc.2021.1445867.Suche in Google Scholar

19. Syahri, J.; Yuanita, E.; Nurohmah, B. A.; Armunanto, R.; Purwono, B. Asian Pac. J. Trop. Biomed. 2017, 7, 675–679; https://doi.org/10.1016/j.apjtb.2017.07.004.Suche in Google Scholar

20. Singh, P.; Anand, A.; Kumar, V. Eur. J. Med. Chem. 2014, 85, 758–777; https://doi.org/10.1016/j.ejmech.2014.08.033.Suche in Google Scholar PubMed

21. Elkanzi, N. A. A.; Hrichi, H.; Alolayan, R. A.; Derafa, W.; Zahou, F. M.; Bakr, R. B. ACS Omega 2022, 7, 27769–27786; https://doi.org/10.1021/acsomega.2c01779.Suche in Google Scholar PubMed PubMed Central

22. Rudrapal, M.; Khan, J.; Bin Dukhyil, A. A.; Alarousy, R. M. I. I.; Attah, E. I.; Sharma, T.; Khairnar, S. J.; Bendale, A. R. Molecules 2021, 26, 1–21.10.3390/molecules26237177Suche in Google Scholar PubMed PubMed Central

23. Wiratama, M.; Satria, S.; Waskitha, W.; Haryadi, W.; Wahyuningsih, T. D. Trop. J. Pharm. Res. 2022, 21, 1255–1261; https://doi.org/10.4314/tjpr.v21i6.18.Suche in Google Scholar

24. Jasim, H. A.; Nahar, L.; Jasim, M. A.; Moore, S. A.; Ritchie, K. J.; Sarker, S. D. Biomolecules; https://doi.org/10.3390/biom11081203.Suche in Google Scholar PubMed PubMed Central

25. Meanwell, N. A. J. Med. Chem. 2011, 54, 2529–2591; https://doi.org/10.1021/jm1013693.Suche in Google Scholar PubMed

26. Go, M.-L.; Liu, M.; Wilairat, P.; Rosenthal, P. J.; Saliba, K. J.; Kirk, K. Antimicrob. Agents Chemother. 2004, 48, 3241–3245; https://doi.org/10.1128/aac.48.9.3241-3245.2004.Suche in Google Scholar

27. Akolkar, H. N.; Dengale, S. G.; Deshmukh, K. K.; Karale, B. K.; Darekar, N. R.; Khedkar, V. M.; Shaikh, M. H. Polycycl. Aromat. Compd. 2022, 42, 1959–1971; https://doi.org/10.1080/10406638.2020.1821231.Suche in Google Scholar

28. Deepika, C.; Isha, R.; Jyoti, M.; Rajat, G.; Asif, H.; Prabha, G.; Sukhbir, K. L.; Cent. Nerv. Syst. Agents Med. Chem. 2022, 22, 39–56.Suche in Google Scholar

29. Mahmud, A. W.; Shallangwa, G. A.; Uzairu, A. Bull. Natl. Res. Cent.; https://doi.org/10.1186/s42269-020-00333-9.Suche in Google Scholar

30. Mahapatra, D. K.; Bharti, S. K.; Asati, V. Eur. J. Med. Chem. 2015, 101, 496–524; https://doi.org/10.1016/j.ejmech.2015.06.052.Suche in Google Scholar PubMed

31. Cativiela, C.; Garcia, J. I. Can. J. Chem. 1990, 68, 1477–1481; https://doi.org/10.1139/v90-226.Suche in Google Scholar

32. Simmler, C.; Lankin, D. C.; Nikolić, D.; van Breemen, R. B.; Pauli, G. F. Fitoterapia 2017, 121, 6–15; https://doi.org/10.1016/j.fitote.2017.06.017.Suche in Google Scholar PubMed PubMed Central

33. Suma, A. A. T.; Wahyuningsih, T. D.; Mustofa. Rasayan J. Chem. 2019, 12, 502–510.10.31788/RJC.2019.1225020Suche in Google Scholar

34. Dziągwa-Becker, M.; Oleszek, M.; Zielińska, S.; Oleszek, W. Molecules 2024, 29, 1–11.10.3390/molecules29102247Suche in Google Scholar PubMed PubMed Central

35. Sinha, S.; Batovska, D. I.; Medhi, B.; Radotra, B. D.; Bhalla, A.; Markova, N.; Sehgal, R. Malar. J. 2019, 18, 421; https://doi.org/10.1186/s12936-019-3060-z.Suche in Google Scholar PubMed PubMed Central

36. Batista, R.; De Jesus Silva Júnior, A.; De Oliveira, A. B. Molecules 2009, 14, 3037–3072.10.3390/molecules14083037Suche in Google Scholar PubMed PubMed Central

37. Patel, K.; Karthikeyan, C.; Raja Solomon, V.; Hari Narayana Moorthy, N. S.; Lee, H.; Sahu, K.; Singh Deora, G.; Trivedi, P. Lett. Drug Des. Discov. 2011, 8, 308–311; https://doi.org/10.2174/157018011794839475.Suche in Google Scholar

38. Tomar, V.; Bhattacharjee, G.; Kamaluddin; Rajakumar, S.; Srivastava, K.; Puri, S. K. Eur. J. Med. Chem. 2010, 45, 745–751; https://doi.org/10.1016/j.ejmech.2009.11.022.Suche in Google Scholar PubMed

39. Kufareva, I.; Abagyan, R. Methods Mol. Biol. 2012, 857, 231–257; https://doi.org/10.1007/978-1-61779-588-6_10.Suche in Google Scholar PubMed PubMed Central

40. Vanichtanankul, J.; Taweechai, S.; Yuvaniyama, J.; Vilaivan, T.; Chitnumsub, P.; Kamchonwongpaisan, S.; Yuthavong, Y. ACS Chem. Biol. 2011, 6, 905–911; https://doi.org/10.1021/cb200124r.Suche in Google Scholar PubMed

41. Pinzi, L.; Rastelli, G. Int. J. Mol. Sci. 2019, 20, 4331; https://doi.org/10.3390/ijms20184331.Suche in Google Scholar PubMed PubMed Central

42. Lemcke, T.; Christensen, I. T.; Jørgensen, F. S. Bioorg. Med. Chem. 1999, 7, 1003–1011; https://doi.org/10.1016/s0968-0896(99)00018-8.Suche in Google Scholar PubMed

43. Pegu, D.; Deb, J.; Van Alsenoy, C.; Sarkar, U. Spectrosc. Lett. 2017, 50, 232–243; https://doi.org/10.1080/00387010.2017.1308381.Suche in Google Scholar

44. Lipinski, C. A. Drug Discov. Today Technol. 2004, 1, 337–341; https://doi.org/10.1016/j.ddtec.2004.11.007.Suche in Google Scholar PubMed

45. Wang, N. N.; Huang, C.; Dong, J.; Yao, Z. J.; Zhu, M. F.; Deng, Z. K.; Lv, B.; Lu, A. P.; Chen, A. F.; Cao, D. S. RSC Adv. 2017, 7, 19007–19018; https://doi.org/10.1039/c6ra28442f.Suche in Google Scholar

46. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, D. J. F. K.; Montgomery, J. A.Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; J. M. M; 2016.Suche in Google Scholar

47. Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E. J. Comput. Chem. 2004, 25, 1605–1612; https://doi.org/10.1002/jcc.20084.Suche in Google Scholar PubMed

48. Trott, O.; Olson, A. J. J. Comput. Chem. 2009, 31; https://doi.org/10.1002/jcc.21334.Suche in Google Scholar PubMed PubMed Central

49. D. S. BIOVIA, 2020.Suche in Google Scholar

50. Koopmans, T. Physica 1934, 1, 104–113; https://doi.org/10.1016/s0031-8914(34)90011-2.Suche in Google Scholar

51. Lu, T.; Chen, F. J. Comput. Chem. 2012, 33, 580–592; https://doi.org/10.1002/jcc.22885.Suche in Google Scholar PubMed

52. Humphrey, W.; Dalke, A.; Schulten, K. J. Mol. Graph. 1996, 14, 33–38; https://doi.org/10.1016/0263-7855(96)00018-5.Suche in Google Scholar PubMed

53. Xiong, G.; Wu, Z.; Yi, J.; Fu, L.; Yang, Z.; Hsieh, C.; Yin, M.; Zeng, X.; Wu, C.; Lu, A.; Chen, X.; Hou, T.; Cao, D. Nucleic Acids Res. 2021, 49, W5–W14; https://doi.org/10.1093/nar/gkab255.Suche in Google Scholar PubMed PubMed Central


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/pac-2024-0330).


Received: 2024-11-21
Accepted: 2025-02-10
Published Online: 2025-03-27
Published in Print: 2025-06-26

© 2025 IUPAC & De Gruyter

Heruntergeladen am 2.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/pac-2024-0330/html
Button zum nach oben scrollen