Furanyl-Chalcones as antimalarial agent: synthesis, in vitro study, DFT, and docking analysis of PfDHFR inhibition
-
Fia Fathiana Wulan
Abstract
Malaria continues to pose a significant threat to global health, demanding the development of novel antimalarial agents. This study investigated the antimalarial potential of eleven (11) furanyl-chalcone derivatives synthesized from two distinct furan sources: 2-acetylfuran and furfuraldehyde with Claisen–Schmidt condensation under base conditions, and successfully synthesized target compound with yields ranging from 67 % to 94 %. Structural characterization was achieved using spectroscopic techniques, including NMR, IR, and GC-MS. Our findings revealed that compounds derived from 2-acetylfuran exhibited superior antimalarial activity compared to their furfuraldehyde counterparts. Compounds B1 and B4 demonstrated the most promising activity with IC50 values of 1.01 μM and 1.04 μM, respectively against P.falciparum FCR-3 strain. Our analysis revealed that B4 forms a stable hydrogen bond with Ser108 in the active site of wild-type PfDHFR, with a binding affinity of −6.7 kcal/mol. Importantly, this interaction was preserved even in the presence of a mutation at this residue, with B4 forming a hydrogen bond with Asn108 in the mutant enzyme, exhibiting a binding affinity of −7.0 kcal/mol. This suggests that B4 has the potential to overcome pyrimethamine resistance. Further analysis, utilizing DFT calculations and MEP, identified B4 as the most reactive compound within the series. The reactive site was located in the carbonyl group, with enhanced reactivity attributed to the presence of the electron-rich furan ring and the ortho-methoxy substituent.
Award Identifier / Grant number: 2081/UN1/DITLIT/PT.01.03/2024
Acknowledgments
Special appreciation is extended to the Austrian–Indonesian Centre for Computational Chemistry for providing access to Gaussian 09.
-
Research ethics: The Medical and Health Research Ethics Committee (MHREC), Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada – Dr. Sardjito General Hospital, provided ethical clearance for the antimalarial test, with the reference number KE/FK/1421/EC/2022.
-
Informed consent: Not applicable.
-
Author contributions: FFW: Data Collection or Processing, Literature Search, Writing RCP: Data Collection or Processing J: Data Collection or Processing, IN: Data Collection or Processing EA: Design, Writing NP: Design, Writing TDW: Concept, Design, Literature Search, Writing.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: The authors gratefully acknowledge the Indonesian Ministry of Higher Education, Science, and Technology for the Pendidikan Magister Menuju Doktor Untuk Sarjana Unggul (PMDSU) scholarship awarded to Fia Fathiana Wulan (contract number 2081/UN1/DITLIT/PT.01.03/2024).
-
Data availability: Not applicable.
References
1. Siqueira-Neto, J. L.; Wicht, K. J.; Chibale, K.; Burrows, J. N.; Fidock, D. A.; Winzeler, E. A. Nat. Rev. Drug Discov. 2023, 22, 807–826; https://doi.org/10.1038/s41573-023-00772-9.Suche in Google Scholar PubMed PubMed Central
2. Hanandita, W.; Tampubolon, G. Int. J. Health Geogr. 2016, 15, 1–15; https://doi.org/10.1186/s12942-015-0031-7.Suche in Google Scholar PubMed PubMed Central
3. Ministry of Health Republic Indonesia. Kasus Malaria di Indonesia. 2024, https://malaria.kemkes.go.id/case.Suche in Google Scholar
4. Mandal, S. Asian Pacific J. Trop. Dis. 2014, 4, S13–S26; https://doi.org/10.1016/s2222-1808(14)60410-2.Suche in Google Scholar
5. Wicht, K. J.; Mok, S.; Fidock, D. A. Annu. Rev. Microbiol. 2020, 74, 431–454; https://doi.org/10.1146/annurev-micro-020518-115546.Suche in Google Scholar PubMed PubMed Central
6. Guémas, E.; Coppée, R.; Ménard, S.; du Manoir, M.; Nsango, S.; Makaba Mvumbi, D.; Nakoune, E.; Eboumbou Moukoko, C. E.; Bouyou Akotet, M. K.; Mirabeau, T. Y.; Manguin, S.; Malekita Yobi, D.; Akiana, J.; Kouna, L. C.; Mawili Mboumba, D. P.; Voumbo-Matoumona, D. F.; Otam, A. L.; Rubbo, P. A.; Lombart, J. P.; Kwanai, E.; Cohen, O.; Iriart, X.; Ayong, L.; Lekana-Douki, J. B.; Ariey, F.; Berry, A. Lancet Microbe 2023, 4, e983–e993; https://doi.org/10.1016/s2666-5247(23)00211-2.Suche in Google Scholar PubMed
7. Gatton, M. L.; Martin, L. B.; Cheng, Q. Antimicrob. Agents Chemother. 2004, 48, 2116–2123; https://doi.org/10.1128/aac.48.6.2116-2123.2004.Suche in Google Scholar PubMed PubMed Central
8. Yuvaniyama, J.; Chitnumsub, P.; Kamchonwongpaisan, S.; Vanichtanankul, J.; Sirawaraporn, W.; Taylor, P.; Walkinshaw, M. D.; Yuthavong, Y. Nat. Struct. Biol. 2003, 10, 357–365; https://doi.org/10.1038/nsb921.Suche in Google Scholar PubMed
9. Hermawan, F.; Jumina, J.; Pranowo, H. D.; Sholikhah, E. N.; Iresha, M. R. Indones. J. Chem. 2022, 22, 263–271; https://doi.org/10.22146/ijc.69448.Suche in Google Scholar
10. Gomes, M. N.; Muratov, E. N.; Pereira, M.; Peixoto, J. C.; Rosseto, L. P.; Cravo, P. V. L.; Andrade, C. H.; Neves, B. J. Molecules; https://doi.org/10.3390/molecules22081210.Suche in Google Scholar PubMed PubMed Central
11. Kalaskar, M. G.; Surana, S. J. Anc. Sci. Life 2012, 32, 107–111; https://doi.org/10.4103/0257-7941.118550.Suche in Google Scholar PubMed PubMed Central
12. Pereira, V. D. J.; Auxiliadora, M.; Kaplan, C. Floresta e Ambient. 2013, 20, 1–15.10.4322/floram.2012.075Suche in Google Scholar
13. da Silva, L.; Donato, I. A.; Gonçalves, C. A. C.; Scherf, J. R.; dos Santos, H. S.; Mori, E.; Coutinho, H. D. M.; da Cunha, F. A. B. 3 Biotech 2023, 13, 1–30.10.1007/s13205-022-03398-7Suche in Google Scholar PubMed PubMed Central
14. Qin, H. L.; Zhang, Z. W.; Lekkala, R.; Alsulami, H.; Rakesh, K. P. Eur. J. Med. Chem. 2020, 193, 112215; https://doi.org/10.1016/j.ejmech.2020.112215.Suche in Google Scholar PubMed
15. Smit, F. J.; N’Da, D. D. Bioorg. Med. Chem. 2014, 22, 1128–1138.10.1016/j.bmc.2013.12.032Suche in Google Scholar PubMed
16. Yadav, N.; Dixit, S. K.; Bhattacharya, A.; Mishra, L. C.; Sharma, M.; Awasthi, S. K.; Bhasin, V. K. Chem. Biol. Drug Des. 2012, 80, 340–347; https://doi.org/10.1111/j.1747-0285.2012.01383.x.Suche in Google Scholar PubMed
17. Mulyana, F. E.; Waskitha, S. S. W.; Pranowo, D.; Khairuddean, M.; Wahyumingsih, T. D. Pharmacia 2023, 70, 1305–1313; https://doi.org/10.3897/pharmacia.70.e107406.Suche in Google Scholar
18. Waskitha, S. S. W.; Mulyana, F. E.; Riza, N. F.; Stansyah, Y. M.; Tahir, I.; Wahyuningsih, T. D. Rasayan J. Chem. 2021, 14, 2363–2370; https://doi.org/10.31788/rjc.2021.1445867.Suche in Google Scholar
19. Syahri, J.; Yuanita, E.; Nurohmah, B. A.; Armunanto, R.; Purwono, B. Asian Pac. J. Trop. Biomed. 2017, 7, 675–679; https://doi.org/10.1016/j.apjtb.2017.07.004.Suche in Google Scholar
20. Singh, P.; Anand, A.; Kumar, V. Eur. J. Med. Chem. 2014, 85, 758–777; https://doi.org/10.1016/j.ejmech.2014.08.033.Suche in Google Scholar PubMed
21. Elkanzi, N. A. A.; Hrichi, H.; Alolayan, R. A.; Derafa, W.; Zahou, F. M.; Bakr, R. B. ACS Omega 2022, 7, 27769–27786; https://doi.org/10.1021/acsomega.2c01779.Suche in Google Scholar PubMed PubMed Central
22. Rudrapal, M.; Khan, J.; Bin Dukhyil, A. A.; Alarousy, R. M. I. I.; Attah, E. I.; Sharma, T.; Khairnar, S. J.; Bendale, A. R. Molecules 2021, 26, 1–21.10.3390/molecules26237177Suche in Google Scholar PubMed PubMed Central
23. Wiratama, M.; Satria, S.; Waskitha, W.; Haryadi, W.; Wahyuningsih, T. D. Trop. J. Pharm. Res. 2022, 21, 1255–1261; https://doi.org/10.4314/tjpr.v21i6.18.Suche in Google Scholar
24. Jasim, H. A.; Nahar, L.; Jasim, M. A.; Moore, S. A.; Ritchie, K. J.; Sarker, S. D. Biomolecules; https://doi.org/10.3390/biom11081203.Suche in Google Scholar PubMed PubMed Central
25. Meanwell, N. A. J. Med. Chem. 2011, 54, 2529–2591; https://doi.org/10.1021/jm1013693.Suche in Google Scholar PubMed
26. Go, M.-L.; Liu, M.; Wilairat, P.; Rosenthal, P. J.; Saliba, K. J.; Kirk, K. Antimicrob. Agents Chemother. 2004, 48, 3241–3245; https://doi.org/10.1128/aac.48.9.3241-3245.2004.Suche in Google Scholar
27. Akolkar, H. N.; Dengale, S. G.; Deshmukh, K. K.; Karale, B. K.; Darekar, N. R.; Khedkar, V. M.; Shaikh, M. H. Polycycl. Aromat. Compd. 2022, 42, 1959–1971; https://doi.org/10.1080/10406638.2020.1821231.Suche in Google Scholar
28. Deepika, C.; Isha, R.; Jyoti, M.; Rajat, G.; Asif, H.; Prabha, G.; Sukhbir, K. L.; Cent. Nerv. Syst. Agents Med. Chem. 2022, 22, 39–56.Suche in Google Scholar
29. Mahmud, A. W.; Shallangwa, G. A.; Uzairu, A. Bull. Natl. Res. Cent.; https://doi.org/10.1186/s42269-020-00333-9.Suche in Google Scholar
30. Mahapatra, D. K.; Bharti, S. K.; Asati, V. Eur. J. Med. Chem. 2015, 101, 496–524; https://doi.org/10.1016/j.ejmech.2015.06.052.Suche in Google Scholar PubMed
31. Cativiela, C.; Garcia, J. I. Can. J. Chem. 1990, 68, 1477–1481; https://doi.org/10.1139/v90-226.Suche in Google Scholar
32. Simmler, C.; Lankin, D. C.; Nikolić, D.; van Breemen, R. B.; Pauli, G. F. Fitoterapia 2017, 121, 6–15; https://doi.org/10.1016/j.fitote.2017.06.017.Suche in Google Scholar PubMed PubMed Central
33. Suma, A. A. T.; Wahyuningsih, T. D.; Mustofa. Rasayan J. Chem. 2019, 12, 502–510.10.31788/RJC.2019.1225020Suche in Google Scholar
34. Dziągwa-Becker, M.; Oleszek, M.; Zielińska, S.; Oleszek, W. Molecules 2024, 29, 1–11.10.3390/molecules29102247Suche in Google Scholar PubMed PubMed Central
35. Sinha, S.; Batovska, D. I.; Medhi, B.; Radotra, B. D.; Bhalla, A.; Markova, N.; Sehgal, R. Malar. J. 2019, 18, 421; https://doi.org/10.1186/s12936-019-3060-z.Suche in Google Scholar PubMed PubMed Central
36. Batista, R.; De Jesus Silva Júnior, A.; De Oliveira, A. B. Molecules 2009, 14, 3037–3072.10.3390/molecules14083037Suche in Google Scholar PubMed PubMed Central
37. Patel, K.; Karthikeyan, C.; Raja Solomon, V.; Hari Narayana Moorthy, N. S.; Lee, H.; Sahu, K.; Singh Deora, G.; Trivedi, P. Lett. Drug Des. Discov. 2011, 8, 308–311; https://doi.org/10.2174/157018011794839475.Suche in Google Scholar
38. Tomar, V.; Bhattacharjee, G.; Kamaluddin; Rajakumar, S.; Srivastava, K.; Puri, S. K. Eur. J. Med. Chem. 2010, 45, 745–751; https://doi.org/10.1016/j.ejmech.2009.11.022.Suche in Google Scholar PubMed
39. Kufareva, I.; Abagyan, R. Methods Mol. Biol. 2012, 857, 231–257; https://doi.org/10.1007/978-1-61779-588-6_10.Suche in Google Scholar PubMed PubMed Central
40. Vanichtanankul, J.; Taweechai, S.; Yuvaniyama, J.; Vilaivan, T.; Chitnumsub, P.; Kamchonwongpaisan, S.; Yuthavong, Y. ACS Chem. Biol. 2011, 6, 905–911; https://doi.org/10.1021/cb200124r.Suche in Google Scholar PubMed
41. Pinzi, L.; Rastelli, G. Int. J. Mol. Sci. 2019, 20, 4331; https://doi.org/10.3390/ijms20184331.Suche in Google Scholar PubMed PubMed Central
42. Lemcke, T.; Christensen, I. T.; Jørgensen, F. S. Bioorg. Med. Chem. 1999, 7, 1003–1011; https://doi.org/10.1016/s0968-0896(99)00018-8.Suche in Google Scholar PubMed
43. Pegu, D.; Deb, J.; Van Alsenoy, C.; Sarkar, U. Spectrosc. Lett. 2017, 50, 232–243; https://doi.org/10.1080/00387010.2017.1308381.Suche in Google Scholar
44. Lipinski, C. A. Drug Discov. Today Technol. 2004, 1, 337–341; https://doi.org/10.1016/j.ddtec.2004.11.007.Suche in Google Scholar PubMed
45. Wang, N. N.; Huang, C.; Dong, J.; Yao, Z. J.; Zhu, M. F.; Deng, Z. K.; Lv, B.; Lu, A. P.; Chen, A. F.; Cao, D. S. RSC Adv. 2017, 7, 19007–19018; https://doi.org/10.1039/c6ra28442f.Suche in Google Scholar
46. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, D. J. F. K.; Montgomery, J. A.Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; J. M. M; 2016.Suche in Google Scholar
47. Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E. J. Comput. Chem. 2004, 25, 1605–1612; https://doi.org/10.1002/jcc.20084.Suche in Google Scholar PubMed
48. Trott, O.; Olson, A. J. J. Comput. Chem. 2009, 31; https://doi.org/10.1002/jcc.21334.Suche in Google Scholar PubMed PubMed Central
49. D. S. BIOVIA, 2020.Suche in Google Scholar
50. Koopmans, T. Physica 1934, 1, 104–113; https://doi.org/10.1016/s0031-8914(34)90011-2.Suche in Google Scholar
51. Lu, T.; Chen, F. J. Comput. Chem. 2012, 33, 580–592; https://doi.org/10.1002/jcc.22885.Suche in Google Scholar PubMed
52. Humphrey, W.; Dalke, A.; Schulten, K. J. Mol. Graph. 1996, 14, 33–38; https://doi.org/10.1016/0263-7855(96)00018-5.Suche in Google Scholar PubMed
53. Xiong, G.; Wu, Z.; Yi, J.; Fu, L.; Yang, Z.; Hsieh, C.; Yin, M.; Zeng, X.; Wu, C.; Lu, A.; Chen, X.; Hou, T.; Cao, D. Nucleic Acids Res. 2021, 49, W5–W14; https://doi.org/10.1093/nar/gkab255.Suche in Google Scholar PubMed PubMed Central
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/pac-2024-0330).
© 2025 IUPAC & De Gruyter
Artikel in diesem Heft
- Frontmatter
- In this issue
- Preface
- Preface: 9th International Conference for Young Chemists (ICYC) 2024
- Research Articles
- Doping TiO2 with Cu from electroplating wastewater for remarkable improvement of its activity under visible light for E. coli bacterial disinfection in water
- Investigating the potential of prenylated and geranylated acylphloroglucinol-based xanthenones as potent soybean 15-lipoxygenase inhibitors: a combined in vitro and in silico approach
- Intelligent food packaging from Ganyong starch (Canna Edulis Kerr.) modified with nanocellulose from corn husk (Zea mays) and curcumin as bioindicator
- Evaluation of 2-(1H-1,2,3-triazol-1-yl) acetic acid derivatives as potential human hypoxia-inducible factor (HIF) prolyl hydroxylase domain-2 (PHD2) inhibitors
- Microparticles zerumbone from Zingiber zerumbet rhizome in chitosan modified oleic acid
- Enhanced visible photocatalytic degradation of diclofenac by ultrasound-assisted prepared C and N co-doping TiO2
- Enhanced stability and permeability of graphene oxide nanocomposite membranes via glycine and diglycine cross-linking
- Furanyl-Chalcones as antimalarial agent: synthesis, in vitro study, DFT, and docking analysis of PfDHFR inhibition
Artikel in diesem Heft
- Frontmatter
- In this issue
- Preface
- Preface: 9th International Conference for Young Chemists (ICYC) 2024
- Research Articles
- Doping TiO2 with Cu from electroplating wastewater for remarkable improvement of its activity under visible light for E. coli bacterial disinfection in water
- Investigating the potential of prenylated and geranylated acylphloroglucinol-based xanthenones as potent soybean 15-lipoxygenase inhibitors: a combined in vitro and in silico approach
- Intelligent food packaging from Ganyong starch (Canna Edulis Kerr.) modified with nanocellulose from corn husk (Zea mays) and curcumin as bioindicator
- Evaluation of 2-(1H-1,2,3-triazol-1-yl) acetic acid derivatives as potential human hypoxia-inducible factor (HIF) prolyl hydroxylase domain-2 (PHD2) inhibitors
- Microparticles zerumbone from Zingiber zerumbet rhizome in chitosan modified oleic acid
- Enhanced visible photocatalytic degradation of diclofenac by ultrasound-assisted prepared C and N co-doping TiO2
- Enhanced stability and permeability of graphene oxide nanocomposite membranes via glycine and diglycine cross-linking
- Furanyl-Chalcones as antimalarial agent: synthesis, in vitro study, DFT, and docking analysis of PfDHFR inhibition